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Abstract: Studies of brain network connectivity improved understanding on brain changes and
adaptation in response to different pathologies. Synaptic plasticity, the ability of neurons to modify
their connections, is involved in brain network remodeling following different types of brain damage
(e.g., vascular, neurodegenerative, inflammatory). Although synaptic plasticity mechanisms have
been extensively elucidated, how neural plasticity can shape network organization is far from
being completely understood. Similarities existing between synaptic plasticity and principles
governing brain network organization could be helpful to define brain network properties and
reorganization profiles after damage. In this review, we discuss how different forms of synaptic
plasticity, including homeostatic and anti-homeostatic mechanisms, could be directly involved in
generating specific brain network characteristics. We propose that long-term potentiation could
represent the neurophysiological basis for the formation of highly connected nodes (hubs). Conversely,
homeostatic plasticity may contribute to stabilize network activity preventing poor and excessive
connectivity in the peripheral nodes. In addition, synaptic plasticity dysfunction may drive brain
network disruption in neuropsychiatric conditions such as Alzheimer’s disease and schizophrenia.
Optimal network architecture, characterized by efficient information processing and resilience, and
reorganization after damage strictly depend on the balance between these forms of plasticity.

Keywords: brain networks; connectivity; synaptic plasticity; Alzheimer’s disease (AD); schizophrenia;
long-term potentiation (LTP); synaptic scaling; resting state functional MRI (rs-fMRI)

1. Introduction

The functional properties of the brain are largely determined by the characteristics of its neurons
and the pattern of synaptic connections between them. In the last century, how information is coded
within a neuron and flows between neurons through synapses has been deeply investigated. However,
little is known about how neural plasticity shapes network organization.

Comprehension of brain networks organization has been fueled by the application of procedures
able to investigate brain connectivity in vivo [1,2] based on new theoretical/mathematical approaches
(i.e., graph theory) to extract several measures that describe network architecture and functioning [3,4].
This approach led to the identification of specific features of brain networks, such as modularity and
the presence of network hubs, that provide efficient information processing and elevated resistance to
damage [5]. Furthermore, studies in patients with neurological diseases offered the chance to explore
brain network reorganization following different types of damage [6–8].
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Synaptic plasticity refers to the ability of neurons to modify the strength of their connections and is
an important neurophysiological process involved in brain networks development and reorganization
after damage [9]. Plasticity and network organization are highly intermingled, although they
are generally studied as independent phenomena. Different forms of synaptic plasticity, namely,
anti-homeostatic (i.e., Hebbian) and homeostatic plasticity (i.e., synaptic scaling), have been described.
A fine balance between these two forms of synaptic plasticity could be crucial to maintain an optimal
brain network architecture [9].

In the present review article, we will try to link together evidence from different research
fields on the relationship between synaptic plasticity and principles of brain network organization.
We will suggest that some key features of brain networks architecture may result from the fine tuning
between different forms of synaptic plasticity. This perspective may be helpful to understand how
networks adapt in response to brain damage and to explain mechanisms of network disruption in
neuropsychiatric conditions such as Alzheimer’s disease and schizophrenia.

2. Brain Network Organization

Classical studies explored neuronal connections using reconstructions of electron micrographs of
serial sections to map neuronal local connectivity and have been used to reconstruct the structure and
connectivity of simple nervous systems, such as that of Caenorhabditis elegans and Drosophila [4,10,11].
The application of new neurophysiological and imaging tools offered the opportunity to study the
activity of different brain areas simultaneously, with different degrees of spatial and temporal resolution.
Electroencephalography (EEG) and magnetoencephalography (MEG) can be used to analyze functional
connectivity (FC) through the analysis of temporal correlations between spontaneous activity of
different regions and are characterized by elevated temporal resolution. Functional MRI (fMRI) has a
higher spatial resolution and represents the most used approach to explore brain network organization
in vivo [12,13]. Resting state-fMRI (rs-fMRI) offers the chance to explore overall brain connectivity in
healthy individuals and in different pathological conditions [14,15]. In fMRI studies, FC is calculated by
the analysis of temporal correlations between spontaneous activity of blood-oxygen-level-dependent
(BOLD) signals coming from different brain regions [2,16]. Conversely, structural connectivity (SC) can
be calculated using fiber tractography from diffusion tensor imaging (DTI) or studying the correlations
in cortical thickness between areas. Anatomically connected regions show stronger FC [17,18]; however,
functional interactions may also occur in brain areas not directly connected [17–19], and therefore, the
relationship between SC and FC requires further investigation.

Network-based studies use SC and FC data to create a comprehensive map of brain
connections [20–22]. The graph theory represents the most useful approach to model brain
networks [4,23]. According to the graph theory, a complex network can be represented as a set
of nodes and edges, respectively indicating the basic elements of the network and the relationships
between them. This approach can be used to describe complex networks with different spatial
resolution, from microscale to large-scale networks [1,5]. In large-scale networks, nodes can represent
EEG channels or regions of interest identified on MRI. The definition of edges originates from the
analysis of SC and FC between nodes. The structure of a graph can be further analyzed to extract
a set of quantitative measures describing specific properties of the network, including global and
local efficiency, modularity, and degree distribution [5]. An important parameter is the wiring cost,
expressing the energetic expenditure due to fiber tracts length and number of synaptic connections [4].

Brain networks typically show a small-world topology characterized by the prevalence of high
locally connected nodes with a relatively small number of long-distance connections, optimizing
efficient network communication and limiting wiring costs increase [24]. A simple measure able to
provide essential information about brain network organization is node degree, that is the number
of connections to a single node. The degree distribution of a graph P(k) can be defined as the
fraction of nodes having degree k. Brain networks show scale-free degree distribution, with a large
prevalence of nodes with low degree and a small number of highly connected nodes, termed hubs,
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that support efficient global information processing [25]. Furthermore, brain networks are organized
into modules composed of locally connected nodes, with long-distance connections between modules
mainly confined to hub regions [26]. Such organization supports both functional segregation of
information, which is provided by local communities of neurons highly interconnected, and integration,
which measures the efficiency of global information transfer and the ability of networks to integrate
distributed information [27].

Hubs are critical to provide efficient integration. Moreover, hubs show high inter-connectivity
generating a subnetwork of densely interconnected hub regions, the rich club, which critically
contribute to network efficiency and resilience to damage [4,26]. According to the preferential
attachment theory, during the development of brain networks, the formation of hubs mostly follows a
“rich get richer” principle, that is, the more connected nodes have greater chances to further increase
their connectivity [28].

Considering the energetic expense of hyperconnectivity, this network architecture represents an
efficient tradeoff between cost and efficiency, concentrating most connections to selected strategic
nodes [24]. Accordingly, in invertebrates and mammalians, the brain shows the same organizational
principles. Similar characteristics have been identified in several real-world complex networks, and
this architecture provides high resilience to random damage due to the numerical prevalence of
low-connected nodes [5,29]. Conversely, targeted attack to hubs may dramatically impact overall
network efficiency [30], as evidenced in specific neuropsychiatric conditions such as Alzheimer’s
disease (AD) [31] or schizophrenia [32,33].

3. Synaptic Plasticity

Neurons can modify the efficacy of synaptic connections through different forms of synaptic
plasticity, including anti-homeostatic and homeostatic mechanisms [9,34].

Long term potentiation (LTP) is one of the most studied forms of synaptic plasticity and has
been associated to learning and memory processes [35,36], as well as to clinical recovery after brain
damage [37]. LTP has been extensively investigated in hippocampal neurons [34,35] and consists of
persisting enhancement of synaptic excitability, accompanied by structural rearrangement occurring at
both the presynaptic and post-synaptic terminal [38,39]. LTP induction is associated to remodeling of
dendritic spines, including increased spine volume, stability and clustering [40–42]. LTP depends on
the activation of n-methyl-d-aspartate receptors (NMDARs) [43,44], and some key properties of this
form of synaptic plasticity directly arise from the functional characteristics of this receptor [38,45]. LTP
is cooperative, as the concomitant activation of multiple synapses favors the induction of this form of
synaptic plasticity. Moreover, LTP is associative, meaning that a weak stimulus can be reinforced if
associated with a strong one. Finally, LTP is input-specific, as only activated synapses in a neuron
undergo potentiation. One important characteristic is that LTP is associated to increased neuronal
excitability, which in turn facilitates further induction of LTP in a positive feedback loop, making LTP
an anti-homeostatic phenomenon [9]. It is important to mention that activation of NMDARs could
also induce a different form of anti-homeostatic plasticity, represented by long-term depression (LTD),
which is associated to a lasting reduction in synaptic excitability [9,46]. Moreover, LTD induction is
associated to changes in dendritic spine morphology, including marked spine shrinkage leading to
the elimination of dendritic spines [47,48]. Notably, LTD-induced spine retraction could be reversed
by subsequent LTP [48]. Although through opposite effects, LTP and LTD mutually interact to refine
neural connections during the development and to regulate cognitive processes.

Anti-homeostatic plasticity alone can lead to uncontrolled increases or decreases of neuronal
excitability (Figure 1A). The total amount of excitatory drive toward a neuron must be tightly
regulated, which is difficult to obtain if synapses are independently modified; therefore,
other mechanisms are required to stabilize neuronal activity. Persistent increase or decrease
of neuronal excitability is associated to compensatory synaptic scaling (Figure 1B). Synaptic
scaling of excitatory synapses is not regulated by NMDARs and mainly relies on the activity
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of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). Changes in the
expression and clustering of AMPARs induce an increase (upscaling) or decrease (downscaling)
of neuronal excitability in response to opposite changes in the strength of their synaptic excitatory
inputs [49,50]. Trafficking of surface AMPARs is regulated by the expression of Arc/Arg gene [51,52].
Unlike LTP, synaptic scaling is a homeostatic negative feedback mechanism and represents a form of
hetero-synaptic plasticity, as it lacks input-specificity and involves all synapses of a given neuron.
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Figure 1. Different forms of synaptic plasticity cooperate to regulate neuronal activity. (A) LTP is input
specific as it involves only active synapses. This form of NMDA-mediated plasticity implies calcium
entrance in the post-synaptic terminal, which in turn induces amplified expression of AMPA receptors
and increase of synaptic excitability, favoring further LTP expression. LTP is an anti-homeostatic form
of plasticity and could promote uncontrolled enhancement of synaptic activity, leading to neuronal
hyperexcitability and network instability during brain networks development. (B) Synaptic scaling is a
homeostatic form of plasticity independent of NMDA receptors activation, involves all synapses and is
mediated by increased (upscaling) or decreased (downscaling) expression of AMPA receptors. A balance
between anti-homeostatic and homeostatic plasticity could promote optimal network organization
associated to efficient information processing, with coexistence of potentiated and silent synapses (grey
spines), allowing specific and segregated information processing, preventing excessive increase of
overall excitability. (C) Brain damage induces acute disconnection depriving neurons of their synaptic
inputs. Synaptic scaling and LTP may cooperate to restore neuronal excitability, promoting initial
hyperexcitability (induced by compensatory upscaling) and favoring chronic reorganization properly
balancing homeostatic and anti-homeostatic plasticity. Abbreviations: long-term potentiation (LTP);
N-methyl-d-aspartate (NMDA); α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA).
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Homeostatic and anti-homeostatic plasticity may cooperate to maintain proper neuronal activity,
preventing hyper- or hypoexcitability and concur to reestablish neuronal activity after brain damage
(Figure 1C). LTP induction can be influenced by overall neuronal excitability so that synaptic upscaling
or changes in inhibitory balance may increase synaptic activity favoring LTP expression [53,54].
Accordingly, after brain damage, reduced GABAergic transmission in surrounding neurons could
promote functional reorganization [55,56]. Furthermore, downscaling of excitatory synapses is
important to prevent chronic hyperexcitability and to promote, in concert with LTP, selective increases
of synaptic activity.

4. Synaptic Plasticity and Brain Network Organization

Addressing the relationship between synaptic plasticity and brain network organization is
particularly difficult due to multiple reciprocal influences between brain network structure and
function. Indeed, network architecture strongly influences neuronal activity [57–64], and patterns of
neuronal activity may differently shape synaptic connections.

A fundamental characteristic of neuronal networks is the ability to produce rhythmic oscillations
in different frequency ranges, providing integration of brain functioning in physiological conditions
such as those occurring during sleep and awake [65,66]. In particular, temporal and spatial variations
of frequency are useful to obtain coordinated information processing during sensory, motor and
cognitive activities which are subserved by synchronous oscillations of neuronal networks [67–69].
The excitability state of neurons changes during oscillations so that firing probability is higher during
the depolarizing phase, whereas during the hyperpolarizing phase, neurons show less propensity
to fire in response to excitatory inputs [70,71]. Synchronous bursting of neuronal population may
induce long-lasting changes in connectivity. In particular, high-frequency bursting induces LTP,
whereas low-frequency activity is associated to LTD [35,72–74]. Furthermore, the temporal correlation
between converging inputs to neurons can bidirectionally modulate synaptic strength according to
the so-called spike timing-dependent plasticity (STDP). In particular, the firing of the presynaptic
neuron can respectively induce LTP or LTD if occurring shortly before or after the firing of the
postsynaptic neuron [75,76]. STDP provides an additional rule for Hebbian plasticity based on the
temporal association of converging activity, bridging brain network organization and neuronal activity.
This mechanism is required to form neuronal communities showing high connectivity and strongly
coordinated activity during specific processing [77]. Oscillatory activity and STDP interact to shape
effective coupling between anatomically connected areas. Intriguingly, the degree of synchrony of
neuronal discharges and neuronal firing rate could be independently adjusted [78]. Accordingly,
neurons cycling in phase with each other tend to show synchronized activity favoring synaptic LTP [79].

Previous synaptic history and state of neuronal excitability further complicate the relationship
between neuronal activity and connectivity. It has been demonstrated that repeated synaptic activation
may influence subsequent induction of Hebbian plasticity. In particular, considering that low and
prolonged calcium entry is associated to LTD whereas high calcium influx likely mediates LTP [80], it has
been proposed that changes in calcium levels into dendritic spines can modify plasticity induction [81].

Similarities existing between synaptic plasticity mechanisms and specific features of brain network
organization suggest that different forms of plasticity could be directly involved in generating
specific brain networks characteristics. LTP is anti-homeostatic, input-specific, activity-dependent and
associative. Due to its properties, LTP could be directly implicated in generating highly connected
nodes, allowing the establishment of strong and specific connections by independently acting at each
synapse [82]. In particular, the preferential attachment theory of hub formation suggests the existence
of an associative, positive feedback mechanisms which strongly follow the Hebbian plasticity rules.

Experimental studies in rats have elegantly shown that LTP induction in the perforant pathway
induced remodeling of hippocampal long-range connections [83,84]. In particular, increased
interhemispheric communication and increased connectivity has been found between the hippocampus,
the prefrontal cortex and the nucleus accumbens [83,84]. These data suggest that network effects



Int. J. Mol. Sci. 2019, 20, 6193 6 of 17

of LTP induction at hubs’ level is associated to long-lasting widespread network remodeling of
brain connectivity.

It has been consistently shown that the isolated effect of anti-homeostatic positive feedback
plasticity leads to perturbation in the stability of neuronal networks, that must be counterbalanced
by negative feedback homeostatic plasticity to maintain network activity in an optimal range [9,85].
While LTP is anti-homeostatic and represents a possible substrate for hubs generation, we propose that
homeostatic plasticity, in particular synaptic scaling, may intervene to maintain low connectivity (but
still some connectivity) in the peripheral nodes of the network.

The study of brain network reorganization in response to brain damage could help to shed light on
the relationship between synaptic plasticity and brain network remodeling. Particular neuropsychiatric
conditions, such as schizophrenia and AD, in which altered plasticity is one main neurophysiological
feature [86,87], may represent useful models to investigate how synaptic plasticity alterations impact
brain network architecture. Notably, the central role of plasticity alteration has also been proposed
in other neurological conditions such as temporal lobe epilepsy. In epileptic models, the recurrence
of seizures has been associated with imbalanced excitatory and inhibitory synaptic transmission
leading to hypersynchronized neuronal activity [88,89], and epileptogenesis has been linked to altered
expression of hippocampal LTP and LTD at glutamatergic and GABAergic synapses, respectively [90].

4.1. Synaptic Plasticity Promotes Brain Network Reorganization after Damage

Both brain network architecture and synaptic plasticity play an important role in clinical
compensation of brain damage. As previously discussed, specific characteristics of brain networks
organization provide high resistance to random damage [5]. Notably, anti-homeostatic and homeostatic
plasticity could be both involved in promoting an efficient network reorganization after brain
damage [91,92].

Experimental studies pointed out that the efficiency of synaptic plasticity, and particularly of LTP,
critically influences clinical recovery (Figure 2). In animal models of brain damage (i.e., focal ischemia),
symptoms compensation relies on the ability of surviving neurons to increase their excitability, as
shown by a positive correlation between improvement in clinical scores and increased excitatory
glutamatergic transmission in perilesional area [37]. Synaptic plasticity can be explored non-invasively
in humans using transcranial magnetic stimulation (TMS). It has been demonstrated that the amount
of LTP-like plasticity inducible with different TMS protocols after brain damage, the so-called LTP
reserve, correlated with the degree of clinical recovery [93,94]. These results strongly suggest that
LTP, specifically enhancing synaptic efficacy, is a fundamental requisite for network remodeling after
brain damage.

Widespread increase in brain functional connectivity represents a common response to different
types of damage, including traumatic brain injury [95–97], stroke [98], Parkinson’s disease [99,100]
and mild cognitive impairment (MCI) [101,102]. This early-phase adaptation could be useful to
counterbalance connectivity decline and restore network functionality, delaying symptoms onset.
It has been recently proposed that selective remodeling of hub connectivity could represent an efficient
mechanism to restore network activity containing the wiring cost. The central role played by LTP in
clinical recovery agrees with the role of hubs as the preferential site for connectivity increases, according
to the positive feedback nature of both phenomena. This pattern of reorganization requires normal
functioning network hubs, and a prominent involvement of hubs has been accordingly evidenced in
different neurological conditions [8].
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Figure 2. Synaptic plasticity promotes recovery after neural damage. Healthy condition: a schematic
model representing neuronal excitatory connections. Neuron C and D receive synaptic excitatory
inputs from neurons A and B respectively. Acute damage: damage to neuron B deprives neuron D of
excitatory synaptic input leading to disconnection and symptoms appearance. Recovery of function:
clinical recovery is associated to increased excitability of the surviving A neuron that unmasks latent
synaptic connections through LTP and restores synaptic activity of neuron D.

Importantly, connectivity increases should be tightly regulated to preserve an optimal tradeoff

between cost and efficiency [8]. Homeostatic plasticity cooperates with LTP to determine optimal
brain network reorganization in both acute and chronic remodeling. In the early phases, synaptic
upscaling could induce widespread hyperexcitability favoring network hyperconnectivity, with the aim
of partially restoring network efficiency. Moreover, neuronal hyperexcitability favors LTP induction
at hub level, further increasing hubs connectivity. Homeostatic plasticity changes may therefore
regulate Hebbian plasticity expression. This could be particularly relevant also in the late phases of
network reorganization when efficient downscaling is needed to limit excessive connectivity increase,
preventing chronic diffuse hyperconnectivity and selectively shaping hub remodeling.

Another line of evidence, strongly suggesting a strict relationship between LTP induction and hub
remodeling, arises from the paradigm of cognitive reserve. Accordingly, higher levels of education,
cognitive abilities, occupation and physical activity have been correlated with reduced functional
impact of brain structural damage as demonstrated in healthy aging subjects and in neurological
patients [103–107]. In preclinical studies, environmental enrichment with physical, cognitive, and social
stimuli improved the performance in different behavioral tasks exploring memory and learning [108]
and enhanced LTP induction [109–113].

In humans, cognitive reserve has been linked to increased connectivity of hub regions. In healthy
elder subjects, higher cognitive reserve correlated with increased metabolism and functional connectivity
of the anterior cingulate cortex [114]. Similarly, higher cognitive reserve has been associated with
enhanced functional connectivity in the left frontal cortex and reduced cognitive impairment in MCI
and AD patients [115,116]. It has been proposed that cognitive reserve may promote brain network
resilience increasing hubs connectivity, thus enhancing the resistance of hubs to damage [117,118].

4.2. Synaptic Plasticity Dysfunction May Drive Brain Network Disruption

AD and schizophrenia could represent useful models to explore the relationship between LTP
expression and hubs connectivity. In particular, in AD and schizophrenia, impaired plasticity [87,119]
may be responsible for reduced hubs degree and centrality, and decreased rich club connectivity [7,
31,120]. In particular, impaired synaptic plasticity alters the synchrony of both local and distributed
neuronal oscillations and could promote brain network dysfunction [69,121,122].

AD is a neurodegenerative disease characterized by accumulation of amyloid-β (Aβ) and tau
protein [123] associated with prominent cognitive decline [124]. In the hippocampus of AD patients
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synaptic alterations have been evidenced since the early phases of the disease [125,126]. In particular,
it has been proposed that early synaptic plasticity impairment could represent a main cause of memory
deficits in AD, even independently of neurodegeneration [86,119]. Studies in animal models of AD
documented lacking hippocampal LTP induction [127–129], and pathological LTD enhancement [130].
Accordingly, it has been observed that elevated levels of soluble Aβ oligomers could reduce LTP and
promote LTD expression in the hippocampus [131–134]. It has been suggested that also impaired
homeostatic plasticity could contribute to the clinical manifestations and disease progression in AD.
In particular, altered interaction between homeostatic and anti-homeostatic plasticity in AD could
ultimately promote synaptic loss [135,136]. In line with experimental data, in early AD patients
TMS studies have confirmed that LTP-like plasticity is abolished, and LTD-like plasticity induction is
favored [86,119].

Reduced small world topology and altered connectivity, particularly in associative areas, have
been reported in AD [7,15,137–142]. In particular, it has been shown a specific involvement of hub
regions [7,30,142,143] with decreased centrality of the hippocampus and the default mode network [31].
In addition, impaired hubs connectivity has been correlated with worse cognitive performance and
reduced CSF levels of Aβ 1–42 [31]. It has been evidenced that hubs show increased Aβ deposition in
MCI, AD and even in older healthy subjects [120,141,144,145]. In fact, a growing body of evidence
leads to the hypothesis that chronic hyperconnectivity and enhanced neuronal activity could expose
hubs to Aβ deposition and neurodegeneration [8,143]. Altered synaptic plasticity expression could
explain the peculiar hubs vulnerability described in AD. In particular, impaired LTP and favored LTD
may specifically disrupt hubs connectivity leading to compensatory maladaptive upscaling in healthy
neighboring neurons, resulting in chronic hyperexcitability [135].

Schizophrenia is a highly disabling psychiatric condition characterized by positive and negative
symptoms, including hallucinations and delusions, with most of the patients showing a progressive
clinical decline [146]. The pathogenesis of schizophrenia has been classically linked to neurotransmitters
alteration [147], neurodevelopmental disorders [148] and disconnection [149].

Recently, disrupted synaptic plasticity has been proposed as a possible pathophysiological marker
of schizophrenia [87,150,151]. Accordingly, reduced spine density has been described in the prefrontal
and temporal cortices of schizophrenic patients [152–155], and altered expression and function of
NMDARs and AMPARs have been reported [156–160]. NMDARs dysfunction seems to be particularly
relevant, as NMDAR antagonists could produce symptoms which strongly resemble schizophrenia
manifestations [161]. Impaired LTP and LTD-like plasticity has been consistently reported in patients
with schizophrenia [150,151,162]. Using a TMS protocol useful to explore cortical connectivity and in
particular spike timing-dependent plasticity [163,164], reduced LTP-like plasticity has been shown
between posterior parietal and frontal cortices in schizophrenia compared to control subjects [87].

Previous studies exploring brain network organization in schizophrenia showed alterations of
several properties [165–170]. In particular, reduced hub connectivity [171] and rich club organization
have been reported in schizophrenic patients [172]. Decreased connectivity within the frontal cortex
has been considered a pathophysiological hallmark and decreased centrality in cortical and subcortical
frontal areas has been reported accordingly [166,173,174]. In line with the disconnection hypothesis,
impaired hub connectivity and reduced rich club efficiency may alter overall brain connectivity in
schizophrenia [149].

Changes in synaptic plasticity expression may explain the hubs loss seen in schizophrenia.
It has been suggested that spike timing-dependent plasticity alterations may be responsible of
progressive disconnection of prefrontal circuits [175]. Altered NMDA-mediated synaptic plasticity
reduces temporal correlation between converging inputs to connected neurons and could lead to
additional activity-dependent disconnection of prefrontal networks [175]. In fact, subverted spike
timing-dependent plasticity could induce LTD instead of LTP in prefrontal networks, ultimately
producing progressive disruption of anterior hubs and generating a persistent disconnection within
the rich club.
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5. Conclusions

Synaptic plasticity mechanisms and specific features of brain network share common principles
that contribute to explain how neural plasticity influences brain network organization. Indeed,
different forms of synaptic plasticity could be directly involved in generating specific brain networks’
characteristics. A cooperative, associative, input-specific and anti-homeostatic Hebbian plasticity is
well suited to form brain networks characterized by modules and hubs, providing segregation and
integration of information. LTP could be implicated in generating highly connected nodes that are
crucially involved in network remodeling after brain damage and also represent the specific target of
pathophysiological processes in different neuropsychiatric conditions. Conversely, homeostatic forms
of synaptic plasticity intervene to prevent excessive connectivity in the peripheral nodes, stabilizing
network activity and preventing excessive cost-efficiency increase. Finally, the fine tuning between
homeostatic and anti-homeostatic plasticity plays a key role in recovery after damage and may help to
understand how brain networks reorganize in response to different neurological conditions. Further
studies combining neurophysiological investigations and fMRI measures are required to better define
the relationship between synaptic plasticity and brain network topology.
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61. Trousdale, J.; Hu, Y.; Shea-Brown, E.; Josić, K. Impact of network structure and cellular response on spike
time correlations. PLoS Comput. Biol. 2012, 8, e1002408. [CrossRef]
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