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Abstract: A recent study has presented a Maxwell mass–spring model for a chain formed by two
different types of tensegrity prisms alternating with lumped masses. Such a model shows tensegrity
theta prisms arranged in parallel with minimal regular prisms acting as resonant substructures. It
features a tunable frequency bandgap response, due to the possibility of adjusting the width of the
bandgap regions by playing with internal resonance effects in addition to mass and spring contrasts.
This paper expands such research by presenting a continuum modeling of the tensegrity Maxwell
chain, which is useful to conduct analytic studies and to develop finite element models of the plane
wave dynamics of the investigated system. In correspondence to the high wave-length limit, i.e., in
the low wave number regime, it is shown that the dispersion relations of the discrete and continuum
models provide similar results. Analytic solutions to the wave dynamics of physical systems are
presented, which validate the predictions of the bandgap response offered by the dispersion relation
of the continuum model.

Keywords: Maxwell chain; discrete to continuum; bandgap response; tensegrity structures

1. Introduction

Mechanical metamaterials are engineered systems designed to create exotic materials, often
prepared in laboratories using two or more components or phases. These materials exhibit
unconventional mechanical properties not found in conventional materials [1]. Some notable
examples include bandgap metamaterials composed of phononic crystals [2, 3], which can be
designed to exhibit adjustable frequency intervals where the transmission of mechanical waves is not
permitted [4, 5]. Tensegrity bandgap metamaterials are formed by alternating lumped masses with
tensegrity units of different types, allowing for the creation of mass–spring systems that exhibit
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tunable frequency bandgaps. These bandgaps can be adjusted by internal and external prestress, as
well as by contrasts in mass and spring properties between their elements (refer, e.g., to [6] and
references tharein).

In the case of a forced mass–spring chain, when the length of such a system is finite and/or when
the presence of a boundary breaks the periodicity condition, it is well known that the Bloch–Floquet
wave form solutions of the dynamic problem do not longer satisfy the equations of motion. Two
alternative strategies are available to overcome such an issue. The first one consists of solving the
ordinary differential equations of motion of the discrete system with aid of the competent initial
conditions, and accounting for any kinematic restrictions [6]. Such a strategy is generally accurate,
but has a computational disadvantage if the number of unit cells is very large. The second strategy
consists of deriving a continuum model of the mass-spring system equipped with competent Partial
Differential Equations (PDEs) and Boundary Conditions (BCs). Such an approach can be accurate, in
the presence of a correct mathematical formulation, only when the wave-length is larger than the size
ε of the unit cell. However it offers the advantage that the associated computational effort is either
negligible in presence of analytical solutions to the equations of motion or dependent on the adopted
mesh size in the case of finite element approximations.

This work develops a continuum model of the tensegrity mass–spring system recently proposed
in [6] (see Section 2 for a review of this model). The approach that is followed moves on from the
introduction of kinematic descriptors at the continuum level for the chain domain (i.e., ‘hosting’ and
‘resonant’ displacement fields) and next introduces appropriate Piola’s ansatzes to link such
descriptors to those corresponding to the discrete model [7–10]. The adopted ansatz guarantees that
the continuum descriptors correspond to the limits for ε → 0 of the discrete counterparts. Using the
continuum displacement fields and a variational principle for the action functional system, the work
derives the PDEs of the Maxwell chain as well as the dispersion relation at the continuum level
(Section 3). Analytic solutions of the wave dynamics of the continuum model are presented
in Section 4, which illustrate its main features and permit the validation of the dispersion relation
presented in the previous section. The paper ends with concluding remarks and directions for future
work in Section 5.

2. A tensegrity Maxwell chain model

We hereafter recall the main features of the tensegrity Maxwell chain model diffusely presented
in [6], which is graphically illustrated in Figure 1. It is composed of a number of N tensegrity θ = 1
prisms (‘PH prisms’) [14] arranged in parallel with 2N minimal regular tensegrity prisms (‘PR prisms’
or T3 prisms) [16]. The PH prisms are interposed between N + 1 hosting masses MH, while two PR

prisms are interposed between two consecutive MH masses, being separated by a resonant MR mass.
The MH and MR masses exhibit characteristic sizes (rH and rR) and rotational moments of inertia
JH = nH MH r2

H and JR = nR MR r2
R with respect to the axis of the chain, respectively, where nH and nR

are two scalar factors depending on the shape of such elements (nH = nR = 1/2 in the case of masses
consisting of circular discs with radii rH and rR ).

The model analyzed hereafter describes the response of the chain in the small displacement regime
from the reference configuration, by reducing the prism units to linear springs endowed with stiffness
coefficients KH (PH prisms) and KR (PH prisms). The latter coincides with the tangent values of the
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axial stiffness coefficients of the PH and PR prisms in correspondence to the reference configuration
and are assumed to be positive. Let uH

i denote the axial displacement of the i−th hosting mass and
let ϑH

i denote the twisting rotation that accompanies the axial deformation of the PH prism interposed
between the hosting masses i and i+ 1. Similarly, let us use the symbols uR

i and ϑR
i to indicate the axial

displacement and the twisting rotation of the i−th resonant mass [11], respectively (Figure 1). We
assume the following compatibility equations between the axial and twisting motions of the hosting
and resonant prisms [6]

uH
i = p ϑH

i , ∀i = 0, ...,N; uR
i = p ϑR

i , ∀i = 0, ...,N − 1 (2.1)

Here, p is a coupling parameter to be determined by studying the kinematics of the PH and PR prisms
in proximity to the reference configuration. Equation (2.1) permits to reduce the kinematics of the
Maxwell chain to the axial displacements uH

i and uR
i of the hosting and resonant units (see [6] for more

details).

PH PH

PR PR PR PR

Figure 1. Graphical illustration of the tensegrity Maxwell chain.

It is an easy task to obtain the expressions of the kinetic energy K and the internal elastic energy
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Uint of the discrete Maxwell chain model as follows:

K =
1
2

Meq
H (u̇H

N )2 +

N−1∑
i=0

1
2

[
Meq

H (u̇H
i )2 + Meq

R (u̇R
i )2
]

(2.2)

Uint =

N−1∑
i=0

1
2

[
KR

((
uH

i − uR
i

)2
+
(
uH

i+1 − uR
i

)2)
+ KH

(
uH

i+1 − uH
i

)2]
, (2.3)

where we have employed the dot notation for time derivatives, and we have introduced the equivalent
masses

Meq
H = MH

(
1 + nH r2

H
p2

)
, Meq

R = MR

(
1 + nR r2

R
p2

)
(2.4)

The external energy of the Maxwell chain is given by

Uext = F
ext,eq
H,0 uH

0 +

N−1∑
i=0

[
F

ext,eq
H,i uH

i (1 − δ0i) + F
ext,eq

R,i uR
i

]
+ F

ext,eq
H,N uH

N , (2.5)

where the following equivalent axial forces have been introduced:

F
ext,eq
H,i = Fext

H,i +
Mext

H,i

p
, F

ext,eq
R,i = Fext

R,i +
Mext

R,i

p
(2.6)

Fext
H,i and Fext

R,i denote the external forces and the external twisting momentsMext
H,i andMext

R,i applied to
the chain.

It is worth to note that we decompose the external energy (2.5) into three addends. The first and
third addends are the contributions from the external world, respectively, to the extreme left and to the
extreme right-hand sides of the chain. The second addend contains the rest of the external energies. As
a matter of fact, this last second addend is decomposed into two parts. The first is the contribution of
the external energies due to the external forces applied to the hosting masses with i = 1, ...,N − 1. The
second is the contribution of the external energies due to the external forces applied to the resonance
masses with i = 0, ...,N − 1.

3. A continuum model for the Maxwell chain

We now introduce a one-dimensional continuum domain of length L, characterized by two
displacement fields uH(X, t) and uR(X, t) (see Figure 1) as kinematic descriptors, where X ∈ [0, L] is a
spatial variable (cf. Figure 1) and t ∈ [t1, t2] is the time variable. This domain represents the support
of a continuum model for the Maxwell chain, which consists of a mixture of two solids: the first solid
describes the hosting masses MH of the discrete model, while the second one describes the resonance
masses MR. Both solids are defined not only for every instant of time t ∈ [t1, t2] but also for every
point X ∈ [0, L] of the reference configuration. In addition, each of the two solids has its own
dynamics, one being defined by the displacement field uH(X, t) and the other by the displacement field
uR(X, t).

Networks and Heterogeneous Media Volume 19, Issue 2, 597–610.



601

The following Piola’s ansatz

f (Xi) = fi, ∀i = 0, ...,N, ε ≪ L ⇒

N∑
i=0

fiε =

∫ L

0
f (X)dX, (3.1)

are assumed to link the continuum kinematic descriptors to the discrete ones introduced in the previous
section, where f is either uH or uR, and fi is either uH

i or uR
i . Such ansatzes let us identify the realizations

of the continuum descriptors uH(X, t) and uR(X, t) at the points of application of the ith discrete masses
MH and MR with the discrete descriptors uH

i (t) and uR
i (t). Making use of Eq (3.1), we are led to rewrite

the kinetic energy (2.2) of the discrete Maxwell chain as follows:

K =

N∑
i=0

ε
1
2

[
Meq

H

ε
(u̇H

i )2 +
Meq

R

ε
(u̇R

i )2
]
=

∫ L

0

1
2

[
ϱHu̇2

H + ϱRu̇2
R

]
dX, (3.2)

where the linear mass densities ϱH and ϱR are given by

ϱH =
Meq

H

ε
, ϱR =

Meq
R

ε
. (3.3)

Let us now look at the continuum model as the limit for ε→ 0 of a sequence of discrete chain models.
In correspondence to such a limit, one easily realizes that Eq (3.3) do not degenerate only if the values
MH and MR (see also Eq (2.4)) rescale with the size ε of the unit cell of the discrete chain. We therefore
assume that the values of the masses MH and MR tend to zero for ε → 0, in such a way that the linear
mass densities ϱH and ϱR remain finite.

Before we move on to identify the internal energy from Eq (2.3) of the continuum model, we need
to write the displacement uH

i+1 of the cell i + 1 in terms of that uH
i of the cell i, with the use of both

Piola’s ansatz (3.1), adapted for the field uH(X, t), and the following Taylor’s series expansion

uH
i+1(t) = uH(Xi+1, t) = uH(Xi + ε, t) � uH(Xi, t) + εuH′(Xi, t) +

1
2
ε2 uH′′(Xi, t) (3.4)

Here, we have employed the prime notation for the derivatives with respect to the spatial variable X.
Eq (3.4) allows us to write from Eq (2.3) the internal energy of the continuum model into the following
form:

Uint =

N∑
i=1

ε

2
{

[KR

ε

(
uH(Xi, t) − uR(Xi, t)

)2]
(3.5)

+

[KR

ε

(
uH(Xi, t) + εuH′(Xi, t) − uR(Xi, t)

)2]
(3.6)

+

[KH

ε

(
εuH′(Xi, t)

)2]
}. (3.7)

which, making use of Eq (3.1), leads us finally to

Uint =

∫ L

0

[
1
2
κR
(
uH − uR

)2
+

1
2
κH
(
uH′
)2]

dX (3.8)
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The continuum stiffness constants κH and κR, which appear in Eq (3.8), are related to the discrete
counterparts KH and KR through

κH = KH ε, κR = 2
KR

ε
. (3.9)

We now go back to the identification of the continuum model as the limit for ε → 0 of a sequence of
discrete models. In such a limit, Eq (3.9) do not degenerate only if the values κH and κR rescale with
ε according to (3.9). This implies that it must result in KH → ∞ for ε → 0, in such a way that κH
remains finite. Similarly, it must result in KR → 0 for ε → 0, so that κR remains finite. It is worth
noting that inclusion of the last term in (3.5) would include higher-order gradient terms in the final
PDEs that are here neglected. Besides, quadratic terms in (2.3) have implied linear PDEs. However,
for large deformation, nonlinear PDEs would be obtained by considering exponents in (2.3) higher
than 2. In this general case, the difference between the formulations in the reference or in the present
configurations should be considered via the so-called Piola’s transformation [15]

We finally identify the external energy (2.5), making use of Piola’s ansatz (3.1), for both the fields
uH(X, t) and uR(X, t). We obtain the following expression ofUext for the continuum model:

Uext = F
ext,eq
H,0 (t)uH(0, t) + F ext,eq

H,N (t)uH(L, t), (3.10)

+

N−1∑
i=0

ε

F ext,eq
H,i (t)

ε
uH(Xi, t)(1 − δ0i) +

F
ext,eq

R,i (t)

ε
uR(Xi, t)


from which, making use of Eq (3.1), we get to

Uext = F
ext,eq
H,0 (t)uH(0, t) + F ext,eq

H,N (t)uH(L, t) (3.11)

+

∫ L

0

[
bH(X, t)uH(X, t) + bR(X, t)uR(X, t)

]
dX.

The distributed external forces bH(X, t) and bR(X, t), which appear in Eq (3.11), are related to the
discrete counterparts F ext,eq

H,i (t) and F ext,eq
R,i (t) through

bH(Xi, t) =
F

ext,eq
H,i (t)

ε
∀i = 1, ...,N − 1, bR(Xi, t) =

F
ext,eq

R,i (t)

ε
, ∀i = 0, ...,N − 1. (3.12)

Considering again the limit for ε→ 0 of a sequence of discrete models, we realize that Eq (3.12) do not
degenerate in correspondence to such a limit case only if the values bH and bR rescale with ε according
to (3.12). This implies that it must result in both F ext,eq

H,i → 0 and F ext,eq
R,i → 0 for ε→ 0, in such a way

that bH and bR remain finite for ε→ 0 .
The action functional of the continuum model can be formulated into the following standard form

(see, e.g., [17])

A =

∫ t2

t1
[K −Uint +Uext] , (3.13)

where t1 and t2 are two times at which we prescribe that the displacement fields uH and uR are equal to
known values uαH and uαR (α = 1, 2), through

uH(X, t1) = u1
H, uH(X, t2) = u2

H, uR(X, t1) = u1
R, uR(X, t2) = u2

R. (3.14)
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We now introduce the following action principle [17],

δA = 0, ∀δuH ∈ CH, ∀δuR ∈ CR, (3.15)

for any admissible variations CH of uH and CR of uR. It is an easy task to obtain from Eqs (3.2), (3.8),
(3.11), and (3.13) the following result:

δA =

∫ t2

t1

[∫ L

0

[
δuH

(
−κR(uH − uR) + κHu′′H − ϱHüH + bH

)]
dX
]

dt (3.16)

+

∫ t2

t1

[∫ L

0

[
δuR

(
κR(uH − uR) − ϱRüR + bR

)]
dX
]

dt

+

∫ t2

t1

[
δuH(0, t)

(
F

ext,eq
H,0 (t) + κHu′H(0, t)

)]
dt

+

∫ t2

t1

[
δuH(L, t)

(
F

ext,eq
H,L (t) − κHu′H(L, t)

)]
dt.

Invoking the arbitrariness of the variations in (3.15), we can finally derive the following PDEs ruling
the dynamic problem of the continuum model:

κR(uH − uR) − κHu′′H + ϱHüH − bH = 0 (3.17)
−κR(uH − uR) + ϱRüR − bR = 0 (3.18)

which are accompanied by the BCs

uH(0, t) = uH0(t) or κHu′H(0, t) = −F ext,eq
H,0 (t) (3.19)

uH(L, t) = uHL(t) or κHu′H(L, t) = F ext,eq
H,L (t). (3.20)

Let us now introduce plane wave solutions for the displacement fields uH(X, t) and uR(X, t), through

uH = Re
{
uH

0 exp [I (ωt − kwX)]
}
, uR = Re

{
uR

0 exp [I (ωt − kwX)]
}

(3.21)

where Re indicates the real part operator; I is the imaginary unit; uH
0 , uR

0 , ω, and kw, respectively, denote
the complex amplitudes, the angular frequency, and the wave number of the traveling waves. Making
use of Eq (3.21), we easily obtain (neglecting all the external forces and the external energy terms) the
following dispersion relation of the continuum model

ωMoc,Mac (kw) =

√
fM(kw) ± ∆M (kw)

2ϱHϱR
(3.22)

where the function fM(kw) and the discriminant ∆M (kw) have the expressions given below

fM(kw) = (ϱH + ϱR)κR + ϱRκHk2
w (3.23)

∆M (kw) =
√[

fM(kw)
]2
− 4ϱHϱRκRκHk2

w). (3.24)
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In the limit ε→ 0, Eq (3.22) reduce to the form

ωMac � kw

√
κH

ϱH + ϱR
, (3.25)

ωMoc �

√
κR(ϱH + ϱR)
ϱHϱR

. (3.26)

Making use of the positions (3.3) and (3.9), it is easily verified that both the Eqs (3.25) and (3.26)
reduce to Eq (25), in the reference [6], of the discrete model, which has been presented to provide the
value of the circular frequency of the optic branch for kw = 0.

It is useful to apply the above formulas to the micro-scale physical models of the Maxwell chain
studied in [6]. Such models employ PR prisms with a 5.5 mm height in the reference configuration,
equilateral triangular bases with an 8.7 mm edge, 0.28 mm Spectra strings (5.48 GPa Young modulus),
and 0.8 mm Ti6Al4V bars (120 GPa Young modulus). In addition, they use PH prisms showing 11
mm height in the reference configuration, equilateral triangular bases with a 6.11 mm edge, Spectra
strings and Ti6Al4V bars identical to those of the PR prisms (we refer the reader to [6] for more
detailed information about such units). The masses forming the above models are circular discs, such
that MH = 16.03 grams and MR = 4 grams (nH = nR = 1/2). The study presented in [6] estimates
KH = 61.04 N/mm, KR = 13.70 N/mm, and p ≈ 2.33 mm/rad.

Graphical illustrations of the dispersion relations exhibited by discrete and continuum models of
the chain under examination are provided in Figure 2, by distinguishing two different cases: discrete
and continuum systems in which the longitudinal and twisting motions of the PH and PR prisms are
coupled, according to Eq (2.1), as well as discrete and continuum systems in which the same prisms are
free to tangentially slide against the lumped masses, so as that the twisting rotations of the tensegrity
units are not transferred to the masses (uncoupled system). In the first case, we have Meq

H = 349.51
grams and Meq

R = 24.85 grams, while in the second case, it results in Meq
H = MH and Meq

R = MR.
Figure 2 shows that the acoustic and optic branches forming the dispersion relations of the continuum
systems correctly reduce to the analogous branches of the discrete systems in the long wavelength
regime (kw → 0). In the coupled system we predict ωMoc(0) = 173 Hz, while in the uncoupled system,
we predict ωMoc(0) = 465 Hz.

4. Analytic solutions of the wave equation

Let us derive the wave equation of the continuum model of the Maxwell chain, by making use of
the results derived in the previous section. We start by rewriting Eq (3.21) into the following form:

uH = Re
{
ūH

0 (X) exp [I (ωt)]
}
+ uH

S (X), uR = Re
{
ūR

0 (X) exp [I (ωt)]
}
+ uR

S (X), (4.1)

where now ūH
0 (X) and ūR

0 (X) are unknown functions of the spatial coordinate X, and uH
S (X) and uR

S (X)
are those displacement functions produced by a static load at the boundary and assuming zero external
distributed forces (bH = bR = 0). Thus, Eqs (3.17) and (3.18) yield,

κR(uH
S − uR

S ) − κHuH′′
S = 0 (4.2)

−κR(uH
S − uR

S ) = 0 (4.3)
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(a) (b)

Figure 2. A comparison between the dispersion relations of the discrete and continuous
models for the physical model of the Maxwell chain with coupled (a) and uncoupled (b)
longitudinal and twisting motions.

and uH
S (X) and uR

S (X) are solved once a particular set of boundary conditions are considered. Keeping
this in mind, one can write Eqs (3.17) and (3.18) making use of Eq (4.1), to obtain

κR(ūH
0 − ūR

0 ) − κHūH′′
0 + ϱHω

2ūH
0 = 0 (4.4)

−κR(ūH
0 − ūR

0 ) + ϱRω
2ūR

0 = 0. (4.5)

The insertion of Eq (4.5) into Eq (4.4) leads us to the second-order linear homogeneous differential
equation with respect to the spatial coordinate X

κHūH′′
0 + ω

2ϱ̄HūH
0 = 0 (4.6)

where we have introduced the equivalent mass density

ϱ̄H =
κR(ϱR + ϱH) − ϱRϱHω

2

κR − ϱRω2 (4.7)

Eq (4.6) admits the following general solution:

ūH
0 = Re

{
c1 exp [α1X] + c2 exp [α2X]

}
(4.8)

where we introduced the integration constants c1 and c2, to be determined through the competent
boundary conditions, and we set

α1,2 = ± ω

√
−
ϱ̄H

κH
. (4.9)

Moving on to determine analytic solutions for ūR
0 (X), we now insert Eq (4.8) into Eq (4.5), obtaining

ūR
0 =

κR
ϱR ω2 + κR

[
Re
{
c1 exp [α1X] + c2 exp [α2X]

}]
(4.10)

Let us now determine the constants c1 and c2 in the particular case of a chain lying vertically in
space, which is subject to a mass M applied to the top end (X = L) and a sinusoidal displacement
excitation at the bottom end (X = 0). The base excitation has an amplitude of u0 and can be written as

uH(0, t) = u0 cos(ωt) (4.11)
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It is useful to separate the dynamic and static parts of Eq (4.1). For what concerns the dynamic part,
we analyze the boundary conditions

ūH
0 (0) = u0 ūH′

0 (L) = 0. (4.12)

which, once inserted into Eq (4.8), leads us to compute the integration constants c1 and c2, and to
obtain the dynamic amplitude of the hosting displacement field

ūH
0 = u0 Re {sec [α1L] cos [α1(L − X)]} (4.13)

and from Eq (4.10) that of the resonant one,

ūR
0 =

κR u0

ϱR ω2 + κR
Re {sec [α1L] cos [α1(L − X)]} (4.14)

For what concerns the static terms uH
S and uR

S , we observe that Eq (4.3) implies the following result in
static equilibrium conditions:

κR(uH
S − uR

S ) = 0. (4.15)

which is accompanied by the static boundary condition

uH
S (0) = 0 (4.16)

On the other hand, in the example under consideration, it is a simple task to obtain the following
differential equation for uH

S [20]

uH′
S (L) = −

Mg
κH

(4.17)

where g is the gravity acceleration. Making use of Eqs (4.16) and (4.17) in Eq (4.15), we finally obtain

uH
S (X) = uR

S (X) = −
Mg
κH

X (4.18)

We are now able to cast Eq (4.1) into the following form:

uH(X, t) = u0 Re
{
sec [α1L] cos [α1(L − X)] exp [I (ωt)]

}
−

Mg
κH

X (4.19)

uR(X, t) =
κR u0

ϱR ω2 + κR
Re
{
sec [α1L] cos [α1(L − X)] exp [I (ωt)]

}
−

Mg
κH

X (4.20)

Since we are assuming κH > 0 (cf. Section 2), Eqs (4.19) and (4.20), in association with the
positions (4.9), let us conclude that one obtains periodic harmonic solutions for uH and uR only when
α1 and α2 are imaginary (ϱ̄H > 0). Oppositely, we obtain decaying solutions when α1 and α2 are real
(ϱ̄H < 0). The frequency bandgap region obviously corresponds to ϱ̄H < 0, since in this case the system
supports wave solutions that exponentially decay when X approaches L [18, 19]. It is easily verified
that the values of ω > 0 such that ϱ̄H < 0 are contained in the interval comprised between zero and
the frequency ωMoc provided by Eq (3.26). Such a result provides validation of the dispersion relation
derived in the previous section, and highlights that the analyzed chain can be effectively employed
as an isolation device for vertical vibrations of the top mass M. It is not difficult to generalize the
results obtained in the present section to the case in which the examined system is under the action
of a not-negligible self-weight. For such an example, indeed, the dynamic parts of uH and uR remains
unchanged as compared to the present case, while the static parts of these functions will assume a
quadratic expression with respect to X [20].
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5. Conclusions

We have derived a continuum model for a Maxwell-type mass–spring chain with tensegrity
architecture [12, 13], which exhibits θ = 1 tensegrity prisms [14] arranged in parallel with T3
prisms [16] and lumped masses. When compared to the discrete model presented in [19], the theory
formulated in the present work is useful to obtain analytic solutions for the wave propagation problem
of the analyzed system in the high wave-length regime, where structural applications are
relevant [21, 22]. Such a feature has been demonstrated through the analysis of a physical example,
which refers to the vibration isolation problem of a mass, e.g., a device to be protected against
mechanical vibrations in a hospital or another essential building. It is worth noting that the
mass–spring chain studied in this work exhibits internal resonance properties that can be employed to
widen the frequency bandgap width of the system, as compared to the case of a diatomic tensegrity
mass–spring chain, where such a width can only be tuned by playing with mass and stiffness contrasts
between the elements of the unit cell [23].

The research presented in this work paves the way for the design of novel tensegrity metamaterials
serving as next-generation vibration isolation devices. Such systems will exhibit properties that can
be easily adjusted to the structure to be protected due to the tunability of the frequency bandgap
region [19]. The presence of geometrical and mechanical nonlinearities in such devices will be
studied through future research, accounting, e.g., for the presence of superelastic cables made of
shape memory alloys [24] and higher order terms in the internal an kinetic energies [25,26]. Their use
in forming anisotropic and/or porous metamaterials [27, 28], energy harvesters [29], and sensors and
actuators for structural health monitoring [30] will also be investigated in future studies.
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