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FLUID DIFFUSION RELATED AGING EFFECT
IN A CONCRETE DAM MODELED

AS A TIMOSHENKO BEAM

ANGELO SCROFANI, EMILIO BARCHIESI,
BERNARDINO CHIAIA, ANIL MISRA AND LUCA PLACIDI

Aging related damage within a concrete dam is often associated with the diffusion
of certain particles which then activate internal chemical action. In this paper, a
hemivariational method for a nonhomogeneous and damaged Timoshenko beam
model is proposed in order to describe damage and deformation in a dam caused
by the diffusion of an aging fluid.

The proposed model is used to perform a suite of parametric studies. In
these studies, the dam is subjected not only to the concentrated and distributed
external forces and couples (dual of displacement and rotation of the section,
respectively) but also to the dual of the concentration of the aging fluid, called
external distributed aging fluid influx pressure, that drives the incoming flow of
the aging fluid which is, for this purpose, coupled with the damage evolution. The
results are utilized to predict the life time of the dam. The life of big structures is
a crucial point in civil engineering because it is linked with the safeguarding of
human life.

1. Introduction

Dam health monitoring has been a continuous topic of interest for infrastructure
maintenance [2; 7; 41; 68]. The life of concrete dams is affected by the diffusion
of some deteriorating ions during its life time. The damage within a concrete
dam is related to the distribution of such ions and it initiates when the concrete
is subjected to tensile stress. As result, microcracks form and the damage begins
to spread [28; 30; 60] because of the brittle behavior of the material [1; 46] and
its low tensile strength. In this regard, it is worthwhile to note that the moisture
content affects not only the mechanical response of a porous media, but it also
activates the initiation of damage phenomena caused by creeping deformation, which
during its transient phase induces a mechanical response (see [39; 65; 67]). This
creeping deformation can cause sorption-induced aging phenomena [16]. Indeed,
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the phenomenon of aging in the structures is a theme that finds application in various
fields of engineering (e.g., [47]), in addition to civil engineering structures, and
therefore, is a problem of wide interest. For the type of complex coupled diffusion-
deformation-damage phenomena being considered in this work, the beam model
[12; 24; 32; 43; 59] can serve as a feasible first step before considering the analysis
of the more general 3-D problems. The beam theory has, in general, wide interest
in the literature of deformable solid bodies (see, for example, [10; 13; 29; 31; 44])
as well as in the modeling of the aging phenomenon [8; 9; 42; 58]. Several studies
have also focused on the chemical interactions between the dam material (concrete)
and the aging elements, for example silicates (see [14; 15; 20; 21; 22; 23; 56]).
Recently some works have focused also on the deformation dependency of the
diffusion flux in solid [66] and polymeric gels or polymeric solids [40; 55]. In some
formulations, e.g., [11], the damage evolution equation is assumed ab initio without
a variational derivation or the consideration of the monolateral condition for the
damage that is constrained to be a nondecreasing function of time.

In contrast, in [17] a hemivariational approach was considered for aging of
concrete dams, in which one 3-D deformable body [6; 29] was modeled using a
clamped Timoshenko beam model [4; 25; 26; 48; 64; 69]. However, the aging
phenomenon was considered by decreasing arbitrarily a certain damage energy
threshold. In particular a time dependent logarithmic law was used for describing
the reduction of such a damage energy threshold. As a result the damage could
increase with respect to time but it was not directly linked to the diffusion of
deteriorating ions within the dam. Interrelationships between damage and these
ions should be described by the use of proper coupling terms because of which
the damage increases not only because of the external loads but also because of
the presence of such a deteriorating fluid in the structure of the dam. Finally, a
hemivariational approach is needed to model the irreversible and nondecreasing
trend of the damage.

The aim of the present work is to use a variational approach [27; 33; 45; 49;
50; 51; 52; 54; 63], more specifically a hemivariational approach, in order to
describe the aging phenomenon due to the spreading of aging fluid (for example,
the salts) into the structure (concrete dam). The aging fluid can spread within the
dam because imperfections are present in the concrete, such as through capillary
phenomenon [5]. Following the approach first described in [17], a 1-D model
is considered for the dam in this paper as well. The 3-D body is modeled as a
1-D Timoshenko beam which is subjected to several external loads due to (i) the
pressure of the water, (ii) the self-weight of the dam and (iii) the external distributed
aging fluid influx pressure that represents the dual of the fluid concentration. In
this work, the damage threshold is linked with the concentration of the fluid by
means of a proper damage-concentration coupling. During the analyzed dynamic
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case, although the external loads do not change, displacements and deformations
evolve as consequence of the reduction of the values of the stiffnesses due to the
increasing values of the damage resulting from diffusion. The latter concept will
be better discussed in Section 2.2 where the energy functional is presented. The
dissipation phenomena during aging is taken into account by means of the Rayleigh
functional, as in [19; 34], but other methods can be considered (e.g., in [18] where
Dahl’s modeled was used). As in [17], and also in this work, the concentration of
the fluid is present within the energy functional. In addition parametric analyses
are presented in order to explain the roles of the concentration-damage coupling
and the diffusion coefficient. In conclusion, it is analyzed how the life of the dam
changes when the previous parameters change.

2. Formulation of the nonhomogeneous Timoshenko beam problem
with damage induced by age

2.1. Preliminary definitions. Body B is modeled as a 1-dimensional continuum
[36; 37; 61] embedded in the 2-dimensional environment and its body points are
characterized by means of the coordinate X in a given frame of reference. The set
of kinematical descriptors, which depends upon the time t and the coordinate X , is
composed of (i) the axial displacement w=w(X, t), (ii) the transversal displacement
u = u(X, t), (iii) the rotation of the section ϑ = ϑ(X, t), (iv) the concentration
c = c(X, t) of a fluid that is supposed to drive the damage evolution and (v) the
damage field ω = ω(X, t). The sign convention of the displacement components w

and u and of the rotation ϑ are made explicit in Figure 1. Damage is an irreversible
field whose value increases in time until the failure is reached. This phenomenon is
represented by means of a scalar variable ω ranging from 0, denoting the undamaged
case, to 1, denoting the complete failure.

2.2. Total deformation energy functional. Let E(w, u, ϑ, c, ω) be the total defor-
mation energy functional, which depends upon all the kinematical descriptors listed

ϑ

u
+

w

Fext
w0

Fext
u0 Mext

0 Mext
L Fext

uL
Fext

wL

mext

bext
c

bext
T

bext
N

Figure 1. Signs convention.
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previously. We note that the kinematical descriptors, as written in Section 2.1, are
functions of the position X and the time t ,

w(X, t), u(X, t), ϑ(X, t), c(X, t), ω(X, t) ∀(X, t) ∈ [0, L] × [t0, +∞), (1)

where L is the length of the beam and t0 is the initial time. The total deformation
energy functional is assumed to have the form

E = E(w, u, ϑ, c, ω)

=

∫ L

0

[1
2 KN (1−ω)(w′)2

+
1
2 KT (1−ω)(u′

−ϑ)2
+

1
2 KM(1−ω)(ϑ ′)2] d X

+

∫ L

0

[ 1
2 KDIF(c′)2

+
1
2 KF c2

+KFN cw′
+KFT c(u′

−ϑ)+K FM cϑ ′
]

d X

−

∫ L

0
[bext

N w+bext
T u+mextϑ+bext

c c] d X −Fext
c0 c(0)−Fext

cL c(L)

−Fext
w0 w(0)−Fext

wLw(L)−Fext
u0 u(0)−Fext

uL u(L)−Mext
0 ϑ(0)−Mext

L ϑ(L)

+

∫ L

0

[
Kω0ω+Kcωcω+

1
2 Kωω2] d X, (2)

where KN , KT , KM are the axial, shear and bending stiffnesses, respectively, bext
N

is the distributed external axial load (dual of w), bext
T is the distributed external

shear load (dual of u), mext is the distributed external couples (dual of ϑ), bext
c is the

external distributed aging fluid influx pressure (dual of c), Fext
c0 and Fext

cL represent
the external concentrated fluid sources at X = 0 and at X = L , respectively, Fext

w0
and Fext

wL represent the external concentrated axial loads at X = 0 and at X = L ,
respectively, Fext

u0 and Fext
uL represent the external concentrated shear loads at X = 0

and at X = L , respectively, and Mext
0 and Mext

L represent the external concentrated
couples at X = 0 and at X = L , respectively (see Figure 1); also, KDIF is a diffusion
coefficient, KF is the fluid elasticity, KFN is the axial-fluid stiffness interaction,
KFT is the shear-fluid stiffness interaction and KFM is the bending-fluid stiffness
interaction. The terms Kω0, Kcω and Kω represent the damage threshold, the
concentration-damage coupling and the resistance to damage, respectively. It is
worth noticing that the damage is defined by a real variable ω that is nondecreasing
in time; so we assume the inequality

∂ω

∂t
≥ 0 ∀X ∈ [0, L]. (3)

The above condition implies the necessity of a generalization of standard variational
principle into a so-called hemivariational principle. For simplicity let us define

3 = (w, u, ϑ, c, ω), 3̇ = (ẇ, u̇, ϑ̇, ċ, ω̇),

δ3 = (δw, δu, δϑ, δc, δω), 13 = (1w, 1u, 1ϑ,1c, 1ω),
(4)
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where 3 represents the set of the kinematical descriptors and 3̇, δ3 and 13

represent, respectively, the derivative with respect the time, the first variation and
the increment of the 3 elements. It follows, trivially,

3 + δ3 = (w + δw, u + δu, ϑ + δϑ, c + δc, ω + δω), (5)

3 + 13 = (w + 1w, u + 1u, ϑ + 1ϑ, c + 1c, ω + 1ω). (6)

The subscript ω indicates the set

3ω = 3 − {ω} = {w, u, ϑ, c} (7)

2.3. Hemivariational inequality principle. As in [54], a monotonically increasing
time sequence Ti ∈ {Ti }

n
i=0 with Ti ∈ R+

0 and n ∈ N is introduced, including an initial
and trivial datum (at t0 = T0) for each of the fundamental kinematical quantities. Let
us consider the set of kinematically admissible placements and the kinematically
admissible variations of the placements. Also note that the admissible variation of
the irreversible kinematic quantity ω must be positive, and hence

δω ∈ R+

0 . (8)

Now, the first variation of the energy functional is calculated as follows:

δE(3, δ3) = E(3 + δ3) − E(3), (9)

where the terms of order 2 or higher can be neglected. Let us consider that, at the i-th
instant Ti , the increment of the fundamental kinematic quantities is calculated by the
difference between these quantities as evaluated at the times Ti and Ti−1, namely,

13 = (3)Ti − (3)Ti−1, (10)

and the increment of the energy functional has the consequent definition

1E(3, 13) = E(3 + 13) − E(3). (11)

As in (9) the terms of order 2 or higher can be neglected. The Rayleigh functional
is a quadratic form of the velocity-fields,

R(3̇ω) =

∫ L

0

[ 1
2 cwẇ2

+
1
2 cu u̇2

+
1
2 cϑ ϑ̇2

+
1
2 ccċ2] d X (12)

and its variation and increment, respectively, are defined as follows:

δR(3̇ω, δ3ω) =

∫ L

0
[cwẇδw + cu u̇δu + cϑ ϑ̇δϑ + ccċδc] d X, (13)

1R(3̇ω, 13ω) =

∫ L

0
[cwẇ1w + cu u̇1u + cϑ ϑ̇1ϑ + ccċ1c] d X. (14)
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In order to get governing equations for this newly introduced model, we assume
that the motion w(X, t), u(X, t), ϑ(X, t), c(X, t) and ω(X, t) satisfies the hemi-
variational principle

1E(3, 13)+ 1R(3̇ω, 13ω) ≤ δE(3, δ3)+ δR(3̇ω, δ3ω) (15)

for any admissible variation δ3, δ3ω of the fundamental kinematic quantities. The
variational principle implies Euler–Lagrange equations of different types:

(i) a system of partial differential equations for a nonhomogeneous Timoshenko
beam with the reduced stiffnesses due to damage and with a modified stress free
reference configuration due to the fluid concentration (KFN c modifies the axial
force, KFT c modifies the shear force and KFM c modifies the bending moment):

N ′
+ bext

N = cwẇ, (16)
V ′

+ bext
T = cu u̇, (17)

V + M ′

b + mext
= cϑ ϑ̇, (18)

with the definitions

N = KN (1 − ω)w′
+ KFN c, (19)

V = KT (1 − ω)(u′
− ϑ) + KFT c, (20)

Mb = KM(1 − ω)ϑ ′
+ KFM c, (21)

and where N , V, and Mb represent the normal force, the shear force and the
bending moment, respectively;

(ii) a differential equation for the diffusion of the fluid that is characterized not only
by the external distributed aging fluid influx pressure bext

c but also by deformations
(by the axial deformation KFN w′, by the shear deformation KFT (u′

− ϑ) and by
the bending deformation KFMϑ ′), by the concentration itself KF c and by damage
Kcωω:

[KDIFc′
]
′
+ bext

c = ccċ + KFN w′
+ KFT (u′

− ϑ) + KFMϑ ′
+ KF c + Kcωω; (22)

(iii) a proper set of boundary conditions that yield

[N − Fext
wL ]δw = 0, X = L , (23)

[N + Fext
w0 ]δw = 0, X = 0, (24)

[V − Fext
uL ]δu = 0, X = L , (25)

[V + Fext
u0 ]δu = 0, X = 0, (26)

[Mb − Mext
L ]δϑ = 0, X = L , (27)

[Mb + Mext
0 ]δϑ = 0, X = 0, (28)

[KDIFc′
− Fext

cL ]δc = 0, X = L , (29)
[KDIFc′

+ Fext
c0 ]δc = 0, X = 0; (30)
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(iv) and a Karush–Kuhn–Tucker (KKT) condition

[ω − ωT ]1ω = 0, ∀X ∈ [0, L], (31)

where

ωT (X, t) =

[
1
2

KN

Kω

(w′)2
+

1
2

KT

Kω

(u′
− ϑ)2

+
1
2

KM

Kω

(ϑ ′)2
]
−

[
Kω0

Kω

+
c·Kcω

Kω

]
. (32)

From this KKT condition and from the initial undamaged condition ω(X, 0)= 0, the
damage variable ω starts to increase when the normalized undamaged strain energy

1
2

KN

Kω

(w′)2
+

1
2

KT

Kω

(u′
− ϑ)2

+
1
2

KM

Kω

(ϑ ′)2 (33)

reaches the normalized undamaged energy threshold

Kω0

Kω

+
c·Kcω

Kω

. (34)

For the fluid to have an aging effect, we require the restriction on the coupling term

Kcω < 0. (35)

Note that from (32) this restriction will result in the reduction of the energy threshold.
Further thermodynamic restrictions are due to the needed positive definiteness of
the strain energy. It is worth noting that, among such conditions, we also have

K 2
cω < KωK F . (36)

3. Beam representation of dam

The dam is usually conceived to have a trapezoidal shape, in a 2-D model, and
clamped at the bottom. It is, therefore, modeled here by means of a cantilever
beam as shown in Figure 2 in which the external and triangular distributed loads
are considered due to both the water pressure and the self-weight. According to the
model presented in [17] and the geometry that is shown in Figure 2, the water is on
the left-hand side and the air is on the right-hand side. As shown in Figure 2, the
red line (the geometric locus of the middle points of the sections) represents the
1-D beam by means of which the dam is modeled. In Figure 2, β and β ′ are the
angles between the vertical line and, respectively, the 1-D beam and the left-hand
side oblique surface of the dam. Thus, passing to the 1-D model, the weight of the
dam must be considered on the mean line (the red line) as a triangular distributed
external load (with both normal and orthogonal components) while the pressure of
the water, because it is applied to the oblique surface of the dam, must be considered
not only as a triangular distributed external load (with both normal and orthogonal
components) but also as a triangular distributed external couple.
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pw

β ′

Sb

W

β

Ld = LW

St

Figure 2. Dam profile.

Because the concentration of the fluid is affected by its pressure, it is reasonable
to think that the distribution of the external distributed aging fluid influx is higher
at the bottom of the dam. In the considered model the water height Lw is equal
to that of the dam Ld . Hence, in the 1-D model a triangular distribution of bext

c is
considered which has the higher value at the clamped end (for X = 0) and zero
value at the top (for X = L/cos β) as it will be shown in (40). The water pressure is
due to Stevino’s law; it is directed orthogonal to the left-hand side of the trapezoidal
shape and the maximum value is pw. The self-weight is directed vertically and the
maximum value is W : in formulas,

pw = γwgLw and W = γcgLd , (37)

where γw and γc represent the mass density of the water and of the concrete,
respectively. Notice that the weight of the dam is a distributed load on the domain
while the pressure of the water is on the upstream facet (on the left-hand side of the
trapezoidal shape) of the dam.

3.1. Stiffnesses identification. The stiffness of a given material is defined both
by the Lamé coefficients λ and µ or by Young’s modulus E and Poisson’s ratio ν.
First of all, we recall their relations,

λ =
E · ν

(1 + ν)(1 − 2ν)
, µ =

E
2(1 + ν)

. (38)

Thus, it is possible, as in [57], to identify the axial, shear and bending stiffnesses
KN , KT and KM as follows:

KN (X) =
4µ(λ + µ)

λ + 2µ
s(X) · th,

KT (X) =
2
3µ · s(X) · th,

KM(X) =
4µ(λ + µ)

λ + 2µ

[s(X)]3

12
· th,

(39)
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where th is the depth, i.e., the out-of-plane dimension of Figure 2 of the dam and
where a rectangular cross-section is considered.

3.2. The distributed external loads. By assuming that bext
c is proportional to the

pressure of the water and, therefore, it has a triangular distribution

bext
c (X) = bext

c,max

(
1 −

X
Lw

)
· H(Lw − X · cos β̃), (40)

and following the considerations about the weight of the dam and the pressure of
the water at the beginning of the Section 3, the distributed external loads must be
decomposed along the parallel and transverse directions of the beam as in [17]:

bext
N (X) = −thγw sin(β̃ ′−β̃)(Lw−X ·cos β̃)·H(Lw−X ·cos β̃)−γcths(X) cos β̃, (41)

bext
T (X) = −thγw sin(β̃ ′+β̃)(Lw−X ·cos β̃)·H(Lw−X ·cos β̃)−γcths(X) sin β̃, (42)

and the external distributed couple is

mext(X) =
1
2 ths(X)γw(Lw − X · cos β̃) · H(Lw − X · cos β̃), (43)

where (i) X is the abscissa of the beam, (ii) Lw is the height of the water, (iii)
st and sb, represented in Figure 2, are the thickness at the top and at the bottom
section of the dam, respectively, (iv) γc and γw are the density of the materials
(as shown in the (37)), and (v) the subscripts c and w refer to concrete and water,
respectively. Finally, the function H(ζ ) is the Heaviside function to set to zero the
contribution of water pressure above its maximum elevation, that is,

H(ζ ) =

{
1, ζ ≥ 0,

0, ζ < 0.
(44)

4. Numerical investigation

The developed model is applied to perform parametric analyses by varying the
values of KDIF and Kcω and for different spatial distributions of bext

c .

4.1. Uncoupled concentration c and the kinematic descriptors w, u, ϑ case. We
note that concrete dam deformations (w′, u′

− ϑ and ϑ ′), from (19), (20) and (21),
are not expected to be affected by the density of the aging fluid. In the presented
analyses, all the coupling terms KFN , KFT , KFM are considered negligible:

K FN = 0 J
kg

, KFT = 0 J
kg

, KFM = 0 m3

s2
. (45)

In this case, the dam does not have a sponge-like behavior, which could be of
interest for many other porous materials. The considered structural model and
loading is shown in Figure 3 and the adopted parameters are reported in Table 1,
where Ld is the height of the dam and L is the length of the equivalent beam. The
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Ld = Lw = 10 m bext
c,max = 5 · 105 J

kg

st = 1 m KDIF = 105 m5

kg·s2

sb = 3 m K F = 107 m3

kg·s2

β̃ = arctan sb−st
2L = 0.1 rad cc = 1016 m3

kg

β̃ ′ = arctan sb−st
L = 0.2 rad Kcω = −9 · 105 J

kg

L =
Ld

cos β̃
= 10.05 m Kω0 = 800 N

E = 4 · 104 MPa Kω = 105N

th = 1 m γw = 10 kN
m3

ν = 0.2 γc = 24 kN
m3

λ = 1.1 · 1010 MPa t f = 3 · 109 s ≈ 95 years

µ = 1.67 · 1010 MPa

Table 1. Parameters for numerical investigation

values of the parameters are chosen according to [17]. However, two parametric
analyses have been performed for the values of the new parameters KDIF and Kcω.
The results are shown in Sections 4.3 and 4.4. All the analyses have been carried out
using the FEM software Comsol considering the (i) kinematic boundary conditions

w(0, t) = 0, u(0, t) = 0, ϑ(0, t) = 0 (46)

bN
bmax

N

bTbmax
T

bc
bmax

c

m

L

Figure 3. Cantilever beam model.
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Figure 4. Top left: axial displacement w(X, t). Top right: strain
w′(X, t). Bottom left: transversal displacement u(X, t). Bottom
right: shear deformation u′

− ϑ . The evolution in time of the
kinematic quantities by a color gradient is represented. The aging
evolution is represented from the lightest color to the most defined
one.

and (ii) initial values

w(X, 0) = 0, u(X, 0) = 0, ϑ(X, 0) = 0. (47)

The value of the damage threshold ωT , for each time step, is prescribed in (32).
The value of damage ω at a given time is taken to be the maximum between ωT

and the value of ω at the previous time step to update step-by-step according the
KKT condition (32). It is noted that the KKT condition imposes the constraint
that the damage always increases in time, so that the monolateral condition for the
damage ω is met.

Figures 4 and 5 give the results of this analysis. It is worth noting that the
kinematical descriptors w, u and ϑ evolve in time not because of the increase in
the external loads, but because of the increase of damage ω, which results in the
reduced values of the stiffnesses KN , KT and KM in (19), (20) and (21). The
negative values of w for X > 0 shown in Figure 4, top left, are reasonable because
of the considered external gravity load. This results in the loss of strength of the
dam.

Thus, the axial deformation w′ is, as shown in Figure 4, top right, negative
near the base (at X = 0) and null at the free side at X = L . The modulus of both
the axial displacement and deformation are increasing functions of time. Similar
observations are made for the transverse displacement from Figure 4, bottom left,
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Figure 5. Top left: rotation of the sections ϑ(X, t). Top right:
curvature ϑ ′. Bottom left: concentration c(X, t). Bottom right:
damage ω(X, t). The evolution in time of the kinematic quantities
by a color gradient is represented. The aging evolution is repre-
sented from the lightest color to the most defined one.

and the shear deformation in Figure 4, bottom right, and for the rotation in Figure 5,
top left, and the curvature in Figure 5, top right.

The concentration of the aging fluid and the damage are shown in Figure 5,
bottom left and bottom right, respectively. It can be seen that the aging fluid
concentration and the damage, because they are coupled by the term Kcω, are both
higher at the bottom of the beam at X = 0. So, if one increases, the other one
increases as well. Finally, it is worth noting that, once damage reaches the unity
value (at X = 0), the collapse of the dam is expected.

4.2. Parametric analysis: distribution of bext
c . We evaluate the behavior of the

beam subjected to different bext
c distributions. The real distribution of bext

c is not
known without measurements. Thus, we consider different distributions for demon-
strating the potential effects. In order to compare the results with the triangular case,
the integral of bext

c on the domain remains the same as that of the previous triangular
case. Here, as an example, the externally distributed aging fluid influx pressure
has been considered having a half gaussian curve distribution (see Figure 6). The
half gaussian curve has the peak at X = 0. The parameters of the half gaussian
distribution is such that

∫ L

0
bext

c,triangular d X =

∫ L

0
bext

c,gaussian d X. (48)
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Figure 6. Three different gaussian distributions with different σ

and the triangular one of bext
c .

The three different gaussian distributions (with three different maximum values at
X = 0) and the triangular distribution are compared in Figure 6.

It is worthwhile to notice that, for the gaussian distribution, the maximum value
of the externally distributed aging fluid influx pressure is L · bext

c,max, where L is the
length of the beam:∫ L

0
bext

c,max · triang(X) d X =

∫ L

0
L · bext

c,max · gauss(X) d X = bext
c,max ·

L
2
, (49)

where (i) triang(X)=1−
X
L represents the triangular distribution and (ii) gauss(X)=

(1/(σ
√

2π)) e−(1/2)(X/σ)2
the gaussian one. Because the considered distribution is

a half gaussian curve, we have∫ L

0
gauss(X) d X ≈

1
2 . (50)
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Figure 7. Left: concentration c(X, t). Right: damage ω(X, t) for
σ =

1
2 . The evolution in time of the kinematic quantities by a color

gradient is represented. The aging evolution is represented from
the lightest color to the most defined one.
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Figure 8. Top left: concentration c(X, t). Top right: damage
ω(X, t) for σ = 1. Bottom left: concentration c(X, t). Bottom
right: damage ω(X, t) for σ = 2. The evolution in time of the
kinematic quantities by a color gradient is represented. The aging
evolution is represented from the lightest color to the most defined
one.

The results for different values of standard deviation σ ∈
{1

2 , 1, 2
}

are shown in
Figures 7 and 8 for the same values of other parameters given in Section 4.1. In
Figure 7 the case with σ =

1
2 is shown. In Figure 8, top, the case with σ = 1 is

shown. In Figure 8, bottom, the case with σ = 2 are shown. As expected, when
σ increases, we show a trend to the triangular case. These results prove that the
higher the concentration of the aging fluid in one part of the beam, the lower the
life time of the dam.

4.3. Parametric analysis: KDIF. In this section concentration c and damage ω are
evaluated for different values of KDIF such that its role can be better clarified. Four
different values of KDIF are considered in Figures 9 and 10 by increasing one order
of magnitude compared to the previous one, as follows:

KDIF ∈

{
103 m5

kg·s2
, 105 m5

kg·s2
, 107 m5

kg·s2
, 109 m5

kg·s2

}
.

All the other parameters are equal to that given in Section 4.1.
The results in Figures 9 and 10 confirm the interpretation of KDIF as a diffusivity

coefficient. Indeed, when KDIF is higher the aging fluid spreads easier into the whole
body redistributing, at the same time, the damage. In particular, from Figure 10,
bottom, the highest value of KDIF induced the fluid to spread freely and rapidly
within the body. The concentration (and the damage) distribution tend therefore
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Figure 9. Top left: concentration c(X, t). Top right: damage
ω(X, t) for KDIF = 103 m5

kg·s2 . Bottom left: concentration c(X, t).
Bottom right: damage ω(X, t) for KDIF = 105 m5

kg·s2 . The evolution
in time of the kinematic quantities by a color gradient is represented.
The aging evolution is represented from the lightest color to the
most defined one.
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Figure 10. Top left: concentration c(X, t). Top right: damage
ω(X, t) for KDIF = 107 m5

kg·s2 . Bottom left: concentration c(X, t).
Bottom right: damage ω(X, t) for KDIF = 109 m5

kg·s2 . The evolution
in time of the kinematic quantities by a color gradient is represented.
The aging evolution is represented from the lightest color to the
most defined one.
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Figure 11. Concentration c(X, t) (left) and damage ω(X, t) (right)
for Kcω = −9.5 · 105 J

kg . The evolution in time of the kinematic
quantities by a color gradient is represented. The aging evolution
is represented from the lightest color to the most defined one.

to have a rectangular shape. This means that the damage is no longer localized
in a small area of the bottom of the beam and the life of the dam increases for a
given bext

c distribution. This means that the failure is reached later and the life of
the dam increases when the diffusivity is larger. The reason for different values of
KDIF may be due, for example, to the quality of the concrete. The sulfate attacks
could cause an increase in porosity by allowing fluid to flow more easily within the
beam. However, although the poor quality of the concrete implies higher KDIF, the
concentration will be more uniformly distributed and therefore the age at which
damage reaches 1 is delayed.

4.4. Parametric analysis: Kcω. We have already pointed out in (34) that the
normalized undamaged energy threshold is decreased by a negative value of the
concentration-damage coupling term. Thus, a parametric analysis for different
values of Kcω is worth doing and presented in Figure 11. The considered values of
Kcω are

Kcω ∈

{
−9.5 J

kg
, −9 J

kg
, −8.5 J

kg
, −8 J

kg

}
· 105.

As the value of Kcω varies, the behavior of the structure remains the same but
the time for reaching the damage (ω = 1) increases. In particular, we observe that
the higher the modulus of such a coupling term, the higher the transmission of the
influence of the concentration of the aging fluid on damage and the lower the life
of the dam.

4.5. Dam’s life. As a result of the parametric analyses in Sections 4.3 and 4.4
it is possible to analyze how the life of the dam is affected by the diffusivity
characteristics and the diffusion-deformation-damage coupling. The dam’s life for
the triangular distribution of the external distributed aging fluid influx pressure bext

c
and several values of KDIF and Kcω are shown in Figure 12.
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Figure 12. Left: parametric analysis for KDIF. Right: parametric
analysis for Kcω.

The results shown in Figure 12 show that if the values of KDIF and Kcω are
higher, the dam’s life increases. Figure 12, right, shows that the damage is sensitive
to changes in the value of the coupling term Kcω.

5. Conclusions

In the above proposed formulation the evolution of the diffusion of the aging fluid,
of damage and the mechanical behavior are described by the energy functional
in (2) and by the hemivariational principle. Specifically, using the considered
hemivariational principle, it was possible to include damage as a monotonically
increasing function, that goes from 0 (nondamaged case) to 1 (complete failure),
which causes the stiffnesses to fall as shown in the Section 4. By means of the
term Kcω, which appear in the last row of the (2), the damage and the diffusion of
the fluid are coupled; in this way the spreading of the fluid into the beam causes
increasing of the damage and it contributes to the progress to failure. In Section 4.3
the role of the diffusivity term KDIF is shown. The diffusivity represents a parameter
of the material that influences the spread, and the spread rate, of the fluid within the
beam. The fluid distributes along the beam and it is not localized in a small area
inducing the decrease of the rate of damage and delaying the failure of the structure.
Clearly, as shown in Section 4.4, the damage is affected not only by the changes of
KDIF but also by small changes of the coupling term Kcω. Increasing Kcω (decrease
in the value of its modulus) means the failure of the structure is delayed. The work
presented here is a preliminary step which in the future will be used to develop
the hemivariational method for the study of a 2-D case [51]. It will also take into
account the granular micromechanics approach [3; 53; 63] so as to properly analyze
the material of which the dam is composed, e.g., the concrete. Another future work
will be to carry out experimental tests in order to obtain more reasonable values of
the parameters KDIF, Kcω and KF and, then, establish a more realistic distribution
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of bext
c . It is worth noticing that the study of the diffusion of an aging agent within a

human-made construct is not limited to the case of dams. The formulation can have
several different fields of application, for example, all those problems that involve
diffusion in porous material [35]. It could help, for example, in the monitoring and
safeguarding of the objects of artistic-cultural heritage and having, for the future
structures, more careful design that tends to protect the artifacts from the diffusion
of slag [38; 62] or pollutants that are abundant nowadays in our cities.
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