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Abstract: The Grad–Shafranov plasma equilibrium equation was originally solved analytically in 

toroidal geometry, which fi�ed the geometric shape of the first Tokamaks. The poloidal surface of 

the Tokamak has evolved over the years from a circular to a D-shaped ellipse. The natural geometry 

that describes such a shape is the prolate elliptical one, i.e., the cap-cyclide coordinate system. When 

wri�en in this geometry, the Grad–Shafranov equation can be solved in terms of the general Heun 

function. In this paper, we obtain the complete analytical solution of the Grad–Shafranov equation 

in terms of the general Heun functions and compare the result with the limiting case of the standard 

toroidal geometry wri�en in terms of the Fock functions. 

Keywords: Grad–Shafranov equation; Heun equation; analytic solution; cap-cyclide geometry;  

standard toroidal geometry; hypergeometric functions 
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1. Introduction 

The simple equation P  J B   for plasma equilibrium, where P   is the kinetic 

plasma pressure, J  is the plasma current density, and B  is the magnetic field, is among 

the most robust magneto-hydrodynamic equations in plasma physics, and its applicabil-

ity extends from laboratory plasmas to astrophysical plasmas. Introducing the flux func-

tion over a poloidal surface polS : 
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  B s , (1)

assuming axial symmetry and using cylindrical coordinates , ,R Z   , this equilibrium 

equation can be wri�en as a non-linear second-order partial differential equation: 

2 2

02 2

1
RJ

R RR Z


  


  
  

 
, (2)

where J  is the axisymmetric current density. This equation is referred to as the Grad–

Shafranov equation and its analytical solution based on toroidal geometry [1–3] underlies 

the present Tokamak experiments. It should be noted that in vacuum ( 0J  ), this equa-

tion is similar (but with a minus sign in front of the first-derivative term) to the scalar 

Laplace equation; in fact, this equation always coincides in vacuum with the Laplace equa-

tion for the toroidal component of the vector potential [4]. 

The first Tokamaks had a circular cross section, so the toroidal geometry was the 

natural one for solving Equation (2). However, over the years, for several technical and 

physical reasons, the Tokamak section evolved into a deformed elongated elliptical shape 

(D-shape). In the second half of the 19th century, the analytical solution of the related 

Laplace equation in several different geometries was studied in depth [5–7] in order to 

also find an analytical solution for oblate and prolate toroidal geometries. The book by 

Spencer and Moon [8] suggests a good overview of all this work performed up to that 

time. An analytical solution for torus inductance was obtained by Fock [9] and the first 

analytical solution of the Laplace equation in elliptic oblate coordinates was found by Leb-

edev [10]. Eventually, a team of Japanese scientists found the analytical solution of the 

vacuum Grad–Shafranov equation for an oblate toroidal system [11,12]. This solution, as 

well as the solution for the analogous Laplace equation [8], was wri�en in terms of the so-

called Wangerin functions, but the explicit evaluation of these functions has never been 

proposed. Further, the oblate geometry is even worse than the standard toroidal geometry 

for working with the modern elliptical elongated Tokamaks. 

 Recently, Crisanti [13] came to the solution of the Grad–Shafranov equation in the 

case of the elliptic prolate geometry, writing Equation (1) in the cap-cyclide coordinates; 

but in this case, too, the solution was wri�en in terms of the Wangerin functions and hence 

its actual representation was not illustrated and/or suggested. Eventually, it was found 

[14] that the three-dimensional Laplace equation can be transformed into the general 

Heun equation [15,16] by an appropriate coordinate transformation. Further, for some 

particular cases of the parameters, the solution can be expressed as a linear combination 

of the generalized [17,18] or ordinary [18–20] hypergeometric functions. As mentioned 

above, the Laplace equation and the Grad–Shafranov equation when wri�en in standard 

cylindrical coordinates differ from each other only in the sign of the first-derivative term. 

In the present paper, restricting ourselves to the two-dimensional case, the Grad–

Shafranov problem is generalized to a family of equations by introducing an appropriate 

parameter. This made it possible to write down the solution of the Laplace and Grad–

Shafranov equations in a unified way in terms of the general Heun functions and to com-

pare the obtained results with the limiting case of the solution for standard toroidal coor-

dinates. As explained in [13,21], the analytical solution, expressed in the geometry that 

best suits the problem under consideration, opens up the possibility of writing a plasma 

inverse equilibrium code, which, based on magnetic measurements external to the 

plasma, is capable of recovering some important plasma characteristics such as current 

density profile and volume-integrated kinetic pressure. 
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2. Cap-Cyclide Coordinates 

The cap-cyclide coordinates offer a natural framework for studying problems with 

elliptical prolate boundary conditions. In the complex plane, the coordinate transfor-

mation is given via the equation 

 
 

   
1/41/4

1/4

1
, ,

2 1

i k sn wk
R i Z

a i i k sn w
   


  


,    ,w i     , (3)

where sn  is the Jacobi elliptic sine function and a is a scaling constant. The functions 

 ,R    and  ,Z    satisfy the Cauchy–Riemann conditions 

 
R Z

 

 


 
,   

R Z

 

 
 

 
. (4)

For the real-space coordinates , ,X Y Z , the coordinate transformations are given as 

   1, , cosX sn k dn k
a

  





, (5)

   1, , sinY sn k dn k
a

  





, (6)

and 

1/4

2

k
Z

a





. (7)

Here, a   defines the center of the coordinate system, k   and 1k   are, respectively, 

the parameter and the complementary parameter of the elliptical integrals: 1 1k k  , and 

   2 2
1Λ 1 , ,dn k sn k   , (8)

            
2

2 2 1/4
1 1 1Γ , , Λ / , , , ,sn k dn k k cn k dn k sn k cn k        , (9)

              2 1/2 2 2 2 2 2 2
1 1 1Π Λ / , , , , , ,k sn k dn k cn k dn k sn k cn k       

. 
(10)

The coordinate transformation (5)–(10) can generate a wide range of distinct geome-

tries by adjusting the parameter k . When   approaches 0, the geometric shape given 

by the parametric curve { ( ), ( )}x y   at constant   and k  tends to the bipolar (standard 

toroidal) form, regardless of k  (Figure 1). 



Mathematics 2023, 11, 2087 4 of 13 
 

 

 

Figure 1. For 0   , the constant- ,k   cross-section { ( ), ( )}x y    tends to a standard bipolar 

shape regardless of k . 

However, for any fixed non-zero  , the shape depends on the value of k . When k  

approaches 0, the surfaces tend to adopt a bean-like shape. For intermediate values of k , the 

surfaces can either be D shaped or purely elliptical prolate, similar to the geometry en-

countered in most current tokamak experiments. Finally, as k  approaches 1, all surfaces 

resemble standard toroidal ones, irrespective of µ (Figure 2). 

 

Figure 2. For 0k  , the surfaces are bean shaped; for intermediate k, the surfaces can be either D 

or elliptical prolate; for 1k  , the surfaces tend to be standard bipolar shaped. 

3. The Generalized Laplace Equation 

As mentioned above, in vacuum, the Laplace equation and the Grad–Shafranov 

equation in cylindrical coordinates differ only in the sign of the first derivative, and we 

have the following two equations: 

2 2

2 2

1
0

R RR Z

    
  

 
. (11)
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To treat both equations in the same way, we consider the auxiliary equation 

2 2

2 2 2
0

w w A

R Z R

 
  

 
 (12)

with a variable parameter A , to which the two equations are reduced by the transfor-

mation 

0 /2  R w   (13)

( 0 1     for the AC-Laplace equation and 0 1     or 0 3    for the Grad–Shafranov 

equation). For the Laplace and Grad–Shafranov equations, the parameter A  takes the 

values 1/ 4A   and 3 / 4A   , respectively; however, we will treat the problem for arbi-

trary A. Correspondingly, Equation (11) is now generalized to the equation 

2 2
0

2 2
0

R RR Z

    
  

 
, (14)

which serves as the starting point for this study. Note that transformation (13) reduces 

this equation to Equation (12) with 

0 01
2 2

A
  

    
 

 (15)

The form of Equation (12) is advantageous in that in changing the coordinate system, 

only the two derivative terms are transformed. The sum of these terms can be convention-

ally considered as the Cartesian Laplacian of the function w  with respect to coordinates 

,R Z . Note that the Laplacian 

 
2 2

2 2
,

w w
w R Z

R Z

 
  

 
 (16)

in a general two-dimensional curvilinear coordinate system 1 2( , )q q  such that 

 1 1 2,R q q ,     2 1 2,Z q q , (17)

is wri�en as 

  2 1
1 2

1 2 1 1 1 2 2 2

1
,

H Hw w
w q q

H H q H q q H q

                             
, (18)

where 

2 2

1 2

1 2
iH

q q

                   
,  1,2i  , (19)

are the scale factors (Lamé coefficients). 

4. Solution in Bipolar Coordinates 

For reference purposes, we reproduce here the solution of the generalized Laplace 

Equation (14) in bipolar coordinates. Having in mind a two-dimensional version of the 

three-dimensional standard toroidal coordinates, consider the 2D bipolar coordinates ,r   

defined by the equations 

sinh sin
( , ) ,

cosh cos cosh cos

a r a
x y

r r



 

 
      

, (20)
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where ,x y  are real-space Cartesian coordinates and a is a scaling constant. In the coor-

dinates ,r  , the 2D Cartesian Laplacian 

2 2

2 2C

w w
w

x y

 
  

 
 (21)

becomes 

 2 2 2

2 2 2

cosh cos
B

r w w
w

a r





    
   

    
. (22)

With this, by pu�ing ( , ) ( , )R Z x y , Equation (12) is rewri�en as 

2 2

2 2 2
0

sinh

w w Aw

r r

 
  

 
. (23)

Separation of variables in the form 

( ) ( )w u r    (24)

and a separation constant p  yields 

0sin( )p    , (25)

where 0   is an arbitrary constant. The equation for the radial component ( )u r   then 

reads 

2
2

2 2
0

sinh

d u A
p u

dr r

 
     
 

. (26)

By the change in the variables 

 sinh ( )r v su r ,  ( ) coshs r r  (27)

this equation is reduced to the Legendre equation for ( )v s  [22]. As a result, we obtain the 

general solution 

    1 21/2 1/2

1
( ) sinh cosh cosh ,

4
q q
p pu r r C P r C Q r q A     , (28)

where 1C   and 2C   are arbitrary constants, and 1/2
q
pP    and 1/2

q
pQ    are the Legendre 

functions of the first and second kind, respectively. We note that for the AC-Laplace equa-

tion, the parameter q  is zero, while for the Grad–Shafranov equation, 1q  . 

5. Solution in Cap-Cyclide Coordinates 

It can be shown that the Laplacian in cap-cyclide coordinates is wri�en as 

2 2 2 2

2 2 2 2CC

a w w
w

 

    
   

      
, (29)

where 

         2 2 2 2
1 11 , , , ,sn k dn k dn k k sn k       . (30)

With this, Equation (12) is checked to be rewri�en as 
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 
 

 
 

2 2
2 2

12 2 2 2
1

1
, , 0

, ,

w w k
A k sn k A dn k

sn k dn k
 

   

   
                
        
   

. (31)

It is readily seen that this is a separable equation. Then, by pu�ing 

     ,w U V    , (32)

we have the ordinary differential equations 

 
 

   2

2

1
, 0

,
U A k sn k B U

sn k
  



 

 
 
     
  
 

, (33)

 
 

   2
12

1

, 0
,

k
V A dn k B V

dn k
  



 

 
 
    
  
 

 , (34)

where B  is the separation constant. 

Now, applying the variable change 

( )U z y z ,    2,z sn k , (35)

  01
1 1 4

4 4
A


      (36)

(we recall that 0  is the parameter of the starting Equation (14)), Equation (33) is reduced 

to the general Heun equation [15,16] 

  
0

1 1

z q
y y y

z z z a z z z a

   
          


   

 (37)

with parameters 

1 4 1 1 1
( , , , , ) , , , 2 ,

2 2 2 2


     

     
 

, (38)

and 

   2 1 11
,

4

k A B k
a q

k k

   
  . (39)

Similarly, the transformation 

( )V z y z ,    21,z dn k  (40)

with the same parameter  , as given by Equation (36), reduces Equation (34) to the gen-

eral Heun equation with all the same parameters except the location a  of the third finite 

singularity of the general Heun equation and the accessory parameter q . This time 

   
1 1

2 1 1
,

4

k A B k
a k q

   
  . (41)

With this, a fundamental solution of Equation (12) given by Equation (32) is finally 

wri�en as 
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   

     

2 2
1

2 2
1 1

, ,

HeunG 1/ , ; , , , ; , HeunG , ; , , , ; , .

w sn k dn k

k q sn k k q dn k

 
 

         


 (42)

This is a particular solution of Equation (31). To construct the general solution, the 

Heun functions included in this solution should be replaced by general solutions of the 

general Heun Equation (37) for the radial and angular cases. 

We conclude this section by noting that the derived solution is valid for arbitrary 

constant 0  (or, equivalently, constant A ), which is just the parameter that defines the 

difference between the Laplace and Grad–Shafranov equations. 

6. Bipolar Limit of Cap-Cyclide Coordinates for the Grad–Shafranov Equation 

It is easy to check that the cap-cyclide coordinates (5)–(7) are transformed into bipolar 

(toroidal) coordinates (20) if 1k  , 2r   and 2 / 2    . It can be further verified 

that Equation (33) for the radial part then becomes Equation (26) by se�ing 

24 /2 AB p   . (43)

Consider the toroidal limit of cap-cyclide coordinates for the Grad–Shafranov equa-

tion for which 3 / 4A    so that 2 32 16 /B p   . 

6.1. Radial Solution 

The radial part of the general solution of Equation (33) is wri�en as the linear combi-

nation 

1 1 2 2U CU C U  , (44)

where 1,2C  are arbitrary constants, and 1U  and 2U  present a pair of independent fun-

damental solutions of Equation (33). Since the last equation reduces to the general Heun 

Equation (37), these fundamental solutions are represented as 

 3/4
1,2 1 1 2 2U z c u c u  , (45)

where 1,2c  are arbitrary constants; and in the limit 1k  ,  

2
1

3 1 3 1
HeunG 1, ; , , 2, ;

4 2 2 2
u p z

 
    
 

, (46)

2
2

1 3 1
HeunG 0, ; , , , 2;1

2 2 2
u p z

 
     
 

 (47)

with 

 2tanhz  . (48)

Consider the function 1u . Since 1a   here, the general Heun function reduces to the 

ordinary hypergeometric function [15]: 

 2
1 2 1

3 1 3 1 1 3
HeunG 1, ; , , 2, ; 1 , ;2;

4 2 2 2 2 2

p
u p z z F p p z

   
              
   

. (49)

With this, se�ing 1 21, 0c c   in Equation (44), we construct the fundamental solution 

     2 3/2 2
1 2 1

1 3
sech tanh , ;2; tanh

2 2
pU F p p  

 
     
 

. (50)
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Using the following representation of the hypergeometric function in terms of the Legen-

dre P  function [22]: 

 
 
 

1
2 1 1

1 1
, 1;2;

11

b

b

i y y
F b b y P

yb b y





         
,   0 1y  , (51)

this solution is rewri�en as 

    1
1 1/22

2 2
sinh 2 cosh 2

4 1
p

i
U P

p
 


, (52)

which, since 2 r   , exactly reproduces the first independent solution of (28) with

3 / 4A   . 

 To construct the second fundamental solution, consider the function 2u . Since 0a   

here, the general Heun function involved again reduces to the ordinary hypergeometric 

function (  2tanhz  ): 

 2
2 2 1

1 3 1 1 3
HeunG 0, ; , , , 2;1 1 , ;1 2 ;1

2 2 2 2 2

p
u p z z F p p p z

   
                 
   

. (53)

Then, the second fundamental solution should have the form 

  2
2 3/4

2 21 1 2 1

1 3 1 3
sech , ;2; , ;2 1;1

2 2 2 2
p cU z F p p z F p p zc p

                       


 
   

. (54)

It turns out that it is convenient to choose 

1
2

c
i




,  
   

 2

1/ 2 1/ 2

2 2 1

p p
c

p

   
 

 
, (55)

since then, using the following representation of the Legendre Q  function [22]: 

 
1

1
2 1

2
1 2 1 2 2 1

1
1

11 3 1 3
, ;2; , ;2 1;1

1 12 2 2 2

2 2

p

p

y
i y Q

y
c F p p y c F p p p y

p p y

 



                                            
   

, (56)

the second fundamental solution can be wri�en as 

    1
2 1/22

2 2
sinh 2 cosh 2

4 1
p

i
U Q

p
 


, (57)

which, with 2 r  , reproduces the second independent solution of (28). 

6.2. Angular Solution 

The general solution of the Grad–Shafranov equation for the angular part, i.e., the 

general solution of Equation (34), is wri�en as 

3 1 4 2V C V C V  , (58)

 3/4
1,2 1 1 2 2V z c v c v  , (59)

where 1,2C , 1,2c  are arbitrary constants and 1,2v  are two independent fundamental so-

lutions of the general Heun Equation (37) with parameters given by Equations (38) and 

(41). Note that in the limit 1k   the parameters become identical to those of the general 
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Heun equation for the radial part. The only difference is the transformation of the inde-

pendent variable, which is now given as 

 21,z dn k . (60)

Interestingly, since 1 1 0k k   , we have 
1

1
k

z

 , so that in the strict case 1k  , 

the dependence on the variable   disappears. Therefore, this strict case 1k   is a singu-

lar limit that should be treated with special care. However, the limit solution itself can be 

readily derived from Equation (34), which in this limit simplifies to 

2( ) 4 ( ) 0V p V      (61)

with the elementary solution 

1 2sin(2 ) cos(2 )V C p C p   . (62)

Given that 2 / 2    , this reproduces the solution for the bipolar coordinates (25). 

 For a neighborhood of the point 1k  , as independent fundamental solutions 1,2V , 

it is convenient to choose the functions 

2
1 1 2

3 9 1 3 1
HeunG , ; , , 2, ;

16 2 2 2

k
v c k p z i v

       
 

, (63)

  2
2

9 1 1 3 1
HeunG 1 , ; , , , 2;1

16 2 2 2

k
v k p z

  
     

  
 

, (64)

where 

 3/4 2
0 0

1
2

0

9 1 1 3 1
HeunG 1 , ; , , , 2;1

16 2 2 2

3 9 1 3 1
HeunG , ; , , 2, ;

16 2 2 2

k
z i k p z

c
k

k p z


  

     
  
 
    
 

, (65)

2

0 ,1
4

dn kz
p

 
 
 

   . (66)

This choice of these fundamental solutions is adjusted by the observation that  

1 1
sin(2 )

k
v p


 , (67)

2 1
cos(2 )

k
v p


 , (68)

so that the linear combination 3 1 4 2V C v C v   with arbitrary constants 3,4C  exactly re-

produces the toroidal limit solution (62). 

7. Discussion 

Thus, we have examined a generalization of the Laplace equation, wri�en in standard 

cylindrical coordinates, by introducing an appropriate parameter A in front of the first-

derivative term. By choosing this parameter as 3 / 4A   , we were able to deal with the 

fundamental equilibrium equation (the Grad–Shafranov equation) for the toroidal plasma 

studied in nuclear fusion experiments. The introduction of cap-cyclide coordinates made 

it possible to tackle the problem with the most relevant geometry, which is currently used 

in the most advanced plasma fusion experiments (D-shaped plasmas). As a result, the 

Grad–Shafranov equation wri�en in cap-cyclide coordinates reduces to the general Heun 
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equation, so that its complete general solution is wri�en in terms of the general Heun 

functions [23]. The results obtained were compared with the old solutions [1–3], devel-

oped for the bipolar (standard toroidal) geometry, which is achieved when the elliptic 

integral parameter k  takes the value 1.  

The general solution of the Grad–Shafranov equation involves four constants ( 1 2,C C  in-

volved in the radial part and 3 4,C C  involved in the angular part). When solving a physical 

problem, these constants introduce physical information and actually represent the “harmon-

ics” of the general solution [13]. We note that these constants differ between two different ge-

ometries, hence the harmonics differ between the two geometries, and obviously the more the 

geometry matches the real physics problem, the fewer harmonics will be needed. 

We conclude this section by noting that the cap-cyclide coordinates present a signifi-

cant generalization of the bipolar system. Indeed, these coordinates include an additional 

parameter k  , changing which results in a variety of cross-sectional shapes, including 

been, D, prolate elliptical, and circular shapes, as shown in Figure 2. Since the 2D bipolar shape 

is only a particular case of the cap-cyclide coordinates achieved at 1k  , it is instructive what 

changes this parameter brings to the flux function. In Figures 3 and 4 we show the radial and 

angular parts of the flux function for the cap-cyclide geometry compared to the bipolar 

case. 

 

Figure 3. Radial part 1U  of the flux function for the cap-cyclide geometry with 0.001k   com-

pared to the bipolar case with 1k  . 

 

Figure 4. Angular part 2V  of the flux function for the cap-cyclide geometry with 0.001k   com-

pared to the bipolar case with 1k  . 
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8. Conclusions 

The availability of an analytical solution will make it possible to explicitly write down 

the poloidal components of the magnetic field and the Green function in the cap-cyclide 

coordinates. This will eventually lead to the implementation of a semi-analytical plasma 

equilibrium code that will be used either to design new experiments or to determine some 

of the most important internal parameters in current experiments by opportune fi�ing of 

the experimental data [21], such as the plasma current density and the volume integral of 

the kinetic pressure. Of course, at present, a large number of different numerical codes are 

used to calculate the internal quantities of plasma [24–26]. Since all these codes currently 

work with a good degree of reliability, the question immediately arises as to why use the 

“spectral” approach and what the possible advantages might be. The spectral approach, 

of course, is not a feature of this article; on the contrary, it has already been used earlier to 

solve various problems [27,28], including in the framework of plasma experiments 

[21,29,30]. The most important advantage of the analytical approach is that the solution 

intrinsically separates “external” sources from internal ones. Having a set of magnetic 

measurements around the plasma columns will make it possible to forget about any 

“noise” introduced by external sources, such as external coils and passive metal struc-

tures. The intrinsic strength of this approach was demonstrated for the first time in the 

JET tokamak, which made it possible to understand the possibility of having X-mode con-

figurations [31,32]. In the future, looking at reactor machines, when magnetic probes are 

far from the plasma and other active diagnostic tools are difficult to implement, having a 

robust analytical solution to the equilibrium will be a fundamental aspect. 
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27. Mahariq, I.; Kuzuoğlu, M.; Tarman, H.; Kurt, H. Photonic Nanojet Analysis by Spectral Element Method. IEEE Photonic J. 2014, 6, 5. 

28. Mahariq, I. On the application of the spectral element method in electromagnetic problems involving domain decomposition. 

Turk. J. Electr. Eng. Comput. Sci. 2017, 25, 1059–1069. 

29. Atanasiu, C.V.; Günter, S.; Lackner, K.; Miron, I.G. Analytical solutions to the Grad–Shafranov equation. Phys. Plasmas 2004, 11, 3510. 

30. Guazzo�o, L.; Freidberg, J.P. A family of analytic equilibrium solutions for the Grad–Shafranov equation. Phys. Plasmas 2007, 

14, 112508. 

31. Alladio, F.; Crisanti, F.; Lazzaro, E.; Tanga, A. Observation High βp Effect in JET Discharge. Bull. Am. Phys. Soc. 1984, F11, 3. 

32. Alladio, F.; Crisanti, F.; Marinucci, M.; Micozzi, P.; Tanga, A. Analysis of tokamak configurations using the toroidal multipole 

method. Nucl. Fusion 1991, 31, 739. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-

thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 

people or property resulting from any ideas, methods, instructions or products referred to in the content. 


