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Lattice B-parameters for DSs2 and DIs3r2 operators

L. Conti a, A. Donini b, V. Gimenez c, G. Martinelli b, M. Talevi d, A. Vladikas a

a INFN, Sezione di Roma II, and Dip. di Fisica, UniÕ. di Roma ‘‘Tor Vergata’’, Via della Ricerca Scientifica 1, I-00133 Roma, Italy
b Dip. di Fisica, UniÕ. di Roma ‘‘La Sapienza’’ and INFN, Sezione di Roma, P.le A. Moro 2, I-00185 Roma, Italy

c Dep. de Fisica Teorica and IFIC, UniÕ. de Valencia, Dr. Moliner 50, E-46100 Burjassot, Valencia, Spain
d Department of Physics & Astronomy, UniÕersity of Edinburgh, The King’s Buildings, Edinburgh EH9 3JZ, UK

Received 1 December 1997
Editor: R. Gatto

Abstract

We compute several matrix elements of dimension-six four-fermion operators and extract their B-parameters. The
calculations have been performed with the tree-level Clover action at bs6.0. The renormalization constants and mixing
coefficients of the lattice operators have been obtained non-perturbatively. In the MS renormalization scheme, at a

Ž 3r2 . Ž . 3r2 Ž . 3r2 Ž . 3r2renormalization scale m,2 GeV, we find B B s0.66 11 , B s0.72 5 and B s1.03 3 . The result for BK 9 7 8 8

has important implications for the calculation of e
Xre . q 1998 Elsevier Science B.V.

1. Introduction

The lattice evaluation of matrix elements of oper-
ators between hadronic states is a necessary ingredi-
ent to the calculation, from first principles, of a wide
class of physical observables. In the effective Hamil-
tonian approach, weak amplitudes are expressed in
terms of perturbative Wilson coefficients multiplied
by matrix elements of local operators, which can be
evaluated on the lattice. The results are convention-
ally presented in terms of B-parameters, which mea-
sure the deviation of the matrix elements from their
value in the Vacuum Saturation Approximation
Ž .VSA . These quantities are subject to significant
QCD corrections.

In this paper we focus on DSs2 and DIs3r2
transition amplitudes. The former case is characteris-

0 0tic of K –K oscillations, which are related to
indirect CP violation, parametrized by e . We com-
pute B , the B-parameter of the matrix elementK

0 DSs2 0² < < :K O K , where the dimension-six, four-
fermion operator O DSs2 has a ‘‘left-left’’ chiral

Ž .structure see Section 2 . We also compute the DIs
3r2 amplitudes relevant in K™pp decays. These
amplitudes are essential for theoretical predictions of
direct CP-violation, parametrized by e

X. Matrix ele-
² < 3r2 < :ments of the form pp O K enter in the calcu-

lation of e
X, with two of the electro-penguin opera-

Ž 3r2 3r2 .tors O and O having a ‘‘left-right’’ chiral7 8
Ž 3r2 .structure, and one operator O having a ‘‘left-9

Ž .left’’ one. Using Chiral Perturbation Theory CPTh ,
these matrix elements can be related to the single-

² q< 3r2 < q:state matrix elements p O K . In this work
we compute the latter, parametrized in terms of

3r2 3r2 ŽB-parameters denoted as B and B the con-7 8

ventional basis of operators for the DSs1 effective
w xHamiltonian can be found in Refs. 1 ; we also

3r2 .remind the reader that B sB .9 K

The Wilson lattice regularization breaks chiral
symmetry. This implies that the DSs2 operator,

0370-2693r98r$19.00 q 1998 Elsevier Science B.V. All rights reserved.
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which would otherwise renormalize multiplicatively,
mixes with operators belonging to different chiral

w xrepresentations 2,3 . The same is true for the two
DIs3r2 operators, which would otherwise only
mix with each other, as they belong to the same
chiral representation. Because of the mixing induced
by the lattice, the correct chiral behaviour of the
operators is achieved with Wilson fermions only in
the continuum limit. For the DSs2 case, for exam-
ple, restoration of the chiral properties amounts to
the vanishing of the matrix element as m ™0. InK

practice, the mixing of the DSs2 operator with
operators of ‘‘wrong’’ naıve chirality, computed at¨
small but finite cutoff ay1, spoils the expected chiral

w x 1behaviour 4,5 . This problem can be attributed to
two sources of systematic error in the computation of
the matrix elements, namely the determination of the
mixing coefficients in one-loop perturbation theory,

Ž . Ž .and the OO a a is the lattice spacing discretization
errors. Several methods have been proposed in order
to improve the determination of the mixing coeffi-
cients. One of them consists in evaluating the renor-
malization constants computed in Standard Perturba-

Ž . w xtion Theory SPT using an effective coupling 7
which should reduce higher order corrections; we

Ž .refer to it as Boosted Perturbation Theory BPT .
Ž .Another is the Non-Perturbative Method NPM for

the computation of the renormalization constants on
quark and gluon external states, as proposed in Ref.
w x w x8 . Finally, in the spirit of Ref. 3 , the lattice mixing
coefficients can also be obtained non-perturbatively

Ž .by using the Ward Identity Method WI’s , with
w xexternal quark and gluon states 9 ; see also Refs.

w x w x Ž10 . On the other hand, recent studies 11–13 see
.also the present work have shown that reducing the

discretization error by using the tree-level Clover
action does not improve the chiral behaviour of the
matrix elements, even when BPT is implemented in
the definition of the renormalized DSs2 operator.
Instead, a good chiral behaviour has been observed
by evaluating the renormalization constants non-per-

Ž w xturbatively, either with the NPM Refs. 11–13 and

1 In the Staggered fermion approach, where chiral symmetry is
partially preserved, the DSs2 matrix element displays the correct
chiral behaviour. Thus, the B -parameter obtained with staggeredK

w xfermions 6 has been deemed more reliable.

. Ž w x.this work or by using WI’s Ref. 9 . The fact that
the restoration of the correct chiral behaviour has
been seen both with the tree-level Clover action
Ž w x .Refs. 11–13 and the present work and with the

Ž w x.Wilson action Ref. 9 , suggests that discretization
effects are less important than those due to the
perturbative evaluation of the mixing coefficients.
Therefore, the recent Wilson fermion estimates of
B from the NPM or the WI’s, are considerablyK

more reliable than those of earlier studies, based on
perturbative renormalization.

Given the success of the NPM in the computation
of B , we also apply it to the evaluation of the twoK

DIs3r2 B-parameters of the electro-penguin oper-
ators, B3r2 and B3r2. A recent calculation, using the7 8

Wilson action and with the renormalization constants
3r2 Ž . w xobtained in BPT, found B s0.81 3 14 , as op-8

3r2 w xposed to the earlier results B ,1 of Refs. 15,16 .8

In the present work, using the Clover action and the
NPM for the evaluation of the renormalization con-

3r2 Ž .stants we find B s1.03 3 . Notice that, although8

obtained with a different lattice fermion action, our
3r2 Ž .BPT estimate B s0.83 2 is, instead, fully com-8

w xpatible with that of Ref. 14 . Our preferred value
3r2 Ž .B s1.03 3 , obtained with an improved operator8

renormalized non-perturbatively, only suffers from
Ž 2 .discretization errors which are OO g a . We thus0

believe that it is more reliable than previous results
Ž .which have been obtained with the non-improved

operator renormalized in one-loop perturbation the-
ory. The same situation characterizes B3r2: our NPM7

and BPT results are not in agreement, but the latter is
w xcompatible with the value quoted in 14 . We stress

that a precise determination of B3r2, combined with8

an equally reliable estimate of the strange quark
mass, is essential to the determination of the ratio
e

Xre . For example, the uncertainties in the measure-
ment of B3r2, combined with the controversial re-8

w x Xsults for m 17,18 may change e re up to a factors

of 2 to 3. In view of its importance, we believe that
B3r2 should also be computed by applying the NPM8

with the Wilson action also andror by using WI’s
for the determination of the lattice mixing coeffi-
cients of the renormalized operator.

An extensive study of the renormalization proper-
ties of the four-fermion operators can be found in
w x19 . There we detail all the theoretical and numeri-
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cal issues of relevance to the non-perturbative renor-
malization of the DSs2 and DIs3r2 operators.
We have used these results in the present study.

The paper is organized as follows: in Section 2
we introduce the operators of interest and review
briefly their phenomenological implications; in Sec-
tion 3 we address the problem of operator mixing
and give a brief account of the NPM for the compu-
tation of the renormalization constants; in Section 4
define the B-parameters and discuss their extraction
from lattice correlation functions; in Section 5, we
present our results for B , B3r2 and B3r2; finally,K 7 8

in Section 6 we compare our results to those previ-
ously obtained in the literature.

2. d ss2 and D Is3rrrrr2 transitions

Schematically, the DSs2 effective Hamiltonian
has the form

G2
FDSs2 2 DSs2ˆHH s M O m F x , x ,m 1Ž . Ž . Ž .W c t216p

where x sm2rM 2 and F is a combination of theq q W
w xInami-Lim functions 20 weighted by the CKM

matrix elements. All perturbative QCD corrections
Ž Ž . w x.known at the next-to-leading order NLO 21 are

Ž .included in F which is, hence, m-dependent . The
rest of the notation is standard: G is the weak FermiF

coupling, M the mass of the W boson and m theW

renormalization scale. The DSs2 operator in the
above expression is the renormalized one. It is de-
fined as follows:

DSs2 L LO ssg dsg d , 2Ž .m m

L Ž .where g sg 1yg . The CP-violation parameterm m 5

e is defined as:K

G2 M 2
F W

< <e sK 2 '16p 2 DmK

= 8 2f m B m F x , x ,m , 3Ž . Ž . Ž .Ž .K K K c t3

where Dm is the K 0-K 0 mass splitting. m and fK L S K K

denote the K-meson mass and decay constant, re-
spectively.

In the DSs1 case, the DIs3r2 contribution to
e

X can be written as
3r2 3r2 3r2² :Im AA AyG Im l C O BVSAF t 7 7 7

3r2 3r2 3r2 3r2² : ² :qC O B qC O B ,VSA VSA8 8 8 9 9 9

4Ž .

where l sV ) V contains the CKM matrix depen-t t s t d
² 3r2:dence and O stands for the VSA matrixVSA

element of the corresponding operator. The defini-
tions of the operators can be found for example in

w xRefs. 22,23 . The Wilson coefficients, known to
w x Ž .NLO 22–25 , are denoted by C 'C M rm andk k W

Ž .the operators O ks7,8,9 are defined as:k

3r2 L R RO s s g d u g u yd g d½ 5Ž .7 a m a b m b b m b

L Rq s g u u g d ,Ž . Ž .a m a b m b

3r2 L R RO s s g d u g u yd g d½ 5Ž .8 a m b b m a b m a

L Rq s g u u g d ,Ž . Ž .a m b b m a

3r2 L L LO s s g d u g u yd g d½ 5Ž .9 a m a b m b b m b

L Lq s g u u g d , 5Ž .Ž . Ž .a m a b m b

R Ž .where g sg 1qg and a ,bs1–3 are colourm m 5

indices. The definitions of the B-parameters of Eqs.
Ž . Ž .3 and 4 will be given in Section 4.

Two observations are necessary at this point.
Firstly, since we are interested in computing the

0 D S s 2 0ˆ² < < :m atrix elem ents K O K and
q ˆ3r2 q² < < : Ž .p O K with ks7,8,9 , only the parity-k

Ž . Ž .conserving parts of the operators of Eqs. 2 and 5
enter in the calculation. Secondly, on the lattice the
above matrix elements are obtained in the standard
way by studying the asymptotic behaviour, at large
time separations, of hadronic correlation functions of

ˆ² Ž . Ž . Ž .: Ž Ž . .the form P y O 0 P x see Eqs. 15 below ,
with P denoting suitable pseudoscalar densities
which we use as meson sources and sinks. The Wick
contractions of the quark fields in the correlation
functions give rise to diagrams which are both
‘‘eight’’-shaped and ‘‘eye’’-shaped. The latter, how-
ever, cancel in the limit of degenerate up and down
quark masses. Since our results are obtained in this
limit, complicated subtractions of lower dimensional
operators, necessary for the removal of the power
divergences of the ‘‘eye’’-diagrams, are avoided.
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3. Non-perturbative renormalization

The NPM for the evaluation of the renormaliza-
tion constants of lattice operators consists in impos-
ing suitable renormalization conditions on lattice am-

w xputated quark correlation functions 8 . In our case,
we compute four-fermion Green functions in the
Landau gauge. All external quark lines are at equal
momentum p. After amputating and projecting these

Ž w x w xcorrelation functions see Refs. 11 and 19 for
.details , the renormalization conditions are imposed

in the deep Euclidean region at the scale p2 sm2.
This renormalization scheme has been recently called

Ž . w xthe Regularization Independent RI scheme 22
Ž .MOM in the early literature in order to emphasize
that the renormalization conditions are independent
of the regularization scheme, although they depend
on the external states used in the renormalization

Ž .procedure and on the gauge . Thus, at fixed cutoff
Ž .i.e. fixed b , we compute non-perturbatively the
renormalization constants and the renormalized oper-

ˆRIŽ .ator O m in the RI scheme. In order to obtain the
physical amplitudes, which are renormalization group
invariant and scheme independent, the renormalized
matrix elements must subsequently be combined with
the corresponding Wilson coefficients of the effec-
tive Hamiltonian. The latter are known in continuum
perturbation theory, at the NLO, both in the MS

w x w xscheme 21–24 and in the RI scheme 22 . Although
not strictly necessary, since the standard practice
consists in giving the B-parameters in the MS
scheme, we will express our results both in the MS
and RI schemes. In order to obtain the corresponding

MSˆ Ž .operators in the MS scheme, O m , the matrix
ˆRI Ž .elements of the operators O m must be corrected

w xby finite matching coefficients 22 . We stress that, if
w xm is much larger than L , the NPM of Ref. 11QCD

w xand the WI method of Ref. 9 , used for the computa-
tion of the mixing coefficients of the lattice opera-
tors, are equivalent, in the chiral limit. This has been

w xshown for two-fermion operators in Ref. 8 ; for
four-fermion operators it is discussed in detail in

w x Ž w x.Refs. 19,26 see also Ref. 3 .
w xIn 19 , we have determined non-perturbatively

the operator mixing for the complete basis of four-
fermion operators, with the aid of the discrete sym-

Žmetries parity, charge conjugation and switching of
. w xflavours , in the spirit of Ref. 4 . The renormaliza-

tion of the parity-conserving operators, relevant to
this work, is conveniently expressed in terms of the
following basis of five operators:
Q sV=VqA=A ,1

Q sV=VyA=A ,2

Q sS=SyP=P ,3

Q sS=SqP=P ,4

Q sT=T . 6Ž .5

The operators Q , . . . ,Q form a complete basis on1 5
Žthe lattice. In these expressions, G=G with Gs

.V, A,S, P,T a generic Dirac matrix stands for
1 Ž .c Gc c Gc q c Gc c Gc , where c , i s1 2 3 4 1 4 3 2 i2

1, . . . ,4 are fermion fields with flavours chosen so as
Ž w xto reproduce the desired operators see Ref. 19 for

.details . More specifically, the parity-conserving
component of the four-fermion operator O DSs2 cor-
responds to Q in our basis. On the lattice, this1

operator mixes under renormalization with the other
four operators as follows

5

Q̂ sZ Q q Z Q , 7Ž .Ý1 11 1 1 i i
is2

where Z is a multiplicative logarithmically diver-11

gent renormalization constant; it depends on the
Žcoupling and am. The mixing coefficients Z with1 i

.is2, . . . ,5 are finite; they only depend on the lat-
2Ž .tice coupling g a .0

The renormalization of the parity-conserving parts
of the operators O3r2 and O3r2 is related to that of7 8

the operators Q and Q ; the correspondence is2 3

given by

O3r2 ™Q , O3r2 ™y2Q .7 2 8 3

The renormalized operators are defined as:

ˆ s s ˆ s sQ sZ Q qZ Q , Q sZ Q qZ Q , 8Ž .2 22 2 23 3 3 32 2 33 3

Ž .where Z with i, js2,3 are logarithmically diver-i j

gent renormalization constants which depend on the
coupling and am. The above mixing matrix is not
peculiar to the lattice regularization, but also occurs
in the continuum. The breaking of chiral symmetry
by the Wilson action requires the additional subtrac-
tions:

Q s sQ q Z Q , is2,3. 9Ž .Ýi i i j j
js1,4,5

where the Z s are finite coefficients which onlyi j
2Ž .depend on g a .0
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Finally, the operator O3r2 corresponds to the9
Ž .operator Q of Eqs. 6 . Thus, its renormalization1

constants, B-parameter, etc. are identical to those of
O DSs2. The results for all the renormalization con-

Žstants Z computed with the NPM at several renor-i j
. w xmalization scales m at bs6.0 can be found in 19 .

4. B-parameters

In the DSs2 case, the B-parameter is defined as

0 DSs2 0ˆ² < < :K O m KŽ .
B m s , 10Ž . Ž .K 0 DSs2 0ˆ² < < :K O K VSA

where the matrix element in the VSA is given by

0 DSs2 0ˆ² < < :K O K VSA

1
22 0<² < < : <s2 1q Z K A 0A mž /Nc

1
2 2s2 1q m f , 11Ž .K Kž /Nc

Ž .with Z the finite renormalization constant of theA

lattice axial current A s cg g c . Sincem m 5
0 DSs2 0ˆ² < < :K O K is given in terms of physicalVSA

Ž . Ž .quantities m and f , B m runs with the scale mK K

exactly like the corresponding renormalized operator
ˆŽ .O m . Another definition of the VSA matrix element

w xhas recently been proposed in Ref. 9 . It consists in
vacuum-saturating each operator which enters in the

Ž .subtraction of Eq. 7 . In this way, statistical fluctua-
tions are reduced in the ratio of correlation functions

Ž DSs2 Ž .used to extract B defined as R in Eqs. 16K
. w xbelow . As pointed out in Ref. 27 , however, the

w xdefinition used in Ref. 9 spoils the good scaling
Ž .properties of B m . Thus, we insist on retaining theK

Ž .standard definition of Eq. 12 , at the price of having
larger statistical errors.

For the DIs3r2 transitions, the B-parameters
are defined by:

q ˆ3r2 q² < < :p O m KŽ .73r2B m s ,Ž .7 q 3r2 qˆ² < < :p O K VSA7

q ˆ3r2 q² < < :p O m KŽ .83r2B m s . 12Ž . Ž .8 q 3r2 qˆ² < < :p O K VSA8

3r2Ž . Ž .As discussed in Section 3, B m sB m in the9 K

limit of degenerate quark masses. The VSAs for the
above matrix elements depend on two different con-
tributions of the form:

2
q 3r2 q 2 q qˆ² < < : ² < < :² < < :p O K s Z p P 0 0 P KVSA7 PNc

2² q< < :² < < q:yZ p A 0 0 A K ,A m m

q ˆ3r2 q 2 q q² < < : ² < < :² < < :p O K s2Z p P 0 0 P KVSA8 P

Z 2
A q q² < < :² < < :y p A 0 0 A K ,m mNc

13Ž .

where Z is the renormalization constant of theP
Žlattice pseudoscalar density Pscg c renormalized5
.at the same scale m in the RI scheme . Since we

work with degenerate quark masses, we have left the
flavour content of the operators A and P unspeci-m

fied; they are meant to have whatever flavour is
required by the hadronic states of their matrix ele-

Ž .ments i.e. P , P and similarly for A . Contraryp K m

to the DSs2 case, the leading terms of the above
VSA matrix elements are m-dependent quantities,
with an anomalous dimension equal to twice the
anomalous dimension of the pseudoscalar density P.
Thus the B-parameters do not scale in m like the
matrix elements of the corresponding operators. The

Ž .last terms on the r.h.s. of Eqs. 14 vanish in the
chiral limit. Consequently, since we are ultimately

q ˆ3r2 q² < < :interested in passing from the p O K matrix
ˆ3r2² < < :elements to the pp O K ones using soft pion

w xtheorems, following Ref. 16 , we have dropped the
Ž .last terms on the r.h.s. of Eqs. 14 . In order to

extract the B-parameters, we need to compute the
following two- and three-point correlation functions:

² : yp P xG t , p s P x P 0 e ,Ž . Ž . Ž .ÝP x
x

² : yp P xG t , p s A x P 0 e ,Ž . Ž . Ž .ÝA x 0
x

G t ,t ; p ,qŽ .Ô x y

ˆ yp P y qP x² :s P y O 0 P x e e , 14Ž . Ž . Ž . Ž .Ý
x , y

ˆŽ . Ž .where x' x,t , y' y,t and O stands for anyx y

four-fermion operator of interest. As stated above, all



( )L. Conti et al.rPhysics Letters B 421 1998 273–282278

correlation functions have been evaluated with de-
generate quark masses and therefore only the
‘‘eight-diagrams’’ contribute to G . By forming suit-Ô

able ratios of the above correlations, and looking at
their asymptotic behaviour at large time separations,
we isolate the desired operator matrix elements. In
particular the ratios:

0 DSs2 0ˆ² < < :DSs21 G K p O K pŽ . Ž .ÔDSs2R s ™ ,2 22 0G GZ <² < < : <Z 0 P KP PA A

G 3r2N Ôc 73r2R sy7 2 G G2Z P PP

q ˆ3r2 q² < < :N p O Kc 7
™ ,2 q q² < < :² < < :2 Z p P 0 0 P KP

q ˆ3r2 q² < < :3r2G1 1 p O KÔ 883r2R sy ™ ,8 2 2 q q² < < :² < < :G G 22Z Z p P 0 0 P KP PP P

15Ž .

give, up to computable factors, the B-parameters of
interest. For comparison, we have obtained results
with the operator renormalized not only with the
NPM, but also with SPT and BPT.

5. Numerical results

Our simulation has been performed at bs6.0
with the tree-level Clover action in the quenched
approximation. Quark masses have been fixed at
ks0.1440,0.1432 and 0.1425. The renormalization
constants have been obtained from quark correlation
functions, in the Landau gauge, on a 163 =32 lat-
tice, with 100 configurations. The hadronic matrix
elements have been computed on an 183 =64 lattice
with 460 configurations. Details on the choice of
time intervals, spatial momenta and related technical-

w xities are to be found in Ref. 12 . Statistical errors
have been estimated with the jacknife method, by
decimating 46 configurations at a time. We have
neglected the statistical errors of the renormalization
constants, quoting only those of the hadronic matrix
elements. In the above ratios, we also need the
Ž .finite axial-current renormalization constant Z andA

the am-dependent renormalization constant Z ofP

the pseudoscalar density. Depending on the method

of renormalization of the four-fermion operator
Ž .NPM, SPT or BPT , we have used the correspond-
ing estimate of Z and Z , obtained with the sameA P

method of calculation. Although Z should not de-A

pend 2 on am, slight variations of its NPM estimate,
arising from systematic effects, partially cancel anal-
ogous variations of R DSs2, giving much more stable
results. The NPM estimates for Z and Z used inP A

w xthe present work are those of Ref. 29 .
In order to extract the B-parameters from the

Ž .ratios of Eqs. 16 , we follow the procedure of Ref.
w x12 , fitting them with the function

Rsaqb Xqg Y , 16Ž .
where

8 G G† 8 f 2 m2
A A K K

Xs ™ ,22 03 G G 3 <² < < : <Z 0 P KP P A

pPqŽ .
Ys X 17Ž .2mK

Žthe large time asymptotic behaviour of X is also
.shown above . The results of the fits are collected in

Table 1, at eight different values of the renormaliza-
tion scale m2a2. We also show results obtained with
the renormalization constants evaluated in SPT and
in BPT. In the latter case, we use the recipe a boost ss

1Ž ² :. ² :a r Tr U , where U stands for the averages I I3

plaquette. At bs6.0, we have used a boost ss

1.68r4p .
We first examine the results for R DSs2, from

w xwhich B can be extracted. As in 11–13 , it can beK
Ž .seen that a and b which are lattice artifacts are

compatible with zero within at most 2s , unlike their
ŽSPT and BPT values. Thus within our statistical

Ž 2 ..accuracy and up to terms of OO g a , the correct
chiral behaviour of the matrix elements is restored
using the NPM. We point out the stability of g as a
function of m. Assuming a and b to be zero, the
B -parameter is then given by:K

B sg . 18Ž .K

w xIn our original analysis 11,12 , we have erro-
neously considered the mixing of the DSs2 opera-

2 For the tree-level Clover action, the best available non-per-
turbative estimate for Z is obtained from lattice axial WI’s; atA

Ž . w xb s6.0 this is Z s1.11 2 28 .A
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tor with only the three other operators which appear
w xin one-loop perturbation theory 2 . It has been

w xstressed in 9,13,14,19 that, non-perturbatively,
O DSs2 also mixes with a fourth operator. The results

w xof Ref. 13 and the present work take into account
the complete non-perturbative mixing.

We now turn to R3r2, R3r2, from which B3r2 and7 8 7

B3r2 can be extracted. Note the stability of a as a8

function of am and the compatibility of b with zero.
In this case, for both operators, the B-parameters are
simply given by

B3r2 sa . 19Ž .

Comparing the NPM results to those obtained in SPT
and BPT, we find agreement between the NPM and
SPT values of B3r2, whereas its BPT value is in-7

compatible with the other two. The B3r2 result8

depends on the method used for its renormalization.

6. Physics results and conclusions

The B-parameters which can be extracted from
the results given in Table 1 have been obtained in
the RI scheme, since the operators have been renor-
malized with the NPM.

As previously stated, it is customary to express all
Žresults in the MS scheme with NDR dimensional

.regularization . The finite matching between the RI
and MS-NDR renormalization schemes can be done
in continuum perturbation theory, by computing the
operator matrix element in the same gauge and on
the same external quark states as those used for the
non-perturbative calculation of the lattice renormal-
ization constants. At NLO this matching has been

w xobtained in 22 . We have used it in order to convert
our NPM results from the RI to the MS-NDR scheme.
The SPT and BPT cases are less straightforward: we
have started from the renormalization constants of

w xRef. 30 , which relate the lattice operators to those
renormalized in the MS-DRED scheme. To these
constants we have subtracted the contributions due to
the use of the DRED scheme and added those corre-
sponding to the RI one. In this way we have ob-
tained, for both the SPT and BPT cases, the renor-
malization constants in the RI scheme, from which

Table 1
Values of the fit parameters for R DSs2, R3r2 and R3r2, from the7 8

Ž .NPM at several renormalization scales , SPT and BPT
2 2Operator m a a b g

DSs2R 0.31 0.027"0.014 0.17"0.16 0.68"0.12
0.62 y0.018"0.014 0.28"0.17 0.67"0.12
0.96 y0.014"0.014 0.27"0.16 0.66"0.11
1.27 y0.010"0.013 0.26"0.16 0.66"0.11
1.39 y0.004"0.013 0.23"0.16 0.66"0.11
1.85 y0.005"0.013 0.25"0.16 0.66"0.12
2.46 0.002"0.013 0.25"0.16 0.67"0.12
4.01 0.012"0.012 0.25"0.16 0.68"0.12
SPT y0.069"0.013 0.17"0.16 0.65"0.12
BPT y0.058"0.013 0.18"0.16 0.66"0.12

3r2R 0.31 1.70"0.16 y6.4"1.3 6.3"0.77

0.62 0.81"0.07 y0.8"0.6 3.5"0.4
0.96 0.69"0.04 y0.1"0.4 2.6"0.3
1.27 0.70"0.03 0.1"0.4 2.3"0.3
1.39 0.70"0.03 0.04"0.34 2.2"0.3
1.85 0.69"0.03 0.15"0.28 1.94"0.23
2.47 0.69"0.02 0.22"0.25 1.77"0.21
4.01 0.73"0.02 0.31"0.22 1.62"0.20
SPT 0.68"0.02 0.45"0.17 1.14"0.14
BPT 0.48"0.02 0.41"0.22 1.58"0.17

3r2R 0.31 1.20"0.06 y1.0"0.4 0.66"0.208

0.62 1.08"0.04 y0.5"0.3 0.56"0.15
0.96 1.04"0.03 y0.3"0.3 0.53"0.14
1.27 1.00"0.03 y0.06"0.25 0.52"0.13
1.39 1.00"0.03 y0.05"0.25 0.52"0.13
1.85 0.99"0.03 0.04"0.24 0.51"0.13
2.46 0.99"0.02 0.09"0.24 0.51"0.13
4.01 0.98"0.02 0.15"0.23 0.51"0.13
SPT 0.81"0.02 0.36"0.17 0.42"0.09
BPT 0.75"0.02 0.29"0.16 0.39"0.09

the results of Table 1 are computed. Alternatively,
we have also calculated and added the necessary
MS-NDR contributions in order to obtain the SPT
and BPT results in this scheme. The latter calculation

w xhas also been performed in 14 for the Wilson
w xaction. At NLO 22 , the result for B isK

a mŽ .sMS MS RIB m s 1y Dr B m , 20Ž . Ž . Ž .K q Kž /4p

where

MSDr s14r3y8ln2. 21Ž .q
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The matching relation for the renormalized operators
ˆ3r2 Ž . w xO is7,8 at NLO is also given in 22 :i

a mŽ .s3r2 MS 3r2ˆ ˆO s d y Dr O 22Ž .Ž . ž /i i j i j jMS RIž /4p

where
2 2q ln2 y2y2ln23 3MSDr s . 23Ž .i j 34 2ž /2y2ln2 y q ln23 3

Hence, for the B-parameters B3r2 and B3r2 we7 8

have:

B3r2
7

3r2ž /B8 MS

1
s 2

a mŽ .s MS1q DrPž /4p

a m a mŽ . Ž .s sMS MS1y Dr yN Dr77 c 784p 4p
= 1 a m a mŽ . Ž .s sMS MSy Dr 1y Dr� 087 88N 4p 4pc

B3r2
7

= 24Ž .
3r2ž /B8 RI

with
MSDr s16r3. 25Ž .P

Ž .The uncertainty due to the choice of a m is abouts

"0.03. We find a further uncertainty of "0.03
when varying the number of active flavours from 0
to 4.

In order to compare our result for B with otherK

theoretical predictions of the same quantity, it is
ˆuseful to convert it to the RGI quantity, B , byK

multiplying it by the Wilson coefficient. At NLO,
B̂ is given byK

yg Ž0.r2 b 0B̂ sa mŽ .K s

=

Ž1. Ž0.a m g b yg bŽ .s 0 1 MS1y B m ,Ž .K2ž /4p 2b0

26Ž .
where b and g Ž0,1. are the leading and next-to-0,1

leading coefficients of the b-function and anomalous

Table 2
B-parameters for DSs2 and DIs3r2 operators at the renormal-

y1ization scale ms a ,2 GeV. All results are in the MS scheme

Quantity Method Result Ref.

Ž .B NPM 0.66 11 this workK
Ž .BPT 0.65 11 this work

) Ž . w xBPT q s1ra 0.74 4 14

ˆ Ž .B NPM 0.93 16 this workK
Ž .BPT 0.92 16 this work

3r2 Ž .B NPM 0.72 5 this work7
Ž .BPT 0.58 2 this work

) Ž . w xBPT q s1ra 0.58 2 14
) Ž . w xBPT q sp ra 0.65 2 14

3r2 Ž .B NPM 1.03 3 this work8
Ž .BPT 0.83 2 this work

) Ž . w xBPT q s1ra 0.81 3 14
) Ž . w xBPT q sp ra 0.84 3 14

dimension. b and g Ž0. are universal whereas g Ž1.
0,1

depends on the regularization and renormalization
schemes. The explicit expressions of these quantities

w xcan be found for example in 21 . This estimate of
B̂ is also regularization-scheme independent, up toK

next-to-NLO order terms.
In Table 2 we collect all our results for the

B-parameters, obtained by computing their renormal-
ization with the NPM and in BPT, at the reference
scale m,2 GeV in the MS scheme. For B we alsoK

ˆgive the RGI value B . Moreover, we compare ourK

results to the most recent ones obtained with the
Wilson action at the same coupling and with opera-
tor renormalizations carried out perturbatively in BPT
w x14 .

Two points concerning this comparison deserve
w xsome attention here. The first is that in Ref. 14 the

results were obtained in 1-loop BPT by renormaliz-
ing the lattice operators directly in the MS-NDR
scheme, rather than doing the renormalization in the
RI scheme and then matching to MS-NDR with Eq.
Ž .25 , as we have to do with the NPM. In perturbation

Ž 2 .theory, the two procedures differ by OO a terms,s

which introduce a systematic difference of about
12%–15% in the results for B3r2 and B3r2. For this7 8

reason, in order to make the comparison meaningful,
our BPT estimates in the MS-NDR scheme, given in
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Table 2, were obtained using the same procedure as
w x w xin 14 . The second point is that in Ref. 14 , a more

complicated version of BPT than in this work has
been implemented, which involves tadpole resumma-
tions and a choice of ‘‘optimal’’ scale q) for the
boosted coupling. Since the recipe for q) is not
unique, results with several choices of q) have been

w xlisted in 14 , and can be compared with our results.
Finally, we point out that a direct comparison of our

w xB value to those of 9 is not possible, because theK

latter have been obtained at different lattice cou-
plings.

ˆOur results from NPM and BPT for B and BK K

are in perfect agreement. With a larger statistical
error, our B value also agrees with those of Refs.K
w x14,31 . We find, instead, a discrepancy between our
NPM and BPT estimates of B3r2 and B3r2. Our7 8

values obtained with BPT are fully compatible to
w x Ž ) .those of 14 at least for one q value , where the

Wilson action was used. The NPM estimate, instead,
is in disagreement with any value obtained in BPT
Žeither with the Wilson or the Clover action and for

.several boosting variants . This indicates that the
difference between our NPM estimate and that of

w xRef. 14 is due to the NPM used in the former
result, rather than the implementation of different

Ž .actions Clover and Wilson respectively . The in-
crease in the value of B3r2, obtained with the NPM,8

is of great phenomenological interest, since it may
induce a significant decrease of the ratio e

Xre .
In conclusion, the non-perturbative renormaliza-

tion of the four-fermion operators, either with the
NPM or with WI’s, strongly improves the reliability
of lattice computations of B-parameters with Wil-
son-like fermions. Perturbative mixing of lattice op-
erators, carried out at lowest order, fails to reproduce
the expected chiral behaviour of the matrix elements
Ž .at present day couplings . A good chiral behaviour
of O DSs2 is restored when the operators are renor-
malized non-perturbatively. Moreover, B3r2 and7

B3r2 obtained with the NPM disagree by as much as8

20% from the ones obtained in BPT.
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