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1. Introduction

A recently developed theory gaining significant interest is time scale T, introduced by Stefan Hilger
to bridge the gap between continuous and discrete analysis [1]. In simpler terms, it aims to unify
the study of differential equations (governing continuous change) and difference equations (modeling
discrete jumps) [2].

The core concept of time scale T involves defining a time domain as any non-empty, closed set of
real numbers. The familiar differential and difference equations emerge as special cases when the time
scale is the set of all real numbers or integers, respectively.

To gain a comprehensive understanding, it is necessary to review some basic concepts of time scale
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theory. The forward and backward jump operators σ, ρ : T→ T are defined by

σ(`) = inf{s ∈ T | s > `} and ρ(`) = sup{s ∈ T | s < `},

(supplemented by inf ∅ = supT and sup ∅ = inf T ). A point ` ∈ T is called right-scattered, right-
dense, left-scattered or left-dense if σ(`) > `, σ(`) = `, ρ(`) < `, ρ(`) = ` holds, respectively. The
set Tκ is defined to be T if T does not have a left-scattered maximum; otherwise, it is T without this
left-scattered maximum. The graininess function µ : T→ [0,∞) is defined by µ(`) = σ(`) − `. Hence,
the graininess function is constant 0 if T = R, while it is constant ` for T = Z. However, a time scale
T could have nonconstant graininess. A function h : T → R is said to be rd-continuous and is written
h ∈ Crd(T,R), provided that h is continuous at right dense points and at left dense points in T, left hand
limits exist, and are finite. We say that h : T→ R is differentiable at ` ∈ T whenever

h∆ := lim
s→`

h(`) − h(s)
` − s

exists when σ(`) = ` (here by s → ` it is understood that s approaches ` in the time scale), and when
h is continuous at ` and σ(`) > ` it is

h∆ := lim
s→`

h(σ(`)) − h(`)
µ(`)

.

The product and quotient rules [3, Theorem 1.20] for the derivative of the product hk and the quotient
h/k of two differentiable functions h and k are as follows:

(hk)∆(`) = h∆(`)k(`) + h(σ(`))k∆ = h(`)k∆(`) + h∆(`)k(σ(`)), (1.1)(
h
k

)∆

(`) =
h∆(`)k(`) − h(`)k∆(`)

k(`)k(σ(`))
. (1.2)

The chain rule [3, Theorem 1.90] for the derivative of the composite function h ◦ k of a continuously
differentiable function h : R→ R and a (delta) differentiable function k : T→ R results in

(h ◦ k)∆ =

{∫ 1

0
h′(k + sµk∆)ds

}
g∆. (1.3)

A function h : T → R is called rd-continuous provided it is continuous at right-dense points in T and
its left-sided limits exist (finite) at left-dense points in T. The set of rd-continuous functions f : T→ R
is denoted by

Crd = Crd(T) = Crd(T,R).

The set of functions h : T→ R that are differentiable and whose derivative is rd-continuous is denoted
by

C1
rd = C1

rd(T) = C1
rd(T,R).

Finally, if h : T → R is a function, then we define the function hσ : T → R by hσ(`) = h(σ(`)) for all
` ∈ T.

Bohner and Peterson’s book [3] provides a comprehensive overview and organization of this new
calculus. Beyond these basic cases, numerous other time scales can be defined, leading to a wealth of
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applications. One such application is the study of population dynamic models, as explored in [4]. To
delve deeper into the theory, readers can consult the referenced papers [5, 6] and monographs [3, 7].

Recent years have seen a surge in research on the oscillation and non-oscillation of solutions
to dynamic equations on time scales. For further exploration, readers can refer to the references
provided [8, 9, 13–19].

The present paper investigates the asymptotic behavior of solutions to the semi-canonical third
dynamic equation (

a2(`)(a1(`)x∆(`))∆
)∆

+ p(`)xγ(δ(`)) = 0, ` ∈ [`0,∞)T, (1.4)

where γ is the ratio of positive odd integers.
In this paper, we consider the following conditions:

(i) a1(`) ∈ C2
rd([`0,∞)T, (0,∞)) , a2(`) ∈ C1

rd([`0,∞)T, (0,∞)), p(`) ∈ C([`0,∞)T, (0,∞)) and Eq (1.4)
is in semi-canonical form, i.e.,∫ ∞

`0

∆s
a2(s)

= ∞ and
∫ ∞

`0

∆s
a1(s)

< ∞; (1.5)

(ii) δ ∈ C1
rd([`0,∞)T), δ∆(`) ≥ 0, and lim`→∞ δ(`) = ∞.

Let us recall that a solution of Eq (1.4) is a nontrivial real-valued function x satisfying the equation
for ` ≥ `x for some `x ≥ `x0 such that x ∈ C1([`x,∞)T,R), a1x∆ ∈ C1([`x,∞)T,R), and a2(a1(x∆))∆ ∈

C1([`x, 1)T,R). We exclude solutions that vanish identically in some neighborhood of infinity, assuming
that such solutions exist for Eq (1.4). A solution x(`) of Eq (1.4) is termed oscillatory if it exhibits
arbitrarily large zeros on [`x,∞)T; otherwise, it is classified as non-oscillatory.

The study of oscillatory behavior in Eq (1.4) often hinges on its form. Equation (1.4) is in canonical
form if ∫ ∞

`0

∆s
a1(s)

=

∫ ∞

`0

∆s
a2(s)

= ∞,

and it is in non-canonical form if∫ ∞

`0

∆s
a1(s)

< ∞ and
∫ ∞

`0

∆s
a2(s)

< ∞.

If either ∫ ∞

`0

∆s
a1(s)

< ∞ and
∫ ∞

`0

∆s
a2(s)

= ∞, (S 1)

or ∫ ∞

`0

∆s
a1(s)

= ∞ and
∫ ∞

`0

∆s
a2(s)

< ∞, (S 2)

then we will say that (1.4) is in semicanonical form.
The groundwork for studying third-order dynamic equations on general time scales was laid by

Erbe et al. [13], who focused on equations of the form

(a2(`)((a1(`)x∆(`))∆))∆ + p(`) f (x(`)) = 0, ` ∈ [`0,∞)T, (1.6)

where a1, a2, p ∈ Crd(`0,∞)T, f ∈ C(R,R) R is continuous and satisfies u f (u) > 0 for u , 0.
Additionally, for each k > 0, there exists M = Mk > 0 such that f (u)/u ≥ M, |u| ≥ k. Using the
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Riccati transformation technique, they established sufficient conditions that guarantee every solution
to this equation either oscillates or converges to zero.

Building on Erbe et al.’s work [13], Hassan [14] investigated a more general form of the third-order
equation

(a2(`)((a1(`)x∆(`))∆)α)∆ + f (`, x(δ(`))) = 0, ` ∈ [`0,∞)T, (1.7)

where α ≥ 1 and δ(`) ≤ `, in the canonical form.
In the particular case of T = R and γ = 1, Chatzarakis et al. [11] established new oscillation criteria

for the differential equation

(a2(`)(a1(`)x′(`))′)′ + p(`)x(δ(`)) = 0,

in the canonical form. Recently, techniques have been developed to study the oscillatory behavior
of solutions to third-order equations. Moaaz et al. [21, 22] extended the improved methods used in
studying second-order equations [23,24]. The development of oscillation criteria for delay differential
equations of odd orders can also be observed through the works [25, 26].

Our literature review indicates a scarcity of research on the oscillatory behavior of solutions to
Eq (1.4) when it takes the semi-canonical form (S 1). This paper tackles Eq (1.4) in its less-studied
semi-canonical form. We begin by transforming it into the more common canonical form. This
transformation allows us to then establish new criteria for determining when solutions to Eq (1.4)
oscillate.

2. Main results

To enhance readability, we’ll use the following symbols:

A(`) :=
∫ ∞

`

∆s
a1(s)

, a(`) := a1(`)A(`)Aσ(`), r(`) :=
a2(`)
Aσ(`)

,

P(`) := p(`)Aγ(`), φ(`) :=
∫ `

`1

∆s
r(s)

, ψ(`) :=
∫ `

`1

φ(s)∆s
a(s)

, and z(`) :=
x(`)
A(`)

.

Lemma 2.1. [27] Assume that x is an eventually positive solution of (1.4) satisfying (1.5). Then there
exists `1 ∈ [`0,∞)T such that x satisfies one of the following three cases:

(I) x∆ > 0 , (a1(`)(x∆(`)))∆ > 0, (a2(`)((a1(`)(x∆(`)))∆)∆ < 0;
(II) x∆ < 0 , (a1(`)(x∆(`)))∆ > 0, (a2(`)((a1(`)(x∆(`)))∆)∆ < 0;

(III) x∆ < 0 , (a1(`)(x∆(`)))∆ < 0, (a2(`)((a1(`)(x∆(`)))∆)∆ < 0.

Theorem 2.1. Assume that ∫ ∞

`

∆s
r(s)

= ∞. (2.1)

Then the semi-canonical dynamic Eq (1.4) has a solution x(`) if and only if the corresponding
canonical equation

(r(`)(a(`)z∆(`))∆)∆ + P(`)zγ(δ(`)) = 0, (2.2)

admits the solution z(`) =
x(`)
A(`) .
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Proof. Referring back to σ(`) as the forward jump operator and performing differentiation yields

a2(`)
Aσ(`)

a1(`)A(`)Aσ(`)
(

x(`)
A(`)

)∆
∆

=
a2(`)
Aσ(`)

{
a1(`)A(`)Aσ(`)

[
x∆(`)A(t) − x(t)A∆(t)

A(t)Aσ(`)

]}∆

=
a2(`)
Aσ(`)

{
a1(`)x∆(`)A(`) − a1(`)x(`)A∆(`)

}∆

=
a2(`)
Aσ(`)

{(
a1(`)x∆(`)

)∆
Aσ(`) + a1(`)x∆(`)A∆(`) + x∆(`)

}
= a2(`)

(
a1(`)x∆(`)

)∆
. (2.3)

From (2.1), we have ∫ ∞

`

Aσ(s)
a2(s)

∆s = ∞, (2.4)

and ∫ ∞

`

∆s
a1(s)A(s)Aσ(s)

=

∫ ∞

`

(
1

A(s)

)∆

∆s = lim
`→∞

(
1

A(`)
−

1
A(`0)

)
= ∞. (2.5)

Combining (2.3) with (1.4), we obtain

(a2(`)(a1(`)x∆(`))∆)∆ + p(`)xγ(δ(`)) =0 a2(`)
Aσ(`)

a1(`)A(`)Aσ(`)
(

x(`)
A(`)

)∆
∆

∆

+ p(`)Aγ(`)
xγ(δ(`))
Aγ(`)

=0

(r(`)(a(`)z∆(`))∆)∆ + P(`)zγ(δ(`)) =0. (2.6)

It is clear that x(`)
A(`) is a solution of (2.6). Moreover, considering (2.4) and (2.5), it is apparent that

Eq (2.6) is in canonical form and from [28] this canonical from is unique. �

Theorem 2.1 significantly streamlines the analysis of Eq (1.4) by reducing it to the scope of (2.2),
thereby directing our focus towards only two classifications of solutions that ultimately exhibit
positivity, i.e., either

z(`) > 0, a(`)z∆(`) < 0, r(`)(a(`)z∆(`) > 0, (r(`)(a(`)z∆(`))∆)∆ < 0,

and in this case, we denote z ∈ ℵ0 or

z(`) > 0, a(`)z∆(`) > 0, r(`)(a(`)z∆(`))∆ > 0, (r(`)(a(`)z∆(`))∆)∆ < 0,

and for this characteristic, we indicate that z ∈ ℵ2.

Theorem 2.2. Let γ ≥ 1 and (2.1) hold. Suppose that

lim sup
`→∞

{
1

φγ(δ(`))

∫ δ(`)

`1

φ(σ(s))P(s)ψγ(s)∆s +
1

φγ−1(δ(`))

∫ `

δ(`)

P(s)ψγ(s)
φγ(δ(s))

∆s

+ φ(δ(`))
∫ ∞

`

P(s)ψγ(s)∆s
}

=

∞, γ > 1,
1, γ = 1,

(2.7)
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and ∫ ∞

`0

1
a(u)

∫ ∞

u

1
r(v)

∫ ∞

v
P(s)∆s∆v∆u = ∞. (2.8)

Then every non-oscillatory solution z(`) of (1.4) satisfies lim`→∞
x(`)
A(`) = 0.

Proof. Let x(`) be a non-oscillatory solution of Eq (1.4), where x(`) > 0, and x(δ(`)) > 0 for ` ≥ `1 for
some `1 ≥ `0. According to Theorem 2.1, the corresponding function z(`) =

x(`)
A(`) is a positive solution

of (2.2), implying that either z ∈ ℵ0 or z ∈ ℵ2 for ` ≥ `1.
Let us examine the case where z ∈ ℵ2. In this case, we observe that

a(`)z∆(`) ≥
∫ `

`1

r−1(s)r(s)(a(s)z∆(s))∆∆s

≥ r(`)(a(`)z∆(`))∆

∫ `

`1

∆s
r(s)

≥ r(`)(a(`)z∆(`))∆φ(`).

Hence , (
a(`)z∆(`)
φ(`)

)∆

=
φ(`)(a(`)z∆(`))∆ − (a(`)z∆(`))φ∆(`)

φ(`)φσ(`)

=
φ(`)r(`)(a(`)z∆(`))∆ − (a(`)z∆(`))

r(`)φ(`)φσ(`)
≤ 0. (2.9)

Consequently, it can be inferred from (2.9) that

z(`) ≥
∫ `

`1

z∆(s)∆s =

∫ `

`1

a(s)z∆(s)
φ(s)

φ(s)
a(s)

∆s ≥
a(`)z∆(`)
φ(`)

ψ(`). (2.10)

Combining (2.10) with (2.2), we see that a(`)z∆(`)
φ(`) ψ(`) is a positive solution to the dynamic inequality

(
r(`)χ∆(`)

)∆
+

P(`)ψγ(`)
φγ(δ(`))

χγ(δ(`)) ≤ 0, (2.11)

where χ(`) := a(`)z∆(`). Integration (2.11) from ` to ∞ and considering the nonincreasing nature of
χ(`)/φ(`) , we obtain

χ∆(`) ≥
1

r(`)

∫ ∞

`

P(s)ψγ(s)
φγ(δ(s))

χγ(δ(s))∆s.

Therefore,

χ(`) ≥
∫ `

`1

1
r(s)

∫ ∞

s

P(u)ψγ(u)
φγ(δ(u))

χγ(δ(u))∆u∆s

=

∫ `

`1

1
r(s)

∫ `

s

P(u)ψγ(u)
φγ(δ(u))

χγ(δ(u))∆u∆s +

∫ `

`1

1
r(s)

∫ ∞

`

P(u)ψγ(u)
φγ(δ(u))

χγ(δ(u))∆u∆s. (2.12)
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Integrating by parts, we obtain

χ(`) ≥
∫ `

`1

φ(σ(s))
P(s)ψγ(s)
φγ(δ(s))

χγ(δ(s))∆s + φ(`)
∫ ∞

`

P(s)ψγ(s)
φγ(δ(s))

χγ(δ(s))∆s. (2.13)

It follows that

χ(δ(`)) ≥
∫ δ(`)

`1

φ(σ(s))
P(s)ψγ(s)
φγ(δ(s))

χγ(δ(s))∆s + φ(δ(`))
∫ ∞

δ(`)

P(s)ψγ(s)
φγ(δ(s))

χγ(δ(s))∆s

=

∫ δ(`)

`1

φ(σ(s))
P(s)ψγ(s)
φγ(δ(s))

χγ(δ(s))∆s + φ(δ(`))
∫ `

δ(`)

P(s)ψγ(s)
φγ(δ(s))

χγ(δ(s))∆s

+ φ(δ(`))
∫ ∞

`

P(s)ψγ(s)
φγ(δ(s))

χγ(δ(s))∆s. (2.14)

Utilizing the monotonicity characteristics of χ(`) and χ(`)/φ(`) , we have χ(δ(`)) ≤ χ(δ(s)) and χ(δ(s))
φ(δ(s)) ≥

χ(δ(`))
φ(δ(`)) for s ≥ `, hence (2.14) takes the form

χ(δ(`)) ≥
χγ(δ(`))
φγ(δ(`))

∫ δ(`)

`1

φ(σ(s))P(s)ψγ(s)∆s +
χγ(δ(`))
φγ−1(δ(`))

∫ `

δ(`)

P(s)ψγ(s)
φγ(δ(s))

∆s

+ φ(δ(`))χγ(δ(`))
∫ ∞

`

P(s)ψγ(s)∆s, (2.15)

χ1−γ(δ(`)) ≥
1

φγ(δ(`))

∫ δ(`)

`1

φ(σ(s))P(s)ψγ(s)∆s +
1

φγ−1(δ(`))

∫ `

δ(`)

P(s)ψγ(s)
φγ(δ(s))

∆s

+ φ(δ(`))
∫ ∞

`

P(s)ψγ(s)∆s. (2.16)

This contradicts (2.7). Subsequently, let us assume that z ∈ ℵ0. Then lim`→∞ z(`) = k ≥ 0, and we
propose that k = 0. If not, it would imply z(`) ≥ k > 0. Integrating (2.2) from ` to∞ yields

r(`)(a(`)z∆(`))∆ ≥

∫ ∞

`

P(s)zγ(δ(s))∆s ≥ kγ
∫ ∞

`

P(s)∆s.

Therefore,

−a(`)z∆(`) ≥ kγ
∫ ∞

`

1
r(u)

∫ ∞

u
P(s)∆s∆u,

and

z(`1) ≥ kγ
∫ ∞

`1

1
a(u)

∫ ∞

u

1
r(v)

∫ ∞

v
P(s)∆s∆v∆u.

This leads to a contradiction to (2.8). Thus, we conclude: lim`→∞ z(`) = lim`→∞
x(`)
A(`) = 0, and, the proof

of the theorem is complete. �
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Theorem 2.3. Let 0 < γ < 1 and (2.1) hold. If (2.8) and

lim sup
`→∞

{
1

φ(δ(`))

∫ δ(`)

`1

φ(σ(s))P(s)ψγ(s)∆s +

∫ `

δ(`)

P(s)ψγ(s)
φγ(δ(s))

∆s

+ φγ(δ(`))
∫ ∞

`

P(s)ψγ(s)∆s
}

= ∞

(2.17)

hold, then every non-oscillatory solutionz(`) of (1.4) satisfies lim`→∞
x(`)
A(`) = 0.

Proof. Let x(`) be a non-oscillatory solution of Eq (1.4), where x(`) > 0, and x(δ(`)) > 0 for ` ≥ `1 for
some `1 ≥ `0. According to Theorem 2.1, the corresponding function z(`) =

x(`)
A(`) is a positive solution

of (2.2), implying that either z ∈ ℵ0 or z ∈ ℵ2 for ` ≥ `1.
First, let us assume that z ∈ ℵ2. Proceeding similarly to the proof of Theorem 2.2, we arrive

at (2.15). Dividing (2.16) by φ1−γ(δ(`), we obtain(
χ(δ(`))
φ(δ(`))

)1−γ

≥
1

φ(δ(`))

∫ δ(`)

`1

φ(σ(s))P(s)ψγ(s)∆s +

∫ `

δ(`)

P(s)ψγ(s)
φγ(δ(s))

∆s

+ φγ(δ(`))
∫ ∞

`

P(s)ψγ(s)∆s. (2.18)

In view of the decreasing nature of χ(δ(`))/φ(δ(`)) and the fact that 0 < γ < 1, there exists a constant
C > 0 such that (

χ(δ(`))
φ(δ(`))

)1−γ

≤ C.

Taking the lim sup as ` → ∞, we establish a contradiction to (2.18), and consequently, z < ℵ2.
Subsequently, let us assume that z ∈ ℵ0. Proceeding similarly to the proof of Theorem 2.2, it

becomes evident that condition (2.8) once more leads to the conclusion that lim`→∞
x(`)
A(`) = 0. This

completes the proof. �

Theorem 2.4. Suppose that conditions (i), (ii), and δ∆(`) > 0 are satisfied on [`0,∞)T, γ ≤ 1, and there
exists a function ξ(`) such that

ξ∆(`) ≥ 0, ξ(`) > ` , and θ(`) = δ(ξ(ξ(`))) < `. (2.19)

If

lim inf
`→∞

∫ `

δ(`)
P(s)ψγ(δ(s))∆s

= ∞, γ < 1,
> 1/e, γ = 1,

(2.20)

and

lim inf
`→∞

∫ `

θ(`)

(
1

a(s)

∫ ξ(`)

s

1
r(u)

∫ ξ(u)

u
P(v)∆v∆u

)
∆s

= ∞, γ < 1,
> 1/e, γ = 1,

(2.21)

for all `1 ≥ `0, then Eq (1.4) is oscillatory.
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Proof. Let x(`) be a non-oscillatory solution of Eq (1.4), where x(`) > 0, and x(δ(`)) > 0 for ` ≥ `1 for
some `1 ≥ `0. According to Theorem 2.1, the corresponding function z(`) =

x(`)
A(`) is a positive solution

of (2.2), implying that either z ∈ ℵ0 or z ∈ ℵ2 for ` ≥ `1. Assuming that z(`) ∈ ℵ2, we have

a(`)z∆(`) ≥
∫ `

`1

r−1(s)r(s)(a(s)z∆(s))∆∆s ≥ r(`)(a(`)z∆(`))∆φ(`).

It follows that

z∆(`) ≥
r(`)(a(`)z∆(`))∆φ(`)

a(`)
. (2.22)

Integrating the above inequality from `2 to `, we obtain

z(`) ≥
∫ `

`2

r(s)(a(s)z∆(s))∆φ(s)
a(s)

∆s

≥ r(`)(a(`)z∆(`))∆

∫ `

`2

φ(s)
a(s)

∆s

= r(`)(a(`)z∆(`))∆ψ(`). (2.23)

There exists `3 ≥ `2 such that δ(`) ≥ `2 for all ` ≥ `3. Then, we have

z(δ(`)) ≥ r(δ(`))(a(δ(`))z∆(δ(`)))∆ψ(δ(`)), for all ` ≥ `3.

Combining this with (2.2) yields

Y∆(`) + P(`)ψγ(δ(`))Yγ(δ(`)) ≤ 0, for ` ≥ `3, (2.24)

where Y(`) := r(`)(a(`)z∆(`))∆. Integrating (2.24) from δ(`) to `, we have

Y(δ(`)) ≥ Y(δ(`)) − Y(`)

≥ Yγ(δ(`))
∫ `

δ(`)
P(s)ψγ(δ(s))∆s. (2.25)

Hence,

Y1−γ(δ(`)) ≥
∫ `

δ(`)
P(s)ψγ(δ(s))∆s for ` ≥ `3.

According to [29, Theorem 1], we reach the intended contradiction.
Now, consider z ∈ ℵ0. Integrating (2.2) from ` to ξ(`), we obtain

r(`)(a(`)z∆(`))∆ ≥

∫ ξ(`)

`

P(s)zγ(δ(s))∆s

≥ zγ(δ(ξ(`)))
∫ ξ(`)

`

P(s)∆s,

where θ(`) := δ(ξ(ξ(`))). Consequently,

(a(`)z∆(`))∆ ≥
zγ(δ(ξ(`)))

r(`)

∫ ξ(`)

`

P(s)∆s. (2.26)
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Integrating (2.26) from ` to ξ(`), we have

−a(`)z∆(`)
∫ ξ(`)

`

zγ(δ(ξ(s)))
r(s)

∫ ξ(s)

s
P(u)∆u∆s

≥ zγ(δ(ξ(ξ(`))))
∫ ξ(`)

`

1
r(s)

∫ ξ(s)

s
P(u)∆u∆s

= zγ(θ(`))
∫ ξ(`)

`

1
r(s)

∫ ξ(s)

s
P(u)∆u∆s. (2.27)

It follows that

z∆(`) +

(
1

a(`)

∫ ξ(`)

`

1
r(s)

∫ ξ(s)

s
P(u)∆u∆s

)
zγ(θ(`)) ≤ 0. (2.28)

The remainder of the proof follows a similar pattern to the one described above and is therefore omitted.
�

Theorem 2.5. Let (2.1) hold. Assume that there exists a function ρ(`) ∈ C1
rd(T,R+) , such that

lim sup
`→∞

∫ `

`0

(
P(s)ρ(s)

ψ(δ(s))
φ(s)

λγ−1 −
ρ∆(s)r(s)

4ρ(s)

)
∆s = ∞, (2.29)

and (2.8) hold. Then every solution z(`) of (1.4) is oscillatory or satisfies lim`→∞
x(`)
A(`) = 0.

Proof. Let x(`) be a non-oscillatory solution of Eq (1.4), where x(`) > 0, and x(δ(`)) > 0 for ` ≥ `1 for
some `1 ≥ `0. According to Theorem 2.1, the corresponding function z(`) =

x(`)
A(`) is a positive solution

of (2.2), implying that either z ∈ ℵ0 or z ∈ ℵ2 for ` ≥ `1.
Firstly, let us consider z ∈ ℵ2; then we have r(`)(a(`)z∆(`))∆ is decreasing, and moreover,

r(`)(a(`)z∆(`))∆ ≥

∫ ∞

`

P(s)zγ(δ(s))∆s

≥ zγ(`(s))
∫ ∞

`

P(s)∆s. (2.30)

Let us define the generalized Riccati substitution

ω(`) = ρ(`)
r(`)(a(`)z∆(`))∆

a(`)z∆(`)
. (2.31)

Applying both the product rule and the quotient rule, we obtain

ω∆(`) = (r(`)(a(`)z∆(`))∆)∆

(
ρ(`)

a(`)z∆(`)

)
+ (r(`)(a(`)z∆(`))∆)σ

(
ρ(`)

a(`)z∆(`)

)∆

= (r(`)(a(`)z∆(`))∆)∆

(
ρ(`)

a(`)z∆(`)

)
+ (r(`)(a(`)z∆(`))∆)σ

(
(a(`)z∆(`))ρ∆(`) − ρ(`)(a(`)z∆(`))∆

(a(`)z∆(`))(a(`)z∆(`))σ

)
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≤ −P(`)ρ(`)
(

zγ(δ(`))
a(`)z∆(`)

)
+

ρ∆
+(`)

ρ(σ(`))
ω(σ(`))

− ρ(`)(r(`)(a(`)z∆(`))∆)σ
(a(`)z∆(`))∆

(a(`)z∆(`))(a(`)z∆(`))σ
. (2.32)

Using the monotonicity of r(`)(a(`)r∆(`))∆ and (a(`)r∆(`)), we have(
a(`)z∆(`)

)∆
≥

r(σ(`))
r(`)

(
a(σ(`))z∆(σ(`))

)∆
, (2.33)

and
1

a(`)z∆(`)
≥

1
a(σ(`))z∆(σ(`))

. (2.34)

Combining (2.33) and (2.34) with (2.32), we obtain

ω∆(`) ≤ −P(`)ρ(`)
(

zγ(δ(`))
a(`)z∆(`)

)
+

ρ∆
+(`)

ρ(σ(`))
ω(σ(`)) −

ρ(`)
r(`)ρ2(σ((`))

ω2(σ(`)). (2.35)

From (2.9), (2.10), and the fact that δ(`) ≤ `, we have

z(δ(`))
a(`)z∆(`)

≥
ψ(δ(`))
φ(`)

, for ` ≥ `3. (2.36)

This, together with (2.33), leads to

ω∆(`) ≤ −P(`)ρ(`)
ψ(δ(`))
φ(`)

zγ−1(δ(`)) +
ρ∆

+(`)
ρ(σ(`))

ω(σ(`)) −
ρ(`)

r(`)ρ2(σ((`))
ω2(σ(`)). (2.37)

Since z∆(`) > 0, then there exists a constant λ > 0 such that z(`) ≥ λ for ` ≥ `3. Consequently, (2.37)
can be expressed as

ω∆(`) ≤ −P(`)ρ(`)
ψ(δ(`))
φ(`)

λγ−1 +
ρ∆

+(`)
ρ(σ(`))

ω(σ(`)) −
ρ(`)

r(`)ρ2(σ((`))
ω2(σ(`))

≤ −P(`)ρ(`)
ψ(δ(`))
φ(`)

λγ−1 +
ρ∆(`)r(`)

4ρ(`)
. (2.38)

Integrating both sides of (2.38) from `4 > `3 to `, we obtain∫ `

`4

(
P(s)ρ(s)

ψ(δ(s))
φ(s)

λγ−1 −
ρ∆(s)r(s)

4ρ(s)

)
∆s ≤ ω(`4), (2.39)

which contradicts (2.29). Now, assume that z ∈ ℵ0. Proceeding similarly to the proof of Theorem 2.2,
it becomes evident that condition (2.8) once more leads to the conclusion that lim`→∞

x(`)
A(`) = 0. This

completes the proof. �

Theorem 2.6. Let γ = 1 ,

lim sup
`→∞

∫ `

δ(`)

(
1

a(v)

∫ `

v

1
r(u)

∫ `

u
P(s)∆s∆u

)
∆v > 1, (2.40)
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and assume that there exists a function ρ(`) ∈ C1
rd(T,R+), such that

lim sup
`→∞

∫ `

`0

(
P(s)ρ(s)

ψ(δ(s))
φ(s)

−
ρ∆(s)r(s)

4ρ(s)

)
∆s = ∞. (2.41)

Then every solution of (1.4) is oscillatory.

Proof. Let x(`) be a non-oscillatory solution of Eq (1.4), where x(`) > 0, and x(δ(`)) > 0 for ` ≥ `1 for
some `1 ≥ `0. According to Theorem 2.1, the corresponding function z(`) =

x(`)
A(`) is a positive solution

of (2.2), implying that either z ∈ ℵ0 or z ∈ ℵ2 for ` ≥ `1. Assume z(`) ∈ ℵ0. Integrating (2.2) from ν to
` yields

r(ν)(a(ν)z∆(ν))∆ ≥

∫ `

ν

P(s)z(δ(s))∆s ≥ z(δ(`))
∫ `

ν

P(s)∆s.

Integrating again twice from ν to `, we obtain

z(ν) ≥ z(δ(`))
∫ `

ν

(
1

a(v)

∫ `

v

1
r(u)

∫ `

u
P(s)∆s∆u

)
∆v.

Replacing ν with δ(`) leads to contradiction to (2.40). Hence, every positive solution z(`) does not
satisfy ℵ0. Therefore, if (2.40) holds, then z(`) ∈ ℵ2. Proceeding as in Theorem (2.5) with γ = 1,
completes the proof. �

Example 2.1. Consider the third order linear differential equation(
1
`

(
`2 (

x′(`)
))′)′

+
p0
√
`

x(α`) = 0, ` ≥ 1, (2.42)

where p0 is a constant and α ∈ (0, 1). Here a2(`) = 1
`
, a1(`) = `2 , p(`) =

p0
√
`

and δ(`) = α`. It is clear
that (2.42) is semi-canonical. Since A(`) = 1

`
, a(`) = r(`) = 1, and P(`) =

p0
`3/2 , the corresponding

canonical equation is
z′′′(`) +

p0

`3/2 x(α`) = 0. (2.43)

It is clear that (2.1) holds. Applying Theorem 2.6, we have

lim sup
`→∞

∫ `

δ(`)

(
1

a(v)

∫ `

v

1
r(u)

∫ `

u
P(s)∆s∆u

)
∆v = lim sup

`→∞

∫ `

α`

(∫ `

v

∫ `

u

p0

s3/2 dsdu
)

dv

= lim
`→∞

(−α2 + (1 − 2α)
√
α + 4)`3/2 > 1

and by choosing ρ(`) = `

lim sup
`→∞

∫ `

`0

(
P(s)ρ(s)

ψ(δ(s))
φ(s)

−
ρ∆(s)r(s)

4ρ(s)

)
∆s = lim sup

`→∞

∫ `

`0

(
p0

s3/2

α2s3

s
−

1
4s

)
ds = ∞.

It follows that (2.42) is oscillatory. Also, by Theorems 2.2 and 2.4, Eq (2.42) is oscillatory or
lim`→∞

x(`)
A(`) = 0.

Remark 2.1. It is worth noting that the existing results in [10, 30–32] cannot be directly applied to
Eq (2.42) due to the fact that a1(`) , 1.
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Example 2.2. Consider the second order difference equation

∆

(
1

` + 1
∆(`(` + 1))∆x(`)

)
+ p0x1/2(` − 2) = 0, ` ≥ 1, (2.44)

where p0 is a constant. Here a2(`) = 1
`+1 , a1(`) = `(` + 1) , p(`) = p0 and δ(`) = ` − 2. It is clear

that (2.44) is semi-canonical. Since A(`) = 1
`

, a(`) = r(`) = 1, and P(`) =
p0
`1/2 , the corresponding

canonical equation is
∆(∆(∆(z(`)))) +

p0

`1/2 x(` − 2) = 0. (2.45)

It is clear that (2.1) and (2.8) hold. Further, (2.17) becomes

lim sup
`→∞

{
1

` − 3

`−2∑
1

(s + 1)
p0

s1/2

s
2

+
∑̀
`−2

sp0
√

2s(s − 2)

+
√

(` − 2)
∞∑
`

p0s
√

2s

}
= ∞.

Hence, by Theorem 2.3, every solution is oscillatory or lim`→∞
x(`)
A(`) = 0.

3. Conclusions

The results of this study are presented in a novel and generalizable framework, highlighting their
broad applicability. Our approach involves a unique transformation that converts the equation from the
semi-canonical form to the more tractable canonical form. This transformation facilitates the derivation
of new oscillation criteria with fewer restrictions compared to the existing literature. Theorems 2.4
and 2.6 illustrate our criteria, ensuring that all solutions oscillate. The results obtained are consistent
with the results in [11, 13, 14] and can be extended to non linear difference equations. Our approach
has the potential to be extended to both non-canonical and semi-canonical forms (as defined in (S 2)),
potentially leading to new oscillation conditions.
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https://doi.org/10.1007/978-0-8176-8230-9

8. R. P. Agarwal, M. Bohner, T. Li, C. Zhang, Hille and Nehari type criteria for
third-order delay dynamic equations, J. Differ. Equ. Appl., 19 (2013), 1563–1579.
https://doi.org/10.1080/10236198.2013.766729

9. T. S. Hassan, R. Agarwal, W. Mohammed, Oscillation criteria for third-order functional half-
linear dynamic equations, Adv. Differ. Equ., 2017 (2017), 1–28. https://doi.org/10.1186/s13662-
016-1057-2
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