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Abstract

We compute several matrix elements of dimension-six four-fermion operators and extract their B-parameters. The
calculations have been performed with the tree-level Clover action at 8 = 6.0. The renormalization constants and mixing
coefficients of the lattice operators have been obtained non-perturbatively. In the MS renormalization scheme, at a
renormalization scale u = 2 GeV, we find B, (B3/?) = 0.66(11), B¥/2 = 0.72(5) and BZ/? = 1.03(3). The result for BS/?
has important implications for the calculation of €' /€. © 1998 Elsevier Science B.V.

1. Introduction

The lattice evaluation of matrix elements of oper-
ators between hadronic states is a necessary ingredi-
ent to the calculation, from first principles, of a wide
class of physical observables. In the effective Hamil-
tonian approach, weak amplitudes are expressed in
terms of perturbative Wilson coefficients multiplied
by matrix elements of local operators, which can be
evaluated on the lattice. The results are convention-
ally presented in terms of B-parameters, which mea
sure the deviation of the matrix elements from their
value in the Vacuum Saturation Approximation
(VSA). These quantities are subject to significant
QCD corrections.

In this paper we focus on AS=2 and Al =3/2
transition amplitudes. The former case is characteris-
tic of K°-K° oscillations, which are related to
indirect CP violation, parametrized by €. We com-
pute B, the B-parameter of the matrix element

(K°l04%=2|K ), where the dimension-six, four-
fermion operator 0452 has a ‘‘left-left”” chiral
structure (see Section 2). We also compute the Al =
3/2 amplitudes relevant in K — 777w decays. These
amplitudes are essential for theoretical predictions of
direct CP-violation, parametrized by e'. Matrix ele-
ments of the form (7 7|0%?|K ) enter in the calcu-
lation of €', with two of the electro-penguin opera-
tors (0¥2 and O2/?) having a **left-right”” chiral
structure, and one operator (O3/?) having a ** left-
left'’” one. Using Chiral Perturbation Theory (CPTh),
these matrix elements can be related to the single-
state matrix elements {7|O0%*2|K*). In this work
we compute the latter, parametrized in terms of
B-parameters denoted as B3/? and B¥/? (the con-
ventional basis of operators for the AS= 1 effective
Hamiltonian can be found in Refs. [1]; we aso
remind the reader that By = B, ).

The Wilson lattice regularization breaks chiral
symmetry. This implies that the AS= 2 operator,
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which would otherwise renormalize multiplicatively,
mixes with operators belonging to different chiral
representations [2,3]. The same is true for the two
Al = 3/2 operators, which would otherwise only
mix with each other, as they belong to the same
chiral representation. Because of the mixing induced
by the lattice, the correct chira behaviour of the
operators is achieved with Wilson fermions only in
the continuum limit. For the AS= 2 case, for exam-
ple, restoration of the chiral properties amounts to
the vanishing of the matrix element as m, — 0. In
practice, the mixing of the AS=2 operator with
operators of ‘‘wrong'’ naive chirality, computed at
small but finite cutoff a~*, spoils the expected chiral
behaviour [4,5] *. This problem can be attributed to
two sources of systematic error in the computation of
the matrix elements, namely the determination of the
mixing coefficients in one-loop perturbation theory,
and the @(a) (a is the lattice spacing) discretization
errors. Several methods have been proposed in order
to improve the determination of the mixing coeffi-
cients. One of them consists in evaluating the renor-
malization constants computed in Standard Perturba-
tion Theory (SPT) using an effective coupling [7]
which should reduce higher order corrections; we
refer to it as Boosted Perturbation Theory (BPT).
Another is the Non-Perturbative Method (NPM) for
the computation of the renormalization constants on
quark and gluon external states, as proposed in Ref.
[8]. Finally, in the spirit of Ref. [3], the lattice mixing
coefficients can also be obtained non-perturbatively
by using the Ward Identity Method (WI's), with
externa quark and gluon states [9]; see also Refs.
[10]. On the other hand, recent studies [11-13] (see
also the present work) have shown that reducing the
discretization error by using the tree-level Clover
action does not improve the chiral behaviour of the
matrix elements, even when BPT is implemented in
the definition of the renormalized AS= 2 operator.
Instead, a good chira behaviour has been observed
by evaluating the renormalization constants non-per-
turbatively, either with the NPM (Refs. [11-13] and

YIn the Staggered fermion approach, where chiral symmetry is
partially preserved, the AS= 2 matrix element displays the correct
chiral behaviour. Thus, the By-parameter obtained with staggered
fermions [6] has been deemed more reliable.

this work) or by using WI's (Ref. [9]). The fact that
the restoration of the correct chiral behaviour has
been seen both with the tree-level Clover action
(Refs. [11-13] and the present work) and with the
Wilson action (Ref. [9]), suggests that discretization
effects are less important than those due to the
perturbative evaluation of the mixing coefficients.
Therefore, the recent Wilson fermion estimates of
B« from the NPM or the WI's, are considerably
more reliable than those of earlier studies, based on
perturbative renormalization.

Given the success of the NPM in the computation
of By, we also apply it to the evaluation of the two
Al = 3/2 B-parameters of the electro-penguin oper-
ators, B3/ and B3/2. A recent calculation, using the
Wilson action and with the renormalization constants
obtained in BPT, found BZ/?=0.81(3) [14], as op-
posed to the earlier results By = 1 of Refs. [15,16].
In the present work, using the Clover action and the
NPM for the evaluation of the renormalization con-
stants we find BZ/2 = 1.03(3). Notice that, although
obtained with a different lattice fermion action, our
BPT estimate By/2=0.83(2) is, instead, fully com-
patible with that of Ref. [14]. Our preferred value
BJ/? = 1.03(3), obtained with an improved operator
renormalized non-perturbatively, only suffers from
discretization errors which are @(gZa). We thus
believe that it is more reliable than previous results
which have been obtained with the (non-improved)
operator renormalized in one-loop perturbation the-
ory. The same situation characterizes B3/2: our NPM
and BPT results are not in agreement, but the latter is
compatible with the value quoted in [14]. We stress
that a precise determination of B2, combined with
an equally reliable estimate of the strange quark
mass, is essential to the determination of the ratio
€'/ €. For example, the uncertainties in the measure-
ment of BZ/2, combined with the controversial re-
sults for m, [17,18] may change €' /e up to a factor
of 2to 3. In view of its importance, we believe that
B3/2 should also be computed by applying the NPM
with the Wilson action also and/or by using WI's
for the determination of the lattice mixing coeffi-
cients of the renormalized operator.

An extensive study of the renormalization proper-
ties of the four-fermion operators can be found in
[19]. There we detail all the theoretical and numeri-
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cal issues of relevance to the non-perturbative renor-
malization of the AS=2 and Al = 3/2 operators.
We have used these results in the present study.

The paper is organized as follows: in Section 2
we introduce the operators of interest and review
briefly their phenomenological implications; in Sec-
tion 3 we address the problem of operator mixing
and give a brief account of the NPM for the compu-
tation of the renormalization constants; in Section 4
define the B-parameters and discuss their extraction
from lattice correlation functions; in Section 5, we
present our results for B, B3/? and BZ/?; finally,
in Section 6 we compare our results to those previ-
oudly obtained in the literature.

2. 8s=2and Al =3 /2 transtions

Schematically, the AS= 2 effective Hamiltonian
has the form

G? A

HA9 = S MGG (W) D (X xm) (D)
where x,=m;/My, and @ is a combination of the
Inami-Lim functions [20] weighted by the CKM
matrix elements. All perturbative QCD corrections
(known at the next-to-leading order (NLO) [21]) are
included in @ (which is, hence, u-dependent). The
rest of the notation is standard: G is the weak Fermi
coupling, M,, the mass of the W boson and n the
renormalization scale. The AS= 2 operator in the
above expression is the renormalized one. It is de-
fined as follows:

OAS=2 — S'YMLdé'YMLdy (2)

where v," = ,(1 — ;). The CP-violation parameter
€, is defined as:

G Mg
1672 2 Am,
><(ngme BK(/J“))(D( Xer Xts ) s 3
where Am, isthe K2-K2 mass splitting. m, and f,

denote the K-meson mass and decay constant, re-
spectively.

|€K|:

Inthe AS=1 casg, the Al =3 /2 contribution to
€' can be written as

ImMS/Z o6 —GFlm)\t[C7<O§/2>VSA B73/2
+Cg(0F/2)ysa B2 + Co{ O3/ 2)ysa B 2],
(4)

where A, = V,J V,4 contains the CKM matrix depen-
dence and {O%?)ss stands for the VSA matrix
element of the corresponding operator. The defini-
tions of the operators can be found for example in
Refs. [22,23]. The Wilson coefficients, known to
NLO [22-25], are denoted by C, = C,(M,,/u) and
the operators O, (k= 7,8,9) are defined as:

03/2 = (§a V,LLLda ){UB ’yIJ-RuB o aﬁyﬂRdB}

(8 U ) (Tp7dy ),
03/ = (8,%ds ) {Tyu, — s, )
+ (851 ) (Gynd, ),
03/2= (8,7, ){Ts 3 us — dy s )
+ (8. U, ) (Tgyids ). ()

where 3, =y,(1+vs) and a,B=1-3 are colour
indices. The definitions of the B-parameters of Egs.
(3) and (4) will be given in Section 4.

Two observations are necessary at this point.
Firstly, since we are interested in computing the
matrix elements (K°/045=2|K°) and
(m*|O%/?|K*) (with k=7,8,9), only the parity-
conserving parts of the operators of Egs. (2) and (5)
enter in the calculation. Secondly, on the lattice the
above matrix elements are obtained in the standard
way by studying the asymptotic behaviour, at large
time separations, of hadronic correlation functions of
the form (P(y)O(0)P(x)) (see Egs. (15) below),
with P denoting suitable pseudoscalar densities
which we use as meson sources and sinks. The Wick
contractions of the quark fields in the correlation
functions give rise to diagrams which are both
‘‘eight’’-shaped and ‘‘eye’’-shaped. The latter, how-
ever, cancel in the limit of degenerate up and down
quark masses. Since our results are obtained in this
limit, complicated subtractions of lower dimensional
operators, necessary for the removal of the power
divergences of the ‘‘eye’’-diagrams, are avoided.
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3. Non-perturbative renor malization

The NPM for the evaluation of the renormaliza-
tion constants of lattice operators consists in impos-
ing suitable renormalization conditions on lattice am-
putated quark correlation functions [8]. In our case,
we compute four-fermion Green functions in the
Landau gauge. All external quark lines are at equal
momentum p. After amputating and projecting these
correlation functions (see Refs. [11] and [19] for
details), the renormalization conditions are imposed
in the deep Euclidean region at the scale p? = u?.
This renormalization scheme has been recently called
the Regularization Independent (RI) scheme [22]
(MOM in the early literature) in order to emphasize
that the renormalization conditions are independent
of the regularization scheme, although they depend
on the external states used in the renormalization
procedure (and on the gauge). Thus, at fixed cutoff
(i.e. fixed B), we compute non-perturbatively the
renormalization constants and the renormalized oper-
ator OR'( w) in the Rl scheme. In order to obtain the
physical amplitudes, which are renormalization group
invariant and scheme independent, the renormalized
matrix elements must subsequently be combined with
the corresponding Wilson coefficients of the effec-
tive Hamiltonian. The latter are known in continuum
perturbation theory, at the NLO, both in the MS
scheme [21-24] and in the RI scheme [22]. Although
not strictly necessary, since the standard practice
consists in giving the B-parameters in the MS
scheme, we will express our results both in the MS
and RI schemes. In order to obtain the corresponding
operators in the MS scheme, OMS( ), the matrix
elements of the operators OR'( u) must be corrected
by finite matching coefficients [22]. We stress that, if
w is much larger than Aqcp, the NPM of Ref. [11]
and the WI method of Ref. [9], used for the computa-
tion of the mixing coefficients of the lattice opera-
tors, are equivalent, in the chiral limit. This has been
shown for two-fermion operators in Ref. [8]; for
four-fermion operators it is discussed in detail in
Refs. [19,26] (see also Ref. [3)).

In [19], we have determined non-perturbatively
the operator mixing for the complete basis of four-
fermion operators, with the aid of the discrete sym-
metries (parity, charge conjugation and switching of
flavours), in the spirit of Ref. [4]. The renormaliza-

tion of the parity-conserving operators, relevant to
this work, is conveniently expressed in terms of the
following basis of five operators:
Q,=VXV+AXA,

Q,=VXV-AXA,

Q;=SXS—-PXP,

Q,=SXS+PXxP,

Qs=TXT. (6)
The operators Q, ...,Qs; form a complete basis on
the lattice. In these expressions, I'X I' (with I"'=
V,ASP.T a generic Dirac matrix) stands for
3 Ty Ty, + Yy T s Ty), where g, i =
1,....,4 are fermion fields with flavours chosen so as
to reproduce the desired operators (see Ref. [19] for
details). More specificaly, the parity-conserving
component of the four-fermion operator O45=2 cor-
responds to Q, in our basis. On the lattice, this
operator mixes under renormalization with the other
four operators as follows

A

Q=2 ' (7)
where Z,, is a multiplicative logarithmically diver-
gent renormalization constant; it depends on the
coupling and au. The mixing coefficients Z;; (with
i =2,...,5) are finite; they only depend on the |at-
tice coupling g3(a).

The renormalization of the parity-conserving parts
of the operators 03/ and OF/? is related to that of
the operators Q, and Q,; the correspondence is
given by
0¥?2-Q,, 0Y?- -2Q,.

The renormalized operators are defined as:

Qo =2,,Q;+Z5Q3, Q3=7Z5,Q;+7Z55Q3, (8)
where Z;; (with i,j = 2,3) are logarithmically diver-
gent renormalization constants which depend on the
coupling and au. The above mixing matrix is not
peculiar to the lattice regularization, but also occurs
in the continuum. The breaking of chiral symmetry
by the Wilson action requires the additional subtrac-
tions:
QiszQi+ Z Ziija i=23. (9)
j=1,45
where the Z;;s are finite coefficients which only
depend on g3(a).

5
Q+ X Z,Q
i=2
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Finadly, the operator O3'? corresponds to the
operator Q; of Egs. (6). Thus, its renormalization
constants, B-parameter, etc. are identical to those of
0452, The results for al the renormalization con-
stants Z;; (computed with the NPM at several renor-
malization scales u at B = 6.0) can be found in [19].

4. B-parameters

In the AS= 2 case, the B-parameter is defined as

<K0|C’)‘As=2( [.L)|K0>

B (W) = =g ais o (10)
(KO KD vsa

where the matrix element in the VSA is given by

(KOO4S=2|K %)\ en

1
1+ —

N;

=2 ZZK(KOIA, 10y

=2 mz 2, (11)

1
1+ —
N,

with Z, the (finite) renormalization constant of the
lattice axial current ¢7My5¢ Since
(K°|O45=2|K O e is glven in terms of physical
guantities (m, and f, ), B( ) runs with the scale u
exactly like the correcpondl ng renormalized operator
o( w). Another definition of the VSA matrix element
has recently been proposed in Ref. [9]. It consists in
vacuum-saturating each operator which enters in the
subtraction of Eq. (7). In this way, statistical fluctua-
tions are reduced in the ratio of correlation functions
used to extract B, (defined as RS2 in Egs. (16)
below). As pointed out in Ref. [27], however, the
definition used in Ref. [9] spoils the good scaling
properties of B, (). Thus, weinsist on retaining the
standard definition of Eq. (12), at the price of having
larger statistical errors.

For the Al =3/2 transitions, the B-parameters
are defined by:
(710 2((w)IK*)
BY/2( p) = 7 () ,
<77+|03/2|K+>VSA
(0¥ (w)IK*)
B3/2( ) = 7108 () (12)

<7T+|OA{;’/2| K+>VSA .

As discussed in Section 3, B3/?(w) = B, () in the
limit of degenerate quark masses. The VSAs for the
above matrix elements depend on two different con-
tributions of the form:

~ 2
(7107 2[K* yysa = EZSW*IPIOXOIPIKW

— Z2(m*| AJ0Y(OI A, IK*),

(m*|OF2|K* Yysa = 2Z2(m*|PI0Y{O|P|K*)
Z, . .
= (T IA YOI A K,

C

(13)

where Z, is the renormalization constant of the
|attice pseudoscalar density P = J%lp (renormalized
at the same scale u in the RI scheme). Since we
work with degenerate quark masses, we have left the
flavour content of the operators A, and P unspeci-
fied; they are meant to have whatever flavour is
required by the hadronic states of their matrix ele-
ments (i.e. P, P, and smilarly for A)). Contrary
to the AS= 2 case, the leading terms of the above
VSA matrix elements are u-dependent quantities,
with an anomalous dimension equa to twice the
anomalous dimension of the pseudoscalar density P.
Thus the B-parameters do not scale in w like the
matrix elements of the corresponding operators. The
last terms on the r.h.s. of Egs. (14) vanish in the
chira limit. Consequently, since we are ultimately
interested in passing from the (0% 2|K* ) matrix
elements to the (7 |O¥2|K ) ones using soft pion
theorems, following Ref. [16], we have dropped the
last terms on the r.h.s. of Egs. (14). In order to
extract the B-parameters, we need to compute the
following two- and three-point correlation functions:

Go(t,,p) = X (P(X)P(0)>e "X,

Ga(t,,P) = X ( Ay(X) P(0))e P,
Gs(ty.ty:p.0)

= Y (P(y)O(0)P(x))e P Yed, (14)
X,y

where x=(x,t,),y=(y,t,) and O stands for any
four-fermion operator of interest. As stated above, all
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correlation functions have been evaluated with de-
generate quark masses and therefore only the
“*eight-diagrams’’ contribute to Gg. By forming suit-
able ratios of the above correlations, and looking at
their asymptotic behaviour at large time separations,
we isolate the desired operator matrix elements. In
particular the ratios:

1 Gossa (K°(p)IO*S=2|K°(p))

R4S=2 —
Z; GGy ZZK0IPIK )|
Ry2_ _ e Goye
7 272 G.G,

N, (7 1O¥2K*)
5 _°
2 Z5{m*|P0){0IP|K*) "
l Géga/z l <7T+|OAS/2|K+>
N
275 GpG, 2 Z3{(m*|PJ0){O|P|K*) "’
(15)

R§/2= _

give, up to computable factors, the B-parameters of
interest. For comparison, we have obtained results
with the operator renormalized not only with the
NPM, but also with SPT and BPT.

5. Numerical results

Our simulation has been performed a 8= 6.0
with the tree-level Clover action in the quenched
approximation. Quark masses have been fixed at
k = 0.1440,0.1432 and 0.1425. The renormalization
constants have been obtained from quark correlation
functions, in the Landau gauge, on a 16° X 32 lat-
tice, with 100 configurations. The hadronic matrix
elements have been computed on an 183 X 64 lattice
with 460 configurations. Details on the choice of
time intervals, spatial momenta and related technical-
ities are to be found in Ref. [12]. Statistical errors
have been estimated with the jacknife method, by
decimating 46 configurations at a time. We have
neglected the statistical errors of the renormalization
constants, quoting only those of the hadronic matrix
elements. In the above ratios, we aso need the
(finite) axial-current renormalization constant Z, and
the au-dependent renormalization constant Z, of
the pseudoscalar density. Depending on the method

of renormalization of the four-fermion operator
(NPM, SPT or BPT), we have used the correspond-
ing estimate of Z, and Z,, obtained with the same
method of calculation. Although Z, should not de-
pend ? on au, sight variations of its NPM estimate,
arising from systematic effects, partially cancel anal-
ogous variations of R45=2, giving much more stable
results. The NPM estimates for Z, and Z, used in
the present work are those of Ref. [29].

In order to extract the B-parameters from the
ratios of Egs. (16), we follow the procedure of Ref.
[12], fitting them with the function

R=a+ BX+7vY, (16)
where
8 GG, 8 f2m?
X== - = >
3 GpGp 3 ZZKOIPIK®)|
v (p 20|) X (17)
mk

(the large time asymptotic behaviour of X is also
shown above). The results of the fits are collected in
Table 1, at eight different values of the renormaliza-
tion scale u2a2. We aso show results obtained with
the renormalization constants evaluated in SPT and
in BPT. In the latter case, we use the recipe a2 =
a/(3 Tr(Ug »), where (U, ) stands for the average
plaguette. At B=6.0, we have used a2 =
1.68 /4.

We first examine the results for R45=2, from
which B, can be extracted. Asin[11-13], it can be
seen that « and B (which are lattice artifacts) are
compatible with zero within at most 2o, unlike their
SPT and BPT values. Thus (within our statistical
accuracy and up to terms of #(g2a)), the correct
chira behaviour of the matrix elements is restored
using the NPM. We point out the stability of vy as a
function of w. Assuming « and B to be zero, the
By-parameter is then given by:

Bx=1v. (18)

In our original analysis [11,12], we have erro-
neously considered the mixing of the AS= 2 opera-

2 For the tree-level Clover action, the best available non-per-
turbative estimate for Z, is obtained from lattice axial WI's; at
B =6.0thisis Z, =1.11(2) [28].
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tor with only the three other operators which appear
in one-loop perturbation theory [2]. It has been
stressed in [9,13,14,19] that, non-perturbatively,
045=2 also mixes with a fourth operator. The results
of Ref. [13] and the present work take into account
the complete non-perturbative mixing.

We now turn to R¥/2,R¥/2, from which B2 and
Bs/? can be extracted. Note the stability of « asa
function of au and the compatibility of 8 with zero.
In this case, for both operators, the B-parameters are
simply given by

B¥2=aq. (19)

Comparing the NPM results to those obtained in SPT
and BPT, we find agreement between the NPM and
SPT values of B2, whereas its BPT vaue is in-
compatible with the other two. The BY? result
depends on the method used for its renormalization.

6. Physics results and conclusions

The B-parameters which can be extracted from
the results given in Table 1 have been obtained in
the RI scheme, since the operators have been renor-
malized with the NPM.

As previoudly stated, it is customary to express all
results in the MS scheme (with NDR dimensional
regularization). The finite matching between the RI
and MS-NDR renormalization schemes can be done
in continuum perturbation theory, by computing the
operator matrix element in the same gauge and on
the same external quark states as those used for the
non-perturbative calculation of the lattice renormal-
ization constants. At NLO this matching has been
obtained in [22]. We have used it in order to convert
our NPM results from the RI to the MS-NDR scheme.
The SPT and BPT cases are less straightforward: we
have started from the renormalization constants of
Ref. [30], which relate the lattice operators to those
renormalized in the MS-DRED scheme. To these
constants we have subtracted the contributions due to
the use of the DRED scheme and added those corre-
sponding to the RI one. In this way we have ob-
tained, for both the SPT and BPT cases, the renor-
malization constants in the RI scheme, from which

Table 1
Values of the fit parameters for R45=2,R¥2 and RY/?, from the
NPM (at several renormalization scales), SPT and BPT

Operator  u2a? a B v

R4S=2 031 0.027+0014 0174016 0.68+0.12
062 —0.018+0.014 0284017 0.67+0.12
096 —0.014+0014 0274016 0.66+0.11
127 -0.010+0.013 0.26+0.16 0.66+0.11
139 —0.004+0.013 0.23+0.16 0.66+0.11
185 —0.005+0.013 0.25+0.16 0.66+0.12
246  0.002+0.013 0254016 0.67+0.12
401 001240012 0254016 0.68+0.12
SPT —0.069+0.013 0.17+0.16 0.65+0.12
BPT —0.058+0.013 0.18+0.16 0.66+0.12

R¥2 031 1.70+0.16 -64+13 63+07
062  081+007 —08+06 35+04
096  069+004 —01+04 26+03
127  070+003 01+04 23403
139  070+003 004+034 22403

1.85 0.69+0.03
247 0.69+0.02
4.01 0.73+0.02
SPT 0.68+0.02
BPT 0.48+0.02

0.15+0.28 1.94+0.23
022+0.25 1.77+021
0.31+0.22 1.62+0.20
045+0.17 1.14+0.14
041+0.22 1.58+0.17

RY? 031 1.20+0.06
0.62  1.08+0.04
096  1.04+0.03
127  1.00+0.03
139  1.00+0.03
185  0.99+0.03
246  0.99+0.02
401  098+0.02
SPT  0.81+0.02
BPT  0.75+0.02

—1.0+04 0.66+0.20
—05+03 0.56+0.15
—03+03 053+0.14
—0.06+0.25 0.52+0.13
—0.05+0.25 0.52+0.13
0.04+0.24 0.51+0.13
0.09+0.24 051+0.13
0.15+0.23 0.51+0.13
0.36+0.17 0.42+0.09
0.29+0.16 0.39+0.09

the results of Table 1 are computed. Alternatively,
we have also calculated and added the necessary
MS-NDR contributions in order to obtain the SPT
and BPT resultsin this scheme. The latter calculation
has also been performed in [14] for the Wilson
action. At NLO [22], the result for By is

J— o J—
BY°(w) = (1— ﬂm“fs) B (1), (20)
A7
where
ArMS=14/3 - 8In2. (21)
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The matching relation for the renormalized operators
O¥? (i=7,8) a NLO is aso given in [22]:

~ al(n) 2\~
3/2 _ S MS 3/2
(o )_S_(Sii_ 2 AN )(Oj/ Jo (@
where
o [E+Em2 —2-2In2
Arirlels: 34, 2 : (23)
2—2In2 —7+§In2

Hence, for the B-parameters BY/? and B3/? we
have:

BY/2
BS? | s
1
= 2
o —
(1+ Sj:)ArE"S)
(W) s as(M) s
S47T ArVS N, 547T ArYs
X
1a(nr) us a(#) s
-— Arg 11— Argg
N, 4w 4ar
BY/2
X B2 (24)
RI
with
Ar¥S = 16/3. (25)

The uncertainty due to the choice of a( ) is about
+0.03. We find a further uncertainty of +0.03
when varying the number of active flavours from 0
to 4.

In order to compare our result for B, with other
theoretical predictions of the same quantity, it is
useful to convert it to the RGI quantity, B,, by
multiplying it by the Wilson coefficient. At NLO,
By is given by

~ —_©
B= () 7

YD)
47

y®PBo — vOB,
2B¢

X1

)l BYS( 1),
(26)

where B,, and y©Y are the leading and next-to-
leading coefficients of the B-function and anomalous

Table 2
B-parameters for AS= 2 and Al = 3/2 operators at the renormal-
ization scale w = a1 = 2 GeV. All results are in the MS scheme

Quantity Method Result Ref.
By NPM 0.66(11) this work
BPT 0.65(11) this work
BPTQq* =1/a 0.74(4) [14]
By NPM 0.93(16) thiswork
BPT 0.92(16) this work
B3/2 NPM 0.72(5) this work
BPT 0.58(2) this work
BPTq* =1/a 0.58(2) [14]
BPTq*=w/a 0.65(2) [14]
BY/? NPM 1.03(3) this work
BPT 0.83(2) this work
BPTq* =1/a 0.81(3) [14]
BPTq*=m/a 0.84(3) [14]

dimension. B,, and y© are universal whereas y®
depends on the regularization and renormalization
schemes. The explicit expressions of these quantities
can be found for example in [21]. This estimate of
By is also regularization-scheme independent, up to
next-to-NLO order terms.

In Table 2 we collect al our results for the
B-parameters, obtained by computing their renormal-
ization with the NPM and in BPT, at the reference
scale u = 2 GeV in the MS scheme. For B, we also
give the RGI value B,. Moreover, we compare our
results to the most recent ones obtained with the
Wilson action at the same coupling and with opera-
tor renormalizations carried out perturbatively in BPT
[14].

Two points concerning this comparison deserve
some attention here. The first is that in Ref. [14] the
results were obtained in 1-loop BPT by renormaliz-
ing the lattice operators directly in the MS-NDR
scheme, rather than doing the renormalization in the
RI scheme and then matching to MS-NDR with Eq.
(25), as we have to do with the NPM. In perturbation
theory, the two procedures differ by @(a2) terms,
which introduce a systematic difference of about
12%-15% in the results for B3/? and B3/2. For this
reason, in order to make the comparison meaningful,
our BPT estimates in the MS-NDR scheme, given in
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Table 2, were obtained using the same procedure as
in [14]. The second point is that in Ref. [14], a more
complicated version of BPT than in this work has
been implemented, which involves tadpole resumma-
tions and a choice of ‘‘optima’’ scae gq* for the
boosted coupling. Since the recipe for q* is not
unique, results with several choices of q* have been
listed in [14], and can be compared with our results.
Finally, we point out that a direct comparison of our
By value to those of [9] is not possible, because the
latter have been obtained at different lattice cou-
plings. ~

Our results from NPM and BPT for B, and By
are in perfect agreement. With a larger statistical
error, our B, value also agrees with those of Refs.
[14,31]. We find, instead, a discrepancy between our
NPM and BPT estimates of B3/2 and B3/ Our
values obtained with BPT are fully compatible to
those of [14] (at least for one q* value), where the
Wilson action was used. The NPM estimate, instead,
is in disagreement with any value obtained in BPT
(either with the Wilson or the Clover action and for
several boosting variants). This indicates that the
difference between our NPM estimate and that of
Ref. [14] is due to the NPM used in the former
result, rather than the implementation of different
actions (Clover and Wilson respectively). The in-
crease in the value of B2, obtained with the NPM,
is of great phenomenological interest, since it may
induce a significant decrease of the ratio €' /€.

In conclusion, the non-perturbative renormaliza-
tion of the four-fermion operators, either with the
NPM or with WI's, strongly improves the reliability
of lattice computations of B-parameters with Wil-
son-like fermions. Perturbative mixing of lattice op-
erators, carried out at lowest order, fails to reproduce
the expected chiral behaviour of the matrix elements
(at present day couplings). A good chiral behaviour
of 045=2 js restored when the operators are renor-
malized non-perturbatively. Moreover, B3/? and
B3/? obtained with the NPM disagree by as much as
20% from the ones obtained in BPT.
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