The problem of the shielding evaluation of an infinitesimally thin perfectly conducting circular disk against a vertical magnetic dipole is here addressed. The problem is reduced to a set of dual integral equations and solved in an exact form through the application of the Galerkin method in the Hankel transform domain. It is shown that a second-kind Fredholm infinite matrix-operator equation can be obtained by selecting a complete set of orthogonal eigenfunctions of the static part of the integral operator as expansion basis. A static solution is finally extracted in a closed form which is shown to be accurate up to remarkably high frequencies.
Shielding of a Perfectly Conducting Circular Disk: Exact and Static Analytical Solution
Assante D;
2019-01-01
Abstract
The problem of the shielding evaluation of an infinitesimally thin perfectly conducting circular disk against a vertical magnetic dipole is here addressed. The problem is reduced to a set of dual integral equations and solved in an exact form through the application of the Galerkin method in the Hankel transform domain. It is shown that a second-kind Fredholm infinite matrix-operator equation can be obtained by selecting a complete set of orthogonal eigenfunctions of the static part of the integral operator as expansion basis. A static solution is finally extracted in a closed form which is shown to be accurate up to remarkably high frequencies.File | Dimensione | Formato | |
---|---|---|---|
13.19052908.pdf
non disponibili
Dimensione
301.02 kB
Formato
Adobe PDF
|
301.02 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.