The problem of evaluating the shielding effectiveness of a thin metallic circular disk with finite conductivity against an axially symmetric vertical magnetic dipole is addressed. First, the thin metallic disk is modeled through an appropriate boundary condition, and then, as for the perfectly conducting counterpart, the problem is reduced to a set of dual integral equations which are solved in an exact form through the application of the Galerkin method in the Hankel transform domain. A second-kind Fredholm infinite matrix-operator equation is obtained by selecting a suitable set of basis functions. A low-frequency solution is finally extracted in a closed form. Through a comparison with results obtained from a full-wave commercial software, it is shown that such a simple approximate solution is accurate up to the frequency where the surface-impedance model of the thin disk is valid.

Shielding of an Imperfect Metallic Thin Circular Disk: Exact and Low-Frequency Analytical Solution

Assante D;
2020-01-01

Abstract

The problem of evaluating the shielding effectiveness of a thin metallic circular disk with finite conductivity against an axially symmetric vertical magnetic dipole is addressed. First, the thin metallic disk is modeled through an appropriate boundary condition, and then, as for the perfectly conducting counterpart, the problem is reduced to a set of dual integral equations which are solved in an exact form through the application of the Galerkin method in the Hankel transform domain. A second-kind Fredholm infinite matrix-operator equation is obtained by selecting a suitable set of basis functions. A low-frequency solution is finally extracted in a closed form. Through a comparison with results obtained from a full-wave commercial software, it is shown that such a simple approximate solution is accurate up to the frequency where the surface-impedance model of the thin disk is valid.
File in questo prodotto:
File Dimensione Formato  
Shielding of an Imperfect Metallic Thin Circular Disk - Exact and Low-Frequency Analytical Solution.pdf

non disponibili

Dimensione 218.09 kB
Formato Adobe PDF
218.09 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14086/1610
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact