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Abstract: For fourth-order neutral differential equations (NDE) in the canonical case, we present new
relationships between the solution and its corresponding function in two casses: p < 1 and p > 1.
Through these relationships, we discover new monotonic properties for this equation of fourth order.
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1. Introduction

Differential equations (DEs) are a powerful tool that can be used to model and understand a
wide variety of systems. It plays a crucial role in solving real-world problems in many fields;
see [1, 2]. During the 20th century, the rapid progress of science resulted in applications across
biology, population studies, chemistry, medicine, social sciences, genetic engineering, economics,
and more. Many of the phenomena that appear in these fields are modeled using delay differential
equations (DDEs). This led to many disciplines being elevated, and significant discoveries were made
with this type of mathematical modeling.

The DEs that have the delayed argument in the highest derivative of the state variable are known
as neutral differential equations (NDEs). NDEs have an extremely diverse historical background. In
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reality, they have a wide range of uses in natural science, as in the process of chemical reactions. Time-
delayed transitions may be seen in chemical reaction kinetics, especially in complex processes. These
kinetics are described by NDDEs; see [3]. The presence of the delay term in NDDs, which expresses
the need for historical information, expands the solution space, and complicates numerical methods.
This led to studying the qualitative behavior of these equations because finding closed solutions is
often impossible due to their complexity. In recent years, there has been significant research focused
on the asymptotic behavior of solutions to DEs; see [4–6]. By examining the asymptotic properties,
researchers can forecast the future behavior of systems modeled by DEs from simple physical processes
to complicated biological and economic systems. This part of the study supports the practical use of
theoretical models in a variety of scientific and engineering domains in addition to aiding in their
refinement; see [7]. In recent years, one of the most significant branches of qualitative theory has been
oscillation theory; it was introduced in a pioneering paper of Fite; see [8–10]. This theory answers a
lot of questions regarding the oscillatory behavior and asymptotic properties of DE solutions.

Finding adequate criteria to guarantee that all DE solutions oscillate while eliminating positive
solutions is one of the main objectives of oscillation theory; see [11–13]. One of the main
characteristics of oscillation theory is the variety of mathematical and analytical approaches it uses;
see [14–16]. Over the past decade, there has been significant progress in the study of the oscillatory
properties of DEs; see [17–19]. This interest stems from the fact that comprehending mathematical
models and the phenomena they describe is made easier by examining the oscillatory and asymptotic
behavior of these models; also, see [20–22]. Moreover, oscillation theory is abundant with fascinating
theoretical problems that require the tools of mathematical analysis. In recent decades, oscillation
theory has attracted the attention of many researchers, resulting in numerous books and hundreds of
studies on several kinds of functional DEs; see [23–25]. Due to the critical roles of NDDE in various
fields, such as civil engineering and application-oriented research that can support research with the
potential to develop the ship-building, airplane, and rocket industries, the study of the oscillatory
properties of these equations has advanced significantly. This makes them extremely important
practically in addition to their abundance of interesting analytical problems. For more recent results
regarding the oscillatory properties of NDDE solutions; see [26, 27].

1.1. Fourth-order NDE

In this paper, we examine the oscillatory behavior of solutions to the neutral equation(
r (u)

(
Ω′′′ (u)

))′
+ q (u) x (θ (u)) = 0, u ≥ u0, (1.1)

where Ω (u) = x (u) + p (u) x (ζ (u)). Here, we accomplish our important results by considering the
next conditions:
(H1) p, ζ ∈ C4 ([u0,∞)), 0 < p (u) < p0 < ∞, ζ(u) ≤ u, limu→∞ ζ(u) = ∞, and ζ(u) invertible;
(H2) θ, q ∈ C ([u0,∞)), q (u) > 0, θ(u) ≤ u, limu→∞ θ(u) = ∞;
(H3) r (u) ∈ C1 ([u0,∞)), r (u) > 0 and satisfy

π0 (u) =

∫ u

u0

1
r (ξ)

dξ −→ ∞, as u −→ ∞. (1.2)

By a solution of (1.1), we mean a function x ∈ C3 ([ux,∞)) for ux ≥ u0, which has the properties
r (Ω′′′) ∈ C1 ([ux,∞)), and satisfies (1.1) on [ux,∞). We only take into account the solutions x of (1.1)
that satisfy S up {|x (u)| : u ≥ u∗} > 0 for all u∗ ≥ ux.
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Definition 1.1. [22] A solution of (1.1) is called oscillatory if it has arbitrarily large zeros on [u0,∞);
otherwise, it is called non-oscillatory. Equation (1.1) is said to be oscillatory if all its solutions are
oscillatory.

1.2. Literature review

The majority of studies have focused on establishing a condition that assures excluding increasing
positive solutions using a variety of techniques. The oscillations of higher-order NDE have been
investigated by many researchers, and many techniques have been presented for establishing oscillatory
criteria for these equations. A lot of research has been conducted regarding the canonical condition;
see [28–30]. We will now outline some of the results from previous papers that have contributed
to an important part in advancing research on fourth-order NDEs, particularly Moaaz et al. in [31]
established criteria for oscillation of solutions of NDDE(

r (u)
(
(Ω (u))′′′

)α)′
+ q (u) xβ (θ (u)) = 0, (1.3)

by applying two Riccati substitutions in each case of the derivatives of the corresponding function Ω.
This criteria guarantees that all solutions oscillate under the canonical condition, where β ≥ α and
0 ≤ p(u) < p0 < ∞.

In [32], Bazighifan et al. obtained the Philos type the oscillation criteria to ensure oscillation of
solutions of the equation

(
r (u)

(
(Ω (u))′′′

)α)′
+

k∑
i=1

qi (u) xβ (θi (u)) = 0,

and by employing the well-known Riccati transformation, they established an asymptotic criterion that
enhances and supplements previous results, where 0 ≤ p(u) < p0 < 1.

To comprehend the asymptotic and oscillatory behavior of solutions to NDEs, it is essential to
understand the relationship between the solution x and its associated function Ω. Through this
relationship, many researchers discovered several criteria that simplified and enhanced their earlier
results. Here, we will present some of the relationships identified from previous research. For
p (u) = p0, the conventional relationship:

x > (1 − p0)Ω, (1.4)

is generally employed for second-order equations under the condition (1.2), while in [33, 34] they
applied the following relationship

x > (1 − p0
π (ζ (u))
π (u)

)Ω (u) , (1.5)

in the non-canonical case. Moaaz et al. [35] in the canonical condition, they obtained some oscillation
criteria for the next form of the equation(

r (u)
(
Ω′ (u)

)α)′
+ q (u) xβ (ζ (u)) = 0, (1.6)
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by optimizing the relationship (1.4), where α,β ∈ Q+
odd. They provided for p0 > 1 the following

relationship

x (u) > Ω (u)
m/2∑
i=1

1

p[2i−1]
0

1 − 1
p0

π
(
ζ[−2i] (u)

)
π
(
ζ−[2i−1] (u)

) ,
for m is even, while for p0 < 1 they provided the relationship

x (u) > Ω (u) (1 − p0)
(m−1)/2∑

i=0

p[2i]
0

 1
p0

π
(
ζ[2i+1] (u)

)
π (u)

 ,
for m is odd. In [36], Hassan et al. enhanced the relationship (1.5) by the next one

x (u) > Ω (u)
(m−1)/2∑

i=0

p2i
0

1 − p0

π
(
ζ[2i+1] (u)

)
π[2i] (u)

 ,
for m an odd integer, when examined, the oscillatory properties of the equation(

r (u)
(
Ω′ (u)

)α)′
+ q (u) xα (ζi (u)) = 0,

where α ∈ Q+
odd. In [37], Moaaz et al. improved the relationship (1.4) to the following

x (u) > (1 − p0) Ω (u)
(m−1)/2∑

i=0

p2i
0

ζ [2i+1] (u) − u1

u − u1

2

,

and they obtained a criterion to ensure that there are no Kneser solutions of the equation of third-order
NDDE (

r (u)
(
Ω′′ (u)

)α)′
+ q (u) xα (θ (u)) = 0, (1.7)

by comparing (1.7) with a first-order DDE (comparison technique).
Moaaz and Alnafisah [38] examined the oscillatory behavior of solutions to DE(

r2 (u)
(
r1 (u)

[
x (u) + p (u) x (ζ (u))

]′)′)′
+ q (u) x (θ (u)) = 0,

and derived inequalities and relationships, by enhancing the relationship (1.4) considering the two cases
p0 > 1 and p0 < 1 without restrictions on the delay functions. Then, using an improved approach, they
obtained new monotonic properties for the positive solutions.

Recently, Bohner et al. [39], by considering two cases ζ ≤ u and ζ ≥ u, studied the NDDE(
r (u)

(
Ω′ (u)

)α)′
+ q (u) xα (θ (u)) = 0,

and improved the relationship (1.5) by getting the next one

x (u) > Ω (u) (1 − p0) (1 + Hk (u)) ,

where

Hk (u) =


0 for k = 0,
k∑

i=1

2i−1∏
j=0

p
(
θ j (u)

)
for θ (u) ≤ u,

k∑
i=1

π(ζ[2i](u))
π(u)

2i−1∏
j=0

p
(
θ j (u)

)
for θ (u) ≥ u,
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where k ∈ N.
In addition, recently, for higher-order some research improved the relationship of (1.4). Among

these research, Alnafisah et al. [40] presented the following relationship:

x (u) >
k∑

i=0

 2i∏
j=0

p
(
ζ[α] (u)

) [ 1
p
(
ζ[2i] (u)

) − 1
] ζ [2i] (u)

u

(n−2)/ε

Ω (u) ,

by investigating the asymptotic and oscillatory behaviors of solutions to the NDEs(
r (u)

(
Ω

(n−1)
(u)

)α)′
+ q (u) xα (θ (u)) = 0,

where n ≥ 4 and α is the ratio of two positive odd integers.
The key to our contribution to this work, We categorize the positive solutions to the studied equation

based on the signs of its derivatives. After that, we obtain new monotonic properties in certain cases
of positive solutions. Based on these properties, we discover the relationship between the solution and
its corresponding function Ω of our Eq (1.1) in the two cases p0 > 1 and p0 < 1. Additionally, we use
these new relationships to exclude positive solutions by obtaining some oscillation criteria. The results
are illustrated by an example. These results obtained extend and improve upon previous findings in the
literature, providing a more comprehensive framework for analyzing these equations.

The paper is organized as follows: In Section 2, we present the fundamental notation and definitions
that will be used in our proofs. In Section 3, we present a series of lemmas that enhance the
monotonicity properties of nonoscillatory solutions. In Section 4, we establish oscillation criteria
for (1.1) as our main result. Lastly, we illustrate our results with an example. In conclusion, briefly
discuss what we have done in this research and the results we have obtained.

2. Preliminaries

In this section, we will display the following constants and functions that are used in this paper. The
class of all positive non-oscillatory solutions to (1.1) is denoted by the symbol S +.

Notation 2.1. For any integer k ≥ 0. In order to present the results, we will need the following notation:

Y [0] (u) = u, Y [i] (u) = Y
(
Y [i−1] (u)

)
and Y [−i] (u) = Y−1

(
Y [−i+1] (u)

)
,

for i = 1, 2, ... .

Lemma 2.1. [41] Let z ∈ Cκ ([u0,∞) ,R+) and z(κ) be of constant sign, eventually. Then there are a
ux ≥ u0 and a j ∈ Z, 0 ≤ j ≤ κ, with κ + j even for z(κ) (u) ≥ 0, or κ + j odd for z(κ) (u) ≤ 0 such that

j ≥ 0 implies that z(l) (u) > 0 for u ≥ ux, l = 0, 1, ....... j − 1.

And j ≤ κ − 1 implies that (−1) j+l z(l) (u) > 0 for u ≥ ux, l = j, j + 1, .......κ − 1.

Lemma 2.2. [42] Assume z is stated in Lemma 2.1. If z(κ−1) (u) z(κ) (u) ≤ 0, eventually, and
limu→∞ z (u) , 0, then, there exists uk ∈ [u1,∞) for every ε ∈ (0, 1), such that

z (u) ≥
ε

(κ − 1)!
uκ−1

∣∣∣z(κ−1) (u)
∣∣∣ , for u ∈ [uk,∞) .
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Lemma 2.3. [43] If the Eq (1.1) has a solution x that is eventually positive, then

x (u) >
k∑

i=0

 2i∏
j=0

p
(
ζ[ j] (u)

)
Ω

(
ζ[2i] (u)

)
p
(
ζ[2i] (u)

) −Ω
(
ζ[2i+1] (u)

) , (2.1)

for k ≥ 0.

Lemma 2.4. [41] If h ∈ Cκ ([u0,∞) ,R+), h(i) (u) > 0 for i = 0, 1, 2, ..., κ, and h(κ+1) (u) ≤ 0, then
eventually,

h (u) ≥
1
κ

uh′ (u) .

3. Results and discussion

We will introduce the next lemma that describes the behavior of positive solutions.

Lemma 3.1. Assume that x ∈ S +. Then, eventually, we have two cases for Ω eventually:
Case (1)

Ω (u) > 0, Ω′ (u) > 0, Ω′′ (u) > 0, Ω′′′ (u) > 0, Ω(4) (u) < 0,

Case (2)

Ω (u) > 0, Ω′ (u) > 0, Ω′′ (u) < 0, Ω′′′ (u) > 0.

Proof. Suppose that x is a positive solution of (1.1); we obtain Ω(4) (u) ≤ 0 from (1.1). From the
Lemma 2.1 Cases (1) and (2), and their derivatives, are obtained. �

Notation 3.1. We will refer to the symbol ℵ1 as the class of all eventually positive solutions of Eq (1.1)
whose corresponding function satisfies Case (1) and ℵ2 as the class of all eventually positive solutions
of Eq (1.1) whose corresponding function satisfies Case (2). Moreover, we will use the following
notation throughout the proof of our lemmas.

Notation 3.2. For any positive integer k, we define the functions

πi (u) =

∫ u

u0

πi−1 (ξ) dξ, i = 1, 2,

and

ρ1 (u, k) =

k∑
i=0

 2i∏
j=0

p
(
ζ[ j] (u)

) [ 1
p
(
ζ[2i] (u)

) − 1
] π2

(
ζ[2i] (u)

)
π2 (u)

;

ρ̂1(u; k) =

k∑
i=0

 2i∏
j=0

p
(
ζ[ j] (u)

) [ 1
p
(
ζ[2i] (u)

) − 1
] (
ζ[2i] (u)

u

)1/ε

;

ρ2 (u, k) =

k∑
i=1

2i−1∏
j=0

1

p
(
ζ[− j] (u)

)

(
ζ[−2i+1] (u)

)3(
ζ[−2i] (u)

)3 −
1

p
(
ζ[−2i] (u)

)
 ;
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ρ̂2(u; k) =

k∑
i=1

2i−1∏
j=0

1

p
(
ζ[− j] (u)

)

(
ζ[−2i+1] (u)

)1/ε(
ζ[−2i] (u)

)1/ε −
1

p
(
ζ[−2i] (u)

)
 ,

and

R(u; k) =

{
ρ1 (u, k) for x ∈ ℵ1, p < 1,
ρ̂1(u; k) for x ∈ ℵ2, p < 1.

R̃ (u, k) =

 ρ2 (u, k) for x ∈ ℵ1, p > 1
ζ(u) ,

ρ̂2(u; k) for x ∈ ℵ2, p > 1
ζ(u) .

For every k ∈ N0, we assume that

β∗k = lim inf
u−→∞

r (u) π2 (θ (u)) π0 (u) q (u) R(θ (u) ; k).

It is clear that β∗k is positive. Our reasoning will usually rely on the obvious truth that a u1 ≥ u0 is large
enough such that for fixed but arbitrary βk ∈

(
0, β∗k

)
, we have

βk ≤ r (u) π2 (θ (u)) π0 (u) q (u) R(θ (u) ; k), (3.1)

on [u1,∞).

3.1. Asymptotic and monotonic properties

This section contains several lemmas regarding the asymptotic properties of solutions that are part
of the classes ℵ1 and ℵ2.

Lemma 3.2. Suppose that x ∈ S +. If Ω′′ (u) > 0 eventually, then,
(I) Ω (u) ≥ 1

3uΩ′ (u) .
However, if Ω′′ (u) < 0, eventually, then
(II) Ω (u) ≥ εuΩ′ (u) , for ε ∈ (0, 1) .

Proof. Suppose that x is a positive solution of (1.1) and for u ≥ u1,Ω
′′ (u) > 0. By applying Lemma 2.4

with F = Ω and κ ≥ 3, we obtain

Ω (u) ≥
1
3

uΩ′ (u) ,

which gives (I). Next, for u ≥ u1, Ω
′′ (u) < 0. Then, u2 > u1 exists, such that

Ω (u) ≥
∫ u

u1

Ω′ (s) ds ≥ (u − u1) Ω′ (u) ≥ εuΩ′ (u) ,

which gives (II), for all ε ∈ (0, 1) and u ≥ u2. �

3.1.1. Properties in the case where p(u) ≤ p0 < 1

Lemma 3.3. Let β∗0 > 0 and x ∈ ℵ1. Then, for u large enough,
(A1) limu→∞ r (u) Ω′′′ (u) = limu→∞Ω(k) (u) /π2−k (u) = 0, k = 0, 1, 2;
(A2) Ω′′ (u) /π0 (u) is decreasing;
(A3) Ω′ (u) /π1 (u) is decreasing;
(A4) Ω (u) /π2 (u) is decreasing.
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Proof. Assume that x ∈ ℵ1. From the definition of Ω

Ω (u) = x (u) + p (u) x (ζ (u)) ,

we have
x (u) = Ω (u) − p (u) x (ζ (u)) .

Since Ω (u) > x (u), Ω′ (u) > 0, and ζ (u) ≤ u, we have

x (u) ≥ Ω (u) − p (u) Ω (ζ (u))

≥ (1 − p (u)) Ω (u) , (3.2)

which with (1.1) we have (
r (u) Ω′′′ (u)

)′
+ q (u) (1 − p (θ (u))) Ω (θ (u)) ≤ 0. (3.3)

(A1): Since we have Ω′′′ (u) as a non-increasing and positive function, then

lim
u→∞

r (u) Ω′′′ (u) = ` ≥ 0.

Assume ` > 0; then r (u) Ω′′′ (u) ≥ ` > 0, by integrating three times

Ω (u) ≥ `π2 (u) , u ≥ u2 ≥ u1. (3.4)

From (3.1) with R(u; 0) = (1 − p (u)) and (3.3) we obtain

(
r (u) Ω′′′ (u)

)′
+

β0

r (u) π2 (θ (u)) π0 (u)
Ω (θ (u)) ≤ 0. (3.5)

From (3.4) into (3.5) we obtain

−
(
r (u) Ω′′′ (u)

)′
≥

`β0

r (u) π0 (u)
. (3.6)

By integrating the above inequality from u3 to u, we obtain

r (u3) Ω′′′ (u3) ≥ r (u) Ω′′′ (u) + β0` ln
π0 (u)
π0 (u3)

, (3.7)

which is
r (u3) Ω′′′ (u3) ≥ ` + β0` ln

π0 (u)
π0 (u3)

→ ∞ as u −→ ∞,

we find that there is a contradiction; therefore, ` = 0. When x ∈ ℵ1, we have Ω (u) −→ ∞, Ω′ (u) −→ ∞
as u −→ ∞ and Ω′′ (u) /π0 (u) −→ 0 as u −→ ∞ such that Ω′′ (u) > 0 for k = 2 is increasing, then by
l’Hôpital’s rule we find that (A1) satisfied.
(A2): As r (u) Ω′′′ (u) is nonincreasing in ℵ1, we are able to say that

Ω′′ (u) = Ω′′ (u1) +

∫ u

u1

r (ξ) Ω′′′ (ξ)
1

r (ξ)
dξ
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≥ Ω′′ (u1) + r (u) Ω′′′ (u)
(∫ u

u0

1
r (ξ)

dξ −
∫ u1

u0

1
r (ξ)

dξ
)
,

that is

Ω′′ (u) ≥ Ω′′ (u1) + r (u) Ω′′′ (u)
(
π0 (u) −

∫ u1

u0

1
r (ξ)

dξ
)
,

> r (u) Ω′′′ (u) π0 (u) + Ω′′ (u1) − r (u) Ω′′′ (u)
∫ u1

u0

1
r (ξ)

dξ.

Since Ω′′ (u) > 0, and r (u) Ω′′′ (u) converges to zero by (A1) , there exists u4 > u3 such that

Ω′′ (u1) − r (u) Ω′′′ (u)
∫ u1

u0

1
r (ξ)

dξ > 0,

so we obtain
Ω′′ (u) > r (u) Ω′′′ (u) π0 (u) .

Therefore, (
Ω′′ (u)
π0 (u)

)′
=

r (u) Ω′′′ (u) π0 (u) −Ω′′ (u)
r (u) π2

0 (u)
< 0, u ≥ u4,

then Ω′′ (u) /π0 is decreasing; that proves (A2).
(A3): From (A1) and (A2), we have Ω′′ (u) /π0 decreasing and tending to zero, then we find

Ω′ (u) = Ω′ (u4) +

∫ u

u4

Ω′′ (ξ)
π0 (ξ)

π0 (ξ) dξ

≥ Ω′ (u4) +
Ω′′ (u)
π0 (u)

(∫ u

u0

π0 (ξ) −
∫ u4

u0

π0 (ξ)
)

dξ,

then we obtain

Ω′ (u) ≥
Ω′′ (u) π1 (u)

π0 (u)
+ Ω′ (u4) −

Ω′′ (u)
π0 (u)

∫ u4

u0

π0 (ξ) dξ >
Ω′′ (u) π1 (u)

π0 (u)
, u ≥ u5,

for u5 > u4. Hence (
Ω′ (u)
π1 (u)

)′
=

Ω′′ (u) π1 (u) − π0 (u) Ω′ (u)
π2

1 (u)
< 0, u ≥ u5,

from that we arrive at (A3).
(A4): Likewise, since Ω′ (u) /π1 (u) is decreasing and tends to zero, we obtain

Ω (u) = Ω (u5) +

∫ u

u5

Ω′ (ξ)
π1 (ξ)

π1 (ξ) dξ

≥ Ω (u5) +
Ω′ (u)
π1 (u)

(∫ u

u0

π1 (ξ) −
∫ u5

u0

π1 (ξ)
)
,

then we arrive at

Ω (u) ≥
Ω′ (u)
π1 (u)

π2 (u) + Ω (u5) −
Ω′ (u)
π1 (u)

∫ u5

u0

π1 (ξ) dξ >
Ω′ (u) π2 (u)

π1 (u)
, u ≥ u6,
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for u6 > u5, so (
Ω (u)
π2 (u)

)′
=

Ω′ (u) π2 (u) − π1 (u) Ω (u)
π2

2 (u)
< 0, u ≥ u6,

that proves (A4). �

Lemma 3.4. Let β∗0 > 0 and x ∈ ℵ1. Then, the corresponding function Ω eventually satisfies(
r (u) Ω′′′ (u)

)′
+ q (u) ρ1(θ (u) ; k)Ω (θ (u)) ≤ 0. (3.8)

Proof. By using the facts that ζ[2i+1] (u) ≤ ζ[2i] (u) < u and Ω′ (u) > 0, we find that

Ω
(
ζ[2i] (u)

)
≥ Ω

(
ζ[2i+1] (u)

)
.

By utilizing (Ω (u) /π2 (u))′ < 0, we arrive at

Ω
(
ζ[2i] (u)

)
π2

(
ζ[2i] (u)

) ≥ Ω (u)
π2 (u)

,

this leads to

Ω
(
ζ[2i] (u)

)
≥
π2

(
ζ[2i] (u)

)
π2 (u)

Ω (u) .

From this inequality in (2.1), we obtain

x (u) ≥ Ω (u)
k∑

i=0

 2i∏
j=0

p
(
ζ[ j] (u)

) { 1
p
(
ζ[2i] (u)

) − 1
} π2

(
ζ[2i] (u)

)
π2 (u)

> Ω (u) ρ1(u; k).

From this and (1.1) we obtain(
r (u) Ω′′′ (u)

)′
+ q (u) ρ1(θ (u) ; k)Ω (θ (u)) ≤ 0.

This is completes the proof. �

Lemma 3.5. Let β∗k > 0 for some k ∈ N, and x ∈ ℵ1. Then, for u large enough, (A1)–(A4) (in
Lemma 3.3) hold.

Proof. Replacing inequality (3.5) in Lemma 3.2 (II) and proceeding in the same manner, we obtain
properties in (A1)–(A4). �

Lemma 3.6. Assume that β∗k > 0 and x ∈ ℵ2. If Ω′′ (u) < 0, eventually, then(
r (u) Ω′′′ (u)

)′
+ q (u) ρ̂1 (θ (u) , k) Ω (θ (u)) ≤ 0. (3.9)

Proof. Suppose that x ∈ ℵ2. For u ≥ u1, Ω
′′ (u) < 0. From the facts Ω′ (u) > 0 and (II), we obtain

Ω
(
ζ[2i] (u)

)
≥ Ω

(
ζ[2i+1] (u)

)
,

and

Ω
(
ζ[2i] (u)

)
≥

(
ζ[2i] (u)

)1/ε

u1/ε Ω (u) .
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Then, Eq (2.1) becomes

x (u) > Ω (u)
k∑

i=0

 2i∏
j=0

p
(
ζ[ j] (u)

) { 1
p
(
ζ[2i] (u)

) − 1
} (
ζ[2i] (u)

u

)1/ε

> ρ̂1(u; k)Ω (u) , f or k ≥ 0,

which together with (1.1) gives (3.9). �

Lemma 3.7. Let β∗k > 0 for some k ∈ N and x ∈ ℵ1. Then,(
r (u) Ω′′′ (u)

)′
+ q (u) R(θ (u) ; k)Ω (θ (u)) ≤ 0. (3.10)

Proof. Follows from Lemmas 3.3, 3.6, and 3.4 with (1.1) gives (3.10). �

3.1.2. Properties in the case where p(u) ≥ p0 > 1

Lemma 3.8. Let x ∈ ℵ1 ∪ ℵ2. Then there exists k such that

x (u) >
k∑

i=1

2i−1∏
j=0

1

p
(
ζ[− j] (u)

) [Ω (
ζ[−2i+1] (u)

)
−

1
p
(
ζ[−2i] (u)

)Ω (
ζ[−2i] (u)

)]
. (3.11)

Proof. From the definition Ω(u), we find that

p
(
ζ−1 (u)

)
x (u) = Ω

(
ζ−1 (u)

)
− x

(
ζ−1 (u)

)
= Ω

(
ζ−1 (u)

)
−

1
p
(
ζ[−2] (u)

) [
Ω

(
ζ[−2] (u)

)
− x

(
ζ[−2] (u)

)]
,

hence, we obtain

p
(
ζ−1 (u)

)
x (u) = Ω

(
ζ−1 (u)

)
−Ω

(
ζ[−2] (u)

) 2∏
i=2

1
p
(
ζ[−i] (u)

)
+

3∏
i=2

1
p
(
ζ[−i] (u)

) [
Ω

(
ζ[−3] (u)

)
− x

(
ζ[−3] (u)

)]
.

After k steps we arrive at there exists a k such that

x (u) >
k∑

i=1

2i−1∏
j=0

1

p
(
ζ[− j] (u)

) [Ω (
ζ[−2i+1] (u)

)
−

1
p
(
ζ[−2i] (u)

)Ω (
ζ[−2i] (u)

)]
. (3.12)

This concludes the proof. �

Lemma 3.9. Let x ∈ ℵ1 ∪ ℵ2. Then there exists k such that (1.1) implies,(
r (u) Ω′′′ (u)

)′
+ q (u) R̃ (θ (u) , k) Ω (θ (u)) ≤ 0. (3.13)

When
x (u) > R̃ (u, k) Ω (u) .
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Proof. Suppose that x ∈ ℵ1. From the fact that Ω′ (u) > 0 and from (I) in Lemma 3.2, we obtain

ζ[−2i] (u) ≥ ζ[−2i+1] (u) ,

and

Ω
(
ζ[−2i+1] (u)

)
≥

(
ζ[−2i+1] (u)

)3(
ζ[−2i] (u)

)3 Ω
(
ζ[−2i] (u)

)
.

Then, from Lemma (3.8), Eq (3.11) becomes

x (u) >
k∑

i=1

2i−1∏
j=0

1

p
(
ζ[− j] (u)

)

(
ζ[−2i+1] (u)

)3(
ζ[−2i] (u)

)3 Ω
(
ζ[−2i] (u)

)
−

1
p
(
ζ[−2i] (u)

)Ω (
ζ[−2i] (u)

) ,
in view of the fact that Ω

(
ζ[−2i] (u)

)
≥ Ω (u) , the above inequality becomes

x (u) > Ω (u)
k∑

i=1

2i−1∏
j=0

1

p
(
ζ[− j] (u)

)

(
ζ[−2i+1] (u)

)3(
ζ[−2i] (u)

)3 −
1

p
(
ζ[−2i] (u)

)
 > Ω (u) ρ2 (u, k) ,

which is together with (1.1), we obtain

(
r (u) Ω′′′ (u)

)′
+ q (u) Ω (θ (u)) ρ2 (θ (u) , k) ≤ 0. (3.14)

Suppose that x ∈ ℵ2. For u ≥ u1, Ω′′ (u) < 0. From the facts Ω′ (u) > 0 and (II) in Lemma 3.2, we
obtain

ζ[−2i] (u) ≥ ζ[−2i+1] (u) ,

and

Ω
(
ζ[−2i+1] (u)

)
≥

(
ζ[−2i+1] (u)

)1/ε(
ζ[−2i] (u)

)1/ε Ω
(
ζ[−2i] (u)

)
.

Then, from Lemma (3.8), Eq (3.11) becomes

x (u) > Ω (u)
k∑

i=1

2i−1∏
j=0

1

p
(
ζ[− j] (u)

)

(
ζ[−2i+1] (u)

)1/ε(
ζ[−2i] (u)

)1/ε −
1

p
(
ζ[−2i] (u)

)
 > Ω (u) ρ̂2(u; k),

which is together with (1.1), we obtain

(
r (u) Ω′′′ (u)

)′
+ q (u) ρ̂2(θ (u) ; k)Ω (θ (u)) ≤ 0. (3.15)

Followed by (3.14) and (3.15) gives (3.13). �
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4. Oscillation theorems

In the following theorem, we will obtain oscillation criteria for Eq (1.1) in the case where p0 < 1.
For clarity, we will define that:

M1 (u) = q (u) ρ1(θ (u) ; k)
(
θ (u)

u

)3

;

D (u) =
ε

2
u2

r (u)
;

M2 (u) =

∫ ∞

u

 1
r (ξ)

∫ ∞

ξ

q (s) ρ̂1 (θ (s) , k)
(
θ (s)

s

)1/ε

ds
 dξ.

Theorem 4.1. Assume that there is ε ∈ (0, 1) and p0 < 1 such that, if x ∈ ℵ1, then

lim inf
u−→∞

1

M̃1 (u)

∞∫
u

D (s) M̃2
1 (s) ds ≥

1
4
, (4.1)

and, if x ∈ ℵ2, then

lim inf
u−→∞

1

M̃2 (u)

∞∫
u

M̃2
2 (u) ds ≥

1
4
, (4.2)

where

M̃1 (u) =

∞∫
u

M1 (s) ds, M̃2 (u) =

∞∫
u

M2 (s) ds.

Then, Eq (1.1) is oscillatory.

Proof. Assume the contrary, that (1.1) has a non-oscillatory solution x. Then, there exists a u1 ≥ u0

such that x(u) > 0, x(θ(u)) > 0, and x(ζ(u)) > 0 for u ≥ u1. There are two possible classes from
Lemma 3.1: ℵ1 and ℵ2. Assume ℵ1 holds. From (3.8) in Lemma 3.4 we have(

r (u) Ω′′′ (u)
)′

+ q (u) Ω (θ (u)) ρ1(θ (u) ; k) ≤ 0. (4.3)

Introduce Riccati substitutions
ω (u) =

r (u) Ω′′′ (u)
Ω (u)

, u ≥ u1. (4.4)

We observe that ω (u) > 0 for u ≥ u1; by differentiating (4.4), we obtain

ω′ (u) =
(r (u) (Ω′′′ (u)))′

Ω (u)
−

r (u) Ω′′′ (u) Ω (u)′

Ω2 (u)
,

from (4.3) we obtain

ω′ (u) ≤ −q (u) ρ1(θ (u) ; k)
Ω (θ (u))

Ω (u)
−

r (u) Ω′′′ (u) Ω (u)′

Ω2 (u)
. (4.5)
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From (I) in Lemma 3.2, we have

Ω (u) ≥
1
3

uΩ′ (u) ,

then we obtain
Ω (θ (u))

Ω (u)
≥
θ3 (u)

u3 , (4.6)

by applying Lemma 2.2 for every ε ∈ (0, 1), we obtain

Ω′ (u) ≥
ε

2
u2Ω′′′ (u) . (4.7)

Therefore, from (4.5)–(4.7), we obtain

ω′ (u) ≤ −q (u) ρ1(θ (u) ; k)
(
θ (u)

u

)3

−
ε

2
r2 (u) u2 (Ω′′′ (u))2

r (u) Ω2 (u)
,

which is
ω′ (u) + M1 (u) + D (u)ω2 (u) ≤ 0.

By integrating the above inequality, from u to∞, we obtain

ω (u) ≥

∞∫
u

M1 (s) ds +

∞∫
u

D (s)ω2 (s) ds,

since ω > 0 and ω′ < 0, we have

ω (u) ≥ M̃1 (u) +

∞∫
u

D (s)ω2 (s) ds,

which is
ω (u)

M̃1 (u)
≥ 1 +

1

M̃1 (u)

∞∫
u

M̃2
1 (s) D (s)

(
ω (s)

M̃1 (s)

)2

ds. (4.8)

Let λ = infu≥u∗ ω (u) /M̃1 (u) , then from (4.8) we notice

λ ≥ 1 + (λ)2 ,

which contradicts thatλ ≥ 1 in (4.8).
Assume ℵ2 holds. From (3.9) in Lemma 3.6 we have(

r (u) Ω′′′ (u)
)′

+ q (u) ρ̂1 (θ (u) , k) Ω (θ (u)) ≤ 0. (4.9)

By introducing Riccati substitutions

$ (u) =
Ω′ (u)
Ω (u)

, u ≥ u1. (4.10)
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Integrating (4.9) from u to∞, we obtain

r (u) Ω′′′ (u) ≥
∫ ∞

u
q (s) ρ̂1 (θ (s) , k) Ω (θ (s)) . (4.11)

From (II) in Lemma 3.2, we have
Ω (u) ≥ εuΩ′ (u) ,

hence

Ω (θ (u)) ≥
θ1/ε (u)

u1/ε Ω (u) . (4.12)

By using (4.12) in (4.11), we obtain

r (u) Ω′′′ (u) ≥ Ω (u)
∫ ∞

u
q (s) ρ̂1 (θ (s) , k)

(
θ (u)

u

)1/ε

ds,

by integrating again this inequality from u to∞, we obtain

Ω′′ (u) ≤ −Ω (u)
∫ ∞

u

 1
r (ξ)

∫ ∞

ξ

q (s) ρ̂1 (θ (s) , k)
(
θ (s)

s

)1/ε

ds
 dξ, (4.13)

by differentiating $ (u) in (4.10), we obtain

$′ (u) =
Ω′′ (u)
Ω (u)

−

(
Ω′ (u)
Ω (u)

)2

≤ −$2 (u) −
∫ ∞

u

 1
r (ξ)

∫ ∞

ξ

q (s) ρ̂1 (θ (s) , k)
(
θ (s)

s

)1/ε

ds
 dξ

for u ≥ u2.

Then, from (4.13) and (4.10), we obtain

$′ (u) + M2 (u) +$2 (u) ≤ 0,

by integrating the above inequality from u to∞

$ (u) ≥

∞∫
u

M2 (s) ds +

∞∫
u

$2 (s) ds,

from this we obtain
$ (u)

M̃2 (u)
≥ 1 +

1

M̃2 (u)

∞∫
u

M̃2
2 (s)

(
$ (s)

M̃2 (s)

)2

ds.

The rest of the proof is done as in the case ℵ1. As a result, the theorem is established. �

The next theorem provides two oscillation conditions for Eq (1.1), which require that p0 > 1. These
conditions are established by using a comparison method with a first-order equation, under the next
constraints: g (u) ≤ θ (u).
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Theorem 4.2. Let p0 > 1 hold, if there exists ε ∈ (0, 1) and k such that ρ2 and ρ̂2 are defined, such that
the two first-order DDEs

ψ′ (u) + εθ3 (u)
q (u) ρ2(θ (u) ; k)

3!r (θ (u))
ψ (θ (u)) = 0, (4.14)

and when g (u) ≤ θ (u)

ν′ (u) + εg (u)

∞∫
u

E (ξ)
r (ξ)

ν (g (u)) dξ = 0, (4.15)

where

E (u) =

∞∫
u

q (ξ) ρ̂2(θ (ξ) ; k)dξ,

are oscillatory, then (1.1) is oscillatory.

Proof. Assume the contrary, that (1.1) has a non-oscillatory solution x. Then, there exists a u1 ≥ u0

such that x(u) > 0, x(θ(u)) > 0, and x(ζ(u)) > 0 for u ≥ u1. There are two possible classes from
Lemma 3.1: ℵ1 and ℵ2. Assume ℵ1 holds. Then from Eq (3.14) in Lemma 3.9, we have(

r (u) Ω′′′ (u)
)′

+ q (u) Ω (θ (u)) ρ2 (θ (u) , k) ≤ 0. (4.16)

From (4.7) and (4.16) we notice

Ω (θ (u)) ≥
εθ3 (u)

3!
Ω′′′ (θ (u)) ,

(
r (u) Ω′′′ (u)

)′
+ εθ3 (u)

r (θ (u)) q (u) ρ2 (θ (u) , k)
3!r (θ (u))

Ω′′′ (θ (u)) ≤ 0.

If we set ψ (u) = r (u) Ω′′′ (u), then ψ (u) is a positive solution of the first-order delay differential
inequality

ψ′ (u) + εθ3 (u)
q (u) ρ2(θ (u) ; k)

3!r (θ (u))
ψ (θ (u)) ≤ 0. (4.17)

By [44, Theorem 1], the DDE (4.14) also has a positive solution; this leads to a contradiction.
Assume ℵ2 holds. Then from Eq (3.15) in Lemma 3.9, we have(

r (u) Ω′′′ (u)
)′

+ q (u) ρ̂2 (θ (u) , k) Ω (θ (u)) ≤ 0.

Since g (u) ≤ θ (u) , we find (
r (u) Ω′′′ (u)

)′
+ q (u) ρ̂2 (θ (u) , k) Ω (g (u)) ≤ 0, (4.18)

by integrating (4.18) from u to∞ we obtain

− r (u) Ω′′′ (u) + Ω (g (u))

∞∫
u

q (ξ) ρ̂2(θ (ξ) ; k)dξ ≤ 0, (4.19)
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which is
−Ω′′′ (u) +

E (u) Ω (g (u))
r (u)

≤ 0. (4.20)

Integrating (4.20) again from u to∞, we obtain

Ω′′ (u) + Ω (g (u))

∞∫
u

E (ξ)
r (ξ)

dξ ≤ 0. (4.21)

From (II) in Lemma 3.2, we have
Ω (u) ≥ εuΩ′ (u) . (4.22)

Let ν (u) = Ω′ (u) and by using (4.22) in (4.21), we find that ν (u) is a positive solution of the inequality

ν′ (u) + εg (u)

∞∫
u

E (ξ)
r (ξ)

ν (g (u)) dξ ≤ 0.

But according to [44, Theorem 1], the condition (4.15) also has a positive solution ν (u); this leads to a
contradiction. �

Corollary 4.1. If p0 > 1 such that

lim inf
u→∞

u∫
θ(u)

q (ξ)
εθ3 (ξ) ρ2(θ (ξ) ; k)

3!r (θ (ξ))
dξ ≥

1
e
, (4.23)

and

lim inf
u→∞

u∫
g(u)

εg (ϑ)


∞∫
ϑ

E (ξ)
r (ξ)

dξ

 dϑ ≥
1
e
. (4.24)

Then (1.1) is oscillatory.

5. Applications and discussion

Example 5.1. Let the fourth-order NDE([
x (u) + p0x (δu)

]′′′)′
+

q0

u4 x (βu) = 0, u > 1, (5.1)

where p0, q0 are positive and δ, β ∈ (0, 1). We note that ζ−1 (θ (u)) =
βu
δ

, r (u) = 1. As a result, it is
clear that ζ[−2i] (u) = δ−2iu, ζ[−2i+1] (u) = δ−2i+1u. Thus, for p0 > 1, we define

ρ2(u; k) =

[
δ3 −

1
p0

] k∑
i=1

p−2i
0 , ρ̂2(u; k) =

[
δ1/ε −

1
p0

] k∑
i=1

p−2i
0 ,

for k > 0. Then, the condition (4.23) in Corollary 4.1, becomes

lim inf
u→∞

εq0β
3

6

(
δ3 −

1
p0

) k∑
i=1

p−2i
0

u∫
θ(u)

1
u

dξ ≥
1
e
,
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q0 ≥
6p0

εeβ3 (
p0δ3 − 1

)
ln 1

β

k∑
i=1

p−2i
0

. (5.2)

Also, we have

E (u) = q0

[
δ1/ε −

1
p0

] (
1

3u3

) k∑
i=1

p−2i
0 .

Then, the condition (4.24) simplifies to

εβq0

6

(
δ1/ε −

1
p0

) k∑
i=1

p−2i
0 ln

1
β
≥

1
e
,

which is
q0 >

6

εβe
(
δ1/ε − 1

p0

) k∑
i=1

p−2i
0 ln 1

β

. (5.3)

Using Corollary 4.1, Eq (5.1) is oscillatory if

q0 > Max


6p0

εeβ3 (
p0δ3 − 1

)
ln 1

β

k∑
i=1

p−2i
0

,
6

εβe
(
δ1/ε − 1

p0

) k∑
i=1

p−2i
0 ln 1

β

 . (5.4)

Example 5.2. Now, consider the fourth-order NDE([
x (u) + p0x (λu)

]′′′)′
+

q0

u4 x (µu) = 0, u > 1, (5.5)

where p0, q0 are positive, λ, µ ∈ (0, 1), r (u) = 1, θ (u) = µu, q (u) =
q0
u4 , p (u) = p0 and ζ (u) = λu.

As a result, it is clear that π0 (u) = u, π1 (u) = u2

2 , π2 (u) = u3

6 and π2

(
ζ[2i] (u)

)
=

(λ2iu)3

6 , π0

(
ζ[2i] (u)

)
=

λ2iu, then for p0 < 1, we define

ρ1(u; k) =

(
1
p0
− 1

) k∑
i=0

p2i
0 λ

6i, ρ̂1(u; k) =

(
1
p0
− 1

) k∑
i=0

(
p2i

0

) (
λ2i

)1/ε
;

M1 (u) =
q0

u4µ
3
(

1
p0
− 1

) k∑
i=0

p2i
0 λ

6i;

M2 (u) = q0 (µ)1/ε
(

1
6u2

) (
1
p0
− 1

) k∑
i=0

(
p2i

0

) (
λ2i

)1/ε
;

D (u) =
εu2

2
;

M̃1 (u) = q0µ
3
(

1
3u3

) (
1
p0
− 1

) k∑
i=0

p2i
0 λ

6i;
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and

M̃2 (u) = µ1/εq0

(
1

6u

) (
1
p0
− 1

) k∑
i=0

(
p2i

0

) (
λ2i

)1/ε
.

By applying condition (4.1) in Theorem 4.1 when x ∈ ℵ1, we see

lim inf
u−→∞

ε3u3

18

q0µ
3
(

1
p0
− 1

) k∑
i=0

p2i
0 λ

6i

 ∞∫
u

(
1
s4

)
ds ≥

1
4
,

this implies

q0
ε

18
µ3

(
1
p0
− 1

) k∑
i=0

p2i
0 λ

6i ≥
1
4
,

which get all solutions of (5.5) are oscillatory if

q0 >
18

4εµ3
(

1
p0
− 1

) k∑
i=0

p2i
0 λ

6i

. (5.6)

By applying condition (4.2) in Theorem 4.1 when x ∈ ℵ2, we see

q0
µ1/ε

6

(
1
p0
− 1

) k∑
i=0

(
p2i

0

) (
λ2i

)1/ε
≥

1
4
,

which obtain all solutions of (5.5) are oscillatory if

q0 >
6

4µ1/ε
(

1
p0
− 1

) k∑
i=0

(
p2i

0

) (
λ2i)1/ε

. (5.7)

Remark 5.1. Consider a special case of Eq (5.5) in the form(
[x (u) + 0.5x (0.9u)]′′′

)′
+

q0

u4 x (µu) = 0, u > 1, (5.8)

when talking ε = p0 = 0.5. By using our conditions (5.6) and (5.7), then Eq (5.8) is oscillatory if

q0 >
9

(µ)3
3∑

i=0
(0.5)2i (0.9)6i

. (5.9)

By applying [32, Corollary 1], we see that

S 1 (t) = kq0 (1 − p0) µ3, S 2 (t) =
kq0 (1 − p0) µ

4µt
.

Then, by choosing θ (t) = t4 and φ (t) = t2, we find that (5.8) is oscillatory if

q0 > Max
{

32
3µ3 ,

4
µ

}
. (5.10)
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While [4, Theorem 2.1] ensures the oscillation of Eq (5.8) if

q0 >
9
µ3 , (5.11)

Figures 1 illustrates the efficiency of the conditions (5.9) in studying the oscillation of the solutions
of (5.8) for values of µ ∈ (0, 1) . Thus, our results present a better criterion for oscillation.

Figure 1. Comparison of the oscillation conditions of (5.8).

6. Conclusions

Finding conditions that exclude each of the cases of the derivatives of the positive solution is
often the foundation of the idea of establishing oscillation criteria for differential equations. This
study examines the oscillatory behavior of fourth-order NDEs in the canonical case. The relationship
between the solution and the corresponding function is vital to the oscillation theory of NDEs.
Therefore, we improve these relationships by applying the modified monotonic properties of positive
solutions. The conditions that we obtained using these relationships subsequently proved that there
are no positive solutions in categories ℵ1 and ℵ2. Then, using the newly deduced relationships and
properties, we employed a number of approaches by using different techniques, including recatti and
comparison techniques, to develop a set of oscillation criteria. Additionally, we provided examples that
illustrated and clarified the importance of our results; they were compared with some previous results
in the literature. In the future, we can try to develop new conditions that ensure that every solution
of (1.1) is oscillatory in the noncanonical case.
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