This paper investigates the oscillatory behavior of nonlinear third-order dynamic equations on time scales. Our main approach is to transform the equation from its semi-canonical form into a more tractable canonical form. This transformation simplifies the analysis of oscillation behavior and allows us to derive new oscillation criteria. These criteria guarantee that all solutions to the equation oscillate. Our results extend and improve upon existing findings in the literature, particularly for the special cases where T = R and T = Z . Additionally, we provide illustrative examples to demonstrate the practical application of the developed criteria.

Oscillatory behavior of solutions of third order semi-canonical dynamic equations on time scale

Clemente Cesarano;
2024-01-01

Abstract

This paper investigates the oscillatory behavior of nonlinear third-order dynamic equations on time scales. Our main approach is to transform the equation from its semi-canonical form into a more tractable canonical form. This transformation simplifies the analysis of oscillation behavior and allows us to derive new oscillation criteria. These criteria guarantee that all solutions to the equation oscillate. Our results extend and improve upon existing findings in the literature, particularly for the special cases where T = R and T = Z . Additionally, we provide illustrative examples to demonstrate the practical application of the developed criteria.
2024
third order; oscillatory; semi-canonical; non-canonical; canonical
File in questo prodotto:
File Dimensione Formato  
10.3934_math.20241178.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Dominio pubblico
Dimensione 245.21 kB
Formato Adobe PDF
245.21 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14086/5983
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact