The Grad–Shafranov plasma equilibrium equation was originally solved analytically in toroidal geometry, which fitted the geometric shape of the first Tokamaks. The poloidal surface of the Tokamak has evolved over the years from a circular to a D-shaped ellipse. The natural geometry that describes such a shape is the prolate elliptical one, i.e., the cap-cyclide coordinate system. When written in this geometry, the Grad–Shafranov equation can be solved in terms of the general Heun function. In this paper, we obtain the complete analytical solution of the Grad–Shafranov equation in terms of the general Heun functions and compare the result with the limiting case of the standard toroidal geometry written in terms of the Fock functions.
The Grad–Shafranov Equation in Cap-Cyclide Coordinates: The Heun Function Solution
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
Clemente Cesarano
;Artur Ishkhanyan
	
		
		
	
			2023-01-01
Abstract
The Grad–Shafranov plasma equilibrium equation was originally solved analytically in toroidal geometry, which fitted the geometric shape of the first Tokamaks. The poloidal surface of the Tokamak has evolved over the years from a circular to a D-shaped ellipse. The natural geometry that describes such a shape is the prolate elliptical one, i.e., the cap-cyclide coordinate system. When written in this geometry, the Grad–Shafranov equation can be solved in terms of the general Heun function. In this paper, we obtain the complete analytical solution of the Grad–Shafranov equation in terms of the general Heun functions and compare the result with the limiting case of the standard toroidal geometry written in terms of the Fock functions.| File | Dimensione | Formato | |
|---|---|---|---|
| mathematics-11-02087.pdf accesso aperto 
											Tipologia:
											Documento in Post-print
										 
											Licenza:
											
											
												Dominio pubblico
												
												
													
													
													
												
												
											
										 
										Dimensione
										660.63 kB
									 
										Formato
										Adobe PDF
									 | 660.63 kB | Adobe PDF | Visualizza/Apri | 
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
