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Abstract 

We investigate the viability of the quasi-temporal gauge on the lattice. This is a complete gauge fixing condition that can 
be implemented on the lattice at a very low computational cost. As a test case, using the Clover action, we have evaluated 
the (gauge invariant) renormalisation constant of the non-singlet axial current, using Ward identities extracted from quark 
states. Our result is in reasonable but not complete agreement with previous values obtained from Ward identities both on 
hadronic states and on quark states in the Landau gauge. We observe large fluctuations due to lattice Gribov copies. The 
influence of finite volume effects is expected to be non-negligible in the case we are considering. 
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1. Introduction 

Gauge fixing, although in principle not necessary 
for the calculation of gauge invariant quantities on the 
lattice, is used in practice in several cases. Moreover, 
it is essential to the computation of gauge dependent 
quantities. 

Typically Landau and Coulomb gauges are used. 
These are implemented through the iterative minimiza- 
tion of a suitable functional. In this way the gauge 
condition can be satisfied to the required precision and 
in many cases high accuracy is unnecessary. For ex- 
ample, given the gauge condition 1 l&Ak112 = 0, where 
k= I,..., 3ork= l,..., 4forCoulombandLan- 
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dau gauge respectively, a precision of about 10B4 - 
10e5 is adequate when computing fs in the static ap- 
proximation with smeared correlation functions in the 
Coulomb gauge [ 11. On the contrary, high precision 
(at least lo-“) is required for Landau gauge calcu- 
lations of gluon and quark propagators [ 21, for iden- 
tifying lattice Gribov copies [ 31 or for measuring the 
3-gluon vertex function, in order to extract the run- 
ning QCD coupling [4]. In these cases gauge fixing 
becomes a time consuming part of the computation, 
comparable to the calculation of quark propagators. 

The lattice quasi-temporal gauge (QT gauge), first 
proposed in Ref. [ 51 and subsequently formulated rig- 
orously in [ 61, could be a low-cost alternative 6 . It is 
defined by fixing the Coulomb condition at a given ar- 
bitrary time r = to and the temporal gauge at all points. 

6 Another interesting gauge, proposed in [71. can in Principle 

also be considered. 
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It is a complete gauge fixing which, compared to the 
Coulomb gauge, is about T times cheaper to imple 
ment on the lattice (T is the length of the lattice in 
the time direction). A possible drawback of this gauge 
condition is that it is not invariant under time transla- 
tions nor is free from the Gribov ambiguity. Of course 
the last problem is not peculiar to this gauge: Gribov 
copies occur in Coulomb and Landau gauges as well. 

The aim of the present paper is to investigate 
whether the QT gauge can be used reliably in actual 
lattice computations. For this purpose we have cal- 
culated in this gauge the renormalisation constant of 
the non-singlet axial current ZA, in the spirit of [8], 
by using Ward Identities (WI’s) on quark states. ZA 
is suitable for our study because it is a gauge invari- 
ant quantity that has already been computed in many 
different ways: 

(i) from 1 -loop lattice perturbation theory [ 9,101; 
(ii) from WI’s on hadron states in a gauge invariant 

way [ 11,121; 
(iii) from WI’s on quark states in the Landau gauge 

[12,131; 
(iv) with a non-perturbative method based on ampu- 

tated quark Green functions in the Landau gauge 

]14]. 
For the third of the aforementioned determinations, 

a detailed study of the influence of Landau gauge Gri- 
bov copies on the measurement of ZA was performed 
in [ 131. As our method for computing ZA coincides 
with the one used in [ 12,131, except for changing the 
gauge condition from Landau to QT, we have decided 
to use the same ensemble of configurations that was 
used in these works, in order to allow a detailed com- 
parison of the results. Also, we have analysed the r6le 
of the lattice Gribov copies in the QT gauge. 

2. The temporal and quasi-temporal gauges 

In this section we discuss the general properties of 
the QT gauge. First we look into the temporal gauge 
[ 151, defined by the condition 

Ao(x) =0 Vx, (1) 

where Ao( X) is the gauge field. In the naive path inte- 
gral formulation Gauss’s law is lost; Eq. (1) is an in- 
complete gauge fixing, as it still allows time indepen- 
dent gauge transformations. In other words, a gauge 

transformation a( X) such that the gauge transformed 
field At(n) satisfies Eq. ( 1) is defined up to an arbi- 
trary gauge transformation fi( X, ?a) at an initial time 
to: 

n(x) =d~~d7Ao(x*‘) =n(x,fo)P(x;ro,t), 

(2) 

where P stands for path-ordering and P(x; to, t) = 
nzl UO( x, 7) is the Polyakov line in the time direc- 
tion from (x, to) to (x, t). Correspondingly, the tree 
level naive gluon propagator in the continuum 

(3) 

suffers from a non-physical singularity 1 /q& Its regu- 
larization with a principal value prescription does not 
lead, to O(g4) in perturbation theory, to the correct 
exponentiation of the Wilson loop [ 161. One way of 
solving all these problems at once is to integrate on 
time independent gauge transformations [ 171. This 
operation is equivalent to restricting the space of states 
to those satisfying Gauss’s law which is then imposed 
weakly on the physical states. 

As an alternative procedure one can enforce the 
Coulomb condition at a given time t = to [ 5,6] : 

a- A(&Q) = 0 v(XA)). (4) 

Eqs. ( 1) and (4) define the QT gauge. This is a com- 
plete gauge fixing, Gauss’s law is satisfied at t = to 
and hence at all times and the problematic 92 pole is 
removed from the tree level gluon propagator, which 
has the form [ 61 7 : 

(T(A~(x,xo)A~(y,yo))) = -7 

-ypo-Yol-lxo-rol-lYo-tolf . (5) 1 
Note that, because of the Coulomb condition at to, the 
QT gauge breaks translational invariance in the time 
direction. This is why gauge dependent quantities, like 

’ For a different calculation of this quantity see also [ 18 1. 
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the propagator of Eq. (5), are not invariant under time 
translations. (Translational invariance holds for (5) 
when the time ordering is either xa I to < ya or ya < 

to L x0.) 
Analytic calculations with the above propagator are 

hard to perform. However, in [ 61 the correct exponen- 
tiation of the Wilson loop to O(g4) in the QT gauge 
was explicitly demonstrated. 

3. The quasi-temporal gauge on the lattice 

We now turn to the implementation of the QT gauge 
on the lattice. Since at the time to one needs to set 
c?k& = 0, k = l,... ,3, we first review briefly the 
implementation of the Coulomb gauge on the lattice. 

Given a thermalized Monte Carlo configuration U 
on an L3 x T lattice with periodic boundary conditions, 
on each timeslice r one can define the functional [ 191 

3 

F[Uo](t) = --&ReTrkkU,“(n,r), (6) 
&=l n=l 

whereUf(n,t) = n(n,t)~~(n,t)nt(n+~,t) repre- 
sents a gauge transformed SU( 3) link, a( n, t) being 
a gauge transformation matrix. A link configuration 
CJo which satisfies the lattice analogue of the Coulomb 
gauge condition at the time t can be obtained by find- 
ing a minimum of F(t) with respect to gauge trans- 
formations Lt. More generally, it can be shown that all 
the extrema of F(t) with respect to n correspond to 
configurations which satisfy the Coulomb gauge con- 
dition &A: = 0 in discretized form. The existence of 
more than one minimum is related to the presence of 
Gribov copies. 

It is interesting to note that on the lattice one has 
in general more classes of minima than in the con- 
tinuum [ 20,211. The issue of distinguishing between 
continuum-likeminima and lattice artifacts is certainly 
an interesting challenge, but we shall ignore it in the 
following. We adopt the pragmatic point of view that 
in a numerical simulation both kinds of minima turn 

UP. 
On the lattice, the minima of F(t) can be found 

numerically by iteration. The typical minimization al- 
gorithm sweeps through all lattice sites n at a fixed 
time t and performs local gauge transformations which 
minimize F(t) with respect to the local gauge group. 

Obviously, in order to implement the Coulomb 
gauge on the entire lattice one should repeat the above 
procedure for all the timeslices, i.e. T times. On the 
other hand, in the QT gauge, we only need to impose 
the Coulomb gauge on a single timeslice to. In this 
work we have chosen to = 0, i.e. the first timeslice 
of the lattice. In our notation the time index t varies 
fromOto (T- 1). 

Once the Coulomb condition holds at t = to, the 
temporal gauge ( 1) can be trivially imposed by visit- 
ing sequentially each timeslice and gauge transform- 
ing the temporal links Ua( n, t) into the unit group el- 
ement. On a periodic lattice, this can be done for all 
but one time tf, so that the temporal links Ua( n, tf ), 

rather than being unity, end up carrying the value of 
the Polyakov loops. 

In this work we have chosen tg = T/2 - 1. We have 
completed the QT gauge by fixing first the temporal 
gauge on the timeslices t = 1, . . . , (T/2 - 1) , sweep- 
ing the lattice in the forward direction, which yields 
Ua(n,r-l)=lfort=l,...,(T/2-l).Thenthe 
gauge is fixed on the timeslices t = (T - 1) , . . . , T/2, 
sweeping the lattice backwards, giving Uo(n, t) = 1 
fort=(T-l),. . . ,T/2. Thus, the Polyakov line is 
now between the timeslices (T/2 - 1) and T/2. 

In this way, once the QT gauge is fixed, we end up 
with a lattice which is symmetric in the time direction 
around t = 0. The discontinuity due to the Polyakov 
line is placed at the greatest possible distance from t = 
0 where the signal is killed anyway by statistical fluc- 
tuations due to the strong damping of Green functions. 

Since the computational cost of fixing the temporal 
gauge is negligible, it follows that the QT gauge is 
roughly T times faster to implement than the Coulomb 
gauge. This may be a considerable saving in cases 
where high accuracy is required. 

The QT gauge suffers, like other gauges, from the 
Gribov ambiguity. Gribov copies can be generated 
when fixing the Coulomb gauge at t = to. When 
the temporal gauge is subsequently implemented, the 
transformation a, necessary to perform the gauge ro- 
tation, will depend for all values oft on possible Gri- 
bov copies, so that their existence affects the gauge 
fixing at all timeslices. This is to be contrasted to the 
situation in the Coulomb gauge, where gauge fixing 
is an independent process on each timeslice and Gri- 
bov copies on one timeslice do not depend on what 
happens at other times [ 31. 
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4. The measun?ment of ZA 

In order to test the feasibility of lattice non- 
perturbative calculations in the QT gauge, we have 
calculated the renormalisation constant ZA of the ax- 
ial current by using WI’s on quark states. As we have 
pointed out in the introduction, this quantity has al- 
ready been measured with several different methods, 
using both the Wilson and the Clover actions. We 
adopted the latter action [22,23] which is free from 
O(a) discretization errors. We only give an outline 
of the method and we refer the reader to [ 121 for the 
details. 

The gauge fixed calculation of ZA relies on the fol- 
lowing WI for quark Green functions 

2pTr [/ d4x 1 dy(u,(y) (~(x)ysd(x)) &(O))] 

(7) 

In Fq. (7) we work explicitly with up (la) and down 
(d) quark fields with spinor indices LY and p. The trace 
is over colour indices. The value of p is obtained from 
the following ratio of 2-point correlation functions: 

a,SdY(~(Y,t,)PS(o,o)) = 2” 

2p= /dy(P,(y,t,)@(&O)) zA ’ 
(8) 

where 

d,(x) z ~(x)Y~Ys~(x), 

R(x) = d(x)ysu(x) (9) 

are the axial current and the pseudoscalar density and 
m is the bare quark mass. As can be seen from Eq. (8), 
p is gauge invariant. Note that the pa term on the 
r.h.s. of Eq. (7) is peculiar to the Clover action and 
arises from the field redefinitions necessary in this 
formulation 1231. In this work we use the “improved- 
improved” propagators of [ 10,241. 

In order to compute ZA we evaluate (8) and the 
traces in (7) as functions oft,. In our case, the (gauge 
dependent) traces have been evaluated in the QT 
gauge. One can then solve Eq. (7) for ZA as a function 

of ty. In the lattice simulations a plateau in t, is typi- 
cally seen, from which the estimate for ZA is obtained. 

Actually, barring contact terms, the WI of Eq. (7) 
is expected to hold at all times. In practice, as it was 
already noted in [ 12 3, tbe presence of such terms af- 
fects the behaviour of the curve near t = 0. 

5. Numerical results 

We have used data obtained from a Monte Carlo 
simulation on a 163 x 32 lattice at p = 6.0, with the 
Clover action of SU( 3) gauge theory, in the quenched 
approximation. An 8-hit Metropolis algorithm was 
used to generate an ensemble of 18 configurations, 
each separated by 1000 sweeps, after an initial ther- 
malization of 3000 sweeps. The accuracy of the 
Coulomb gauge fixing at t = 0 is determined by the 
requirement that F be minimized within a precision 
of AF/F < lo-lo, where AF is the change in F 
between two successive gauge fixing sweeps. To in- 
crease the convergence of the algorithm we used the 
overrelaxation method [25], setting the overrelax- 
ation parameter to w = 1.72. Tbe whole calculation 
(and, in particular, the gauge fixing) was done in 
double precision (64 bit). Typically, about 100 gauge 
fixing iterations were needed in or&r to reach the re- 
quired precision. In our notation (T = 32 , 0 < t 5 3 1 
and tf = 15) the Polyakov line is between I = 15 and 
t = 16. 

In this exploratory study we have used quark prop- 
agators at a single value of the hopping parameter, K = 

0.1425, which corresponds to a pion mass of about 
900 MeV. The value of pa is about 0.05. For light 
quarks, the dependence of the me.asured renormalisa- 
tion constants on the quark mass is very mild [ 24,261. 

In order to enhance the signal, we have averaged 
Fq. (7) over four contributions, corresponding to the 
values of the Dirac indices (cr,fl) = (1,3), (3,1), 
(2,4) and (4.2). These were found to yield the clear- 
est signal (the same is true in the Landau gauge [ 121) . 
The statistical errors have been obtained with the jack- 
nife method by decimating one configuration at a time. 

Our estimate for ZA is shown in Fig. 1 as a function 
of time t. Except for the behaviour near the origin, at- 
tributed to the presence of contact terms, in the inter- 
vals7~t~lland22~r~26,plateauxappearto 
settle in. The quality of the signal worsens at t N T/2 
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Fig. 1. .& as a function of time in the QT gauge. The value at t = 16 is not shown, as it is affected by large fluctuations. 

due to the exponential decay of the correlation func- 
tions. At times t = 15 and 16, where the Polyakov line 
is located, the signal is completely lost. We estimate 

Z, = 1.33 f 0.13, Z, = 1.24 f 0.10 (10) 

from the plateaux at the left and at the right oft N T/2 
respectively. As our choice of imposing the Coulomb 
condition at to = 0 and the way we fix the temporal 
gauge both preserve the symmetry of the quark propa- 
gators S( x, 0) around t = 0, we can average the above 
results to obtain 

z, = 1.28ztO.11. 111) 

Since ZA is gauge independent, it is of particular 
significance to compare this result with the Landau 
gauge one, as they have both been obtained from the 
same WI. In [ 121 ZA was calculated at the same p and 
K values, on the same ensemble of 18 configurations. 
The calculation was performed both with the gauge 
invariant procedure based of WI’s on hadron states, 
and with the gauge dependent procedure used in this 
work, but employing the Landau gauge. The compari- 
son of the values obtained for ZA as a function of time 
in the Landau and in the QT gauge is shown in Fig. 2. 
Although the behaviour of ZA in both gauges is qual- 
itatively similar, the central values of the QT results 
are shifted upward with respect to the Landau ones. 
The QT results also display larger statistical fluctu- 

ations and a shorter plateau. This is reflected in the 
comparison of the result of Eq. ( 11) to those quoted 
in [ 12 ] : ZA = 1.09 f 0.03 (gauge invariant method) 
and Z,J = 1.14 f 0.08 (Landau gauge). We consider 
the gauge invariant value as the best estimate of ZA 
on this ensemble; it is free from the problems associ- 
ated with gauge fixing and is obtained from a much 
wider and more stable plateau. We note that the QT 
estimate, although compatible with the Landau one, 
compares rather poorly to the gauge invariant one. 

For completeness, we also quote the results of [ 13 1, 
obtained on a enlarged ensemble of 36 configura- 
tions at the same lattice volume, #3 and K. From the 
gauge independent WI’s they obtain ZA = 1.06 f 0.02, 
whereas from the WI’s on quark states in the Landau 
gauge ZA = 1.08 f 0.05. The latter result has been 
obtained by averaging over 6 Gribov copies for each 
thermalized configuration. This procedure has been 
introduced in a different framework in Ref. [ 271. Fi- 
nally, we also quote from [lo] the result ZA = 0.97, 
obtained in boosted lattice perturbation theory in the 
spirit of Ref. 1281. 

The discrepancy between the determination of ZA in 
the QT gauge and the other estimates reported above 
could be attributed to the breaking of translational in- 
variance in time direction inherent in this gauge. It is 
conceivable that the loss of this symmetry may cause 
appreciable finite volume effects causing large SYS- 
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Fig. 2. Comparison of ZA calculated in the QT gauge and in the Landau gauge [ 121. The Landau results were obtained by symmetrising 
the correlation functions with respect to the origin, whereas the QT ones are obtained by averaging the value of ZA around the origin. 

tematic errors in the measurement. Z, = 1.26f0.13. (13) 
Another source of error may be the presence of lat- 

tice Gribov copies, which, as pointed out in [ 131, also 
cause an increase of the statistical error. According 
to the discussion in Section 3, Gribov copies in the 
QT gauge affect the gauge transformations fi over the 
whole lattice and may thus have a significant effect on 
the determination of 2~. 

We have studied the effect of the existence of lattice 
Gribov copies on ZA following Ref. [ 131. For each 
thermal&d configuration three lattice Gribov copies 
have been generated by performing random gauge 
transformations before fixing the QT gauge. We have 
obtained in this way three measurements of ZA, using 
a different Gribov copy for each configuration. Be- 
sides the result given in I$ ( 11)) we obtain for the 
three copies: 

This analysis shows that the presence of lattice Gri- 
bov copies in the QT gauge is responsible of visible 
fluctuations on the Z, value, at the same level of what 
is observed in the Landau case [ 131. Nevertheless the 
larger error found in the QT gauge, compared to the 
Landau case, cannot be attributed completely to this 
effect. 

6. Conclusions 

ZA = 1.23 f 0.13, 

ZA = 1.30f 0.13, 

ZA = 1.23f0.16. (12) 

Although the results of Eqs. ( 11) and ( 12) are com- 
patible, there are big fluctuations between results ob- 
tained on different copies. Like in [ 131 our best es- 
timate for ZA is obtained by averaging over the four 
values: 

We have investigated the feasibility of lattice com- 
putations in the QT gauge. The cost of gauge fixing is 
reduced by approximately a factor of T with respect 
to conventional gauge fixings (Coulomb or Landau). 
The renormalisation constant of the axial current Z, 
has been measured. Our final numerical result agrees 
only roughly with other estimates, within errors. A de- 
tailed comparison of our results to what is obtained 
from WI’s on hadron states or quark states in the Lan- 
dau gauge shows, in fact, that our numbers are system- 
atically character&d by a higher central value and a 
larger statistical error. We have shown that these fea- 
tures can be partly related to the lattice Gribov ambi- 
guity. Also, the breaking of translational invariance in 
the time direction may be responsible for an enhance- 
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ment of systematic errors from finite volume effects. 
We are currently investigating such effects by repeat- 
ing the calculation at a larger volume. 
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