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Abstract

In this article, we introduce a new class of polynomials, known as Apostol Hermite Bernoulli-type polynomials, and

explore some of their algebraic properties, including summation formulas and their determinant form. The majority of our

results are proven using generating function methods. Additionally, we investigate the monomiality principle related to these

polynomials and identify the corresponding derivative and multiplicative operators.

Keywords: Apostol Hermite Bernoulli-type polynomials, Bernoulli-type polynomials, Hermite

polynomials, monomiality principle

AMS subject classification: 33E20; 32A05; 11B83.

1. Introduction

In this document, we adhere to the standard conventions of mathematical notation. Specifically, we
define: N as the set of natural numbers, denoted as {1, 2, . . .}; N0 as the set of non-negative integers,
denoted as {0, 1, 2, . . .}; Z represents the set of integers; R represents the set of real numbers; and C
represents the set of complex numbers.

The Appell polynomials, denoted as {An(x)}n=0,1,2,..., form a special family of functions introduced
by the French mathematician Paul Appell (see [1]). These polynomials are defined by their generating
function. Extensive research has been dedicated to various aspects of the Apostol–Bernoulli, and Apostol–
Euler Hermite polynomials, along with their extensions and related families. These studies have explored
a wide range of topics and applications, enhancing our understanding of their mathematical properties
and significance. Numerous investigations, as cited in [2–7], have focused on these polynomial families,
examining their properties, generating functions, and special values. In recent years, researchers have
also explored modified versions of well-known polynomials such as Bernoulli, Euler, falling factorial, and
Bell polynomials. These studies have employed various mathematical tools and techniques, including
generating functions, umbral calculus, and p-adic integrals, to analyze and derive new properties of these
generalized polynomial forms.

Notable examples of such research can be found in [8,9], where these approaches have been used
to uncover intriguing connections and novel results in the study of these modified polynomial families.
This includes the generalization of two-variable Hermite polynomials, originally introduced by Kampé de
Fériet, as defined in [1]

Hn(x, y) = n!

[n
2
]∑

ν=0

yνxn−2ν

ν!(n− 2ν)!
.
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It is to be noted that [10]
Hn(2x,−1) = Hn(x).

These polynomials can be characterized by the following generating equation:

ext+yt2 =
∞∑
n=0

Hn(x, y)
tn

n!
.

Let α ∈ N be, the generalized Bernoulli-type polynomials R
(α)
n (x) of degree n in x are defined by means

of the following generating function (see [11]):(
z2

2ez − 2

)α

exz =
∞∑
n=0

R(α)
n (x)

zn

n!
, |z| < 2π, 1α := 1,

Rn(x) := R(1)
n (x), n ∈ N0.

The generalized Bernoulli-type polynomials R
(α)
n (x) satisfy the following addition formulae:

(1) R(α+β)
n (x+ y) =

n∑
k=0

(
n

k

)
R

(α)
k (x)R

(β)
n−k(y),

R(α)
n (x+ y) =

n∑
k=0

(
n

k

)
R

(α)
k (y)xn−k.

As an immediate consequence of (1), we have

Rn(x+ y) =
n∑

k=0

(
n

k

)
Rk(y)x

n−k,

Rn(x) =
n∑

k=0

(
n

k

)
Rk x

n−k,

R(α)
n (x) = 0, n < α.

For α = 1, and with the help of Software wxMaxima, it is possible to obtain first few expressions for
the generalized Bernoulli-type polynomials Rn(x):

R0(x) = 0,

R1(x) =
1

2
,

R2(x) = x− 1

2
,

R3(x) =
3

2
x2 − 3

2
x+

1

4
,

R4(x) = 2x3 − 3x2 + x,

R5(x) =
5

2
x4 − 5x3 +

5

2
x2 − 1

12
,

R6(x) = 3x5 − 15

2
x4 + 5x3 − 1

2
x.

For broad information on old literature and new research trends about these classes of polynomials and
for the matrix approach to other classes of special polynomials, we recommend to the interested reader
(see [12–16]).
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2. Apostol Hermite Bernoulli-type polynomials HJn(x, y;λ)

In this section, we explore the Apostol Hermite Bernoulli-type polynomials, a novel class that ex-
tends the classical Hermite and Bernoulli-type polynomials. We provide a comprehensive overview of
their fundamental properties, including generating functions and recurrence relations. This exploration
highlights the unique characteristics and potential applications of these polynomials across various areas
of mathematics and its applications.

Definition 2.1. The Apostol Hermite Bernoulli-type polynomials HJn(x, y;λ) are defined through their
generating function, which is defined in a suitable neighborhood of t = 0.

(2)

(
t2

2λet − 2

)
ext+yt2 =

∞∑
n=0

HJn(x, y;λ)
tn

n!
, |t| < | log(λ)|.

Remark 2.1. Taking y = 0 and λ = 1 in Equation (2) we obtain the corresponding new family of
Bernoulli–type polynomials Rn(x) defined as:(

t2

2ez − 2

)
ext =

∞∑
n=0

Rn(x)
tn

n!
, |t| < 2π.

The following are some illustrative examples showing that there exist Apostol Hermite Bernoulli-type
polynomials and their respective graphs.

Example 2.1. For λ = 1, the first few Apostol Hermite Bernoulli-type polynomials are given as:

ν HJn(x, y; 1)

0
1

2

1
x

2
− 1

4

2
1

12

(
1− 6x+ 6x2 + 12y

)
3

1

4

(
x− 3x2 + 2x3 − 6y + 12xy

)
4 1

60

(
−1 + 30x2 − 60x3 + 30x4 + 60y − 360xy + 360x2y + 360y2

)

Figure 1.
1

12

(
1− 6x+ 6x2 + 12y

) Figure 2.
1
60

(
−1 + 30x2 − 60x3 + 30x4 + 60y − 360xy + 360x2y + 360y2

)
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Theorem 2.1. When considering real numbers x and non-negative integers n, the following relationship
holds

HJn(x+ y, z + u;λ) =
n∑

k=0

(
n

k

)
HJn−k(y, z;λ)HJk(x, u;λ).

Proof. Utilizing the expression provided in (2), we obtain

∞∑
n=0

HJn(x+ y, z + u;λ)
tn

n!
=

(
t2

2λet − 2

)
e(x+y)t+(z+u)t2

=

(
t2

2λet − 2

)
ext+yt+zt2+ut2

=
∞∑
n=0

n∑
k=0

(
n

k

)
HJn−k(y, z;λ)HJk(x, u;λ)

tn

n!
.

By setting the coefficients of
tn

n!
, we arrive at the result.

Theorem 2.2. When considering x ∈ R, the following relationship is established

HJn(x+ z, y;λ) =

n∑
k=0

(
n

k

)
HJn−k(z;λ)Hk(x, y).

Proof. Using the expression in (2), we get

∞∑
n=0

HJn(x+ z, y;λ)
tn

n!
=

(
t2

2λet − 2

)
e(x+z)t+yt2

=

(
t2

2λet − 2

)
ezt+xt+yt2

=
∞∑
n=0

n∑
k=0

(
n

k

)
HJn−k(z;λ)Hk(x, y)

tn

n!
.

By equating the coefficients of
tn

n!
, we obtain the result.

Theorem 2.3. For x, y ∈ R and n ∈ N. Then we have

HJn(x+ z, y;λ) =
n∑

k=0

(
n

k

)
zn−k

HJk(x, y;λ).

Proof. From (2), we obtain

∞∑
n=0

HJn(x+ z, y;λ)
tn

n!
=

(
t2

2λet − 2

)
e(x+z)t+yt2

=

(
t2

2λet − 2

)
ext+yt2+zt

=

∞∑
n=0

n∑
k=0

(
n

k

)
zn−k

HJk(x, y;λ)
tn

n!
.

Equating coefficients of
tn

n!
yields the result.
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For λ = 1 in (2) and following the concepts outlined in [17], we can derive the expression for the
determinants of the Hermite Bernoulli-type polynomials.

Corollary 2.1. The Hermite Bernoulli-type polynomials has the following determinantal representation:

HJ0(x, y) =
1

δ0
.

HJn(x, y) =
(−1)n

δn+1
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

H0(x, y) H1(x, y) · · · · · · Hn−1(x, y) Hn(x, y)
δ0 δ1 · · · · · · δn−1 δn
0 δ0 · · · · · ·

(
n−1
1

)
δn−2

(
n
1

)
δn−1

0 0
. . .

(
n−1
2

)
δn−3

(
n
2

)
δn−2

...
...

. . .
...

...
...

...
0 · · · · · · · · · δ0

(
n

n−1

)
δ1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where the numerical sequence {δn}n≥0 [
t2

2et − 2

]−1

=

∞∑
k=0

δk
tk

k!
.

3. Monomiality Principle

The concept of monomiality traces back to 1941, with Steffenson introducing the poweroid notion [18],
later refined by Dattoli [19,20]. The operators M̂ and D̂ serve as both multiplicative and derivative
operators for a polynomial set {bm(u)}m∈N, satisfying the expressions:

bm+1(u) = M̂{bm(u)}
and

m bm−1(u) = D̂{bm(u)}.
The set {bm(u)}m∈N manipulated by these operators is termed a quasi-monomial and must adhere to

the formula:

[D̂,M̂] = D̂M̂ − M̂D̂ = 1̂,

displaying a Weyl group structure.
The properties of M̂ and D̂ determine the characteristics of the quasi-monomial set {bm(u)}m∈N:

(i) bm(u) satisfies the differential equation

(3) M̂D̂{bm(u)} = m bm(u),

if M̂ and D̂ have differential realizations.
(ii) The explicit form of bm(u) is given by

bm(u) = M̂m {1},

with b0(u) = 1.
(iii) The generating relation in exponential form for bm(u) can be expressed as

etM̂{1} =

∞∑
m=0

bm(u)
tm

m!
, |t| < ∞ ,

using identity (3).
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The primary objective of the monomiality principle is to identify operators for multiplication and
differentiation. Additionally, the monomiality principle was exploited to find these identities for hybrid
special polynomials by many authors, see for example [21–23]. Thus, in the context of the monomiality
principle, we establish the following outcomes to characterize the polynomials HJn(x, y;λ) of degree n in
x, y:

Theorem 3.1. For the polynomials HJn(x, y;λ) of degree n in x, the succeeding multiplicative and deriva-
tive operators hold true:

(4) M̂
HJn(x,y;λ) = x+ 2y

∂

∂x
+

1
∂
∂x

+
λe

∂
∂x

2(λe
∂
∂x

−1)

and

(5) D̂
HJn(x,y;λ) =

∂

∂x
.

Proof. By differentiating expression (2) with respect to t, it follows that

∂

∂t

[(
t2

2λet − 2

)
ext+yt2

]
=

∂

∂t

[ ∞∑
n=0

HJn(x, y;λ)
tn

n!

]

which further gives

(6)

(
x+ 2yt+

1

t
+

λet

2(λet − 1)

)[
t2

2λet − 2
ext+yt2

]
=

∞∑
n=0

n HJn(x, y;λ)
tn−1

n!
.

Also, differentiating (2) with respect to x, it follows that

(7)
∂

∂x

[(
t2

2λet − 2

)
ext+yt2

]
= t

(
t2

2λet − 2

)
ext+yt2 .

Using expression (7) in (6), assertion (4) is proved. Again, in view of expression (7), we have

∂

∂x

[ ∞∑
n=0

n HJn(x, y;λ)
tn

n!

]
=

[ ∞∑
n=0

HJn(x, y;λ)
tn+1

n!

]

thus, replacing n → n− 1, we find

∂

∂x

[ ∞∑
n=0

n HJn(x, y;λ)
tn

n!

]
=

[ ∞∑
n=0

n HJn(x, y;λ)
tn−1

n!

]

which proves assertion (5) while comparing same powers of t both sides.

Theorem 3.2. The polynomials HJn(x, y;λ) of degree n in x, y satisfy the succeeding differential equa-
tion:

(8)

[
x
∂

∂x
+ 2y

∂2

∂x2
+ 1 +

λe
∂
∂x

2(λe
∂
∂x

−1)

∂

∂x
− n

]
HJn(x, y;λ) = 0.

Proof. Inserting expression (4) and (5) in expression (3), we obtain assertion (8).
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4. Conclusion

This article explores the properties of Apostol Hermite Bernoulli-type polynomials, offering a com-
prehensive framework through various characterizations, including the verification of the monomiality
principle. Our findings significantly advance the theoretical development of these polynomials, paving
the way for further research and applications in mathematical analysis.

Looking ahead, future research could extend the investigation to higher-dimensional analogues of
Apostol Hermite Bernoulli-type polynomials, which could reveal richer structures and more complex
behaviors. Furthermore, exploring the application of these polynomials in numerical methods and ap-
proximation theory could lead to practical computational tools. Closer examination of its relationships
with other special functions, as well as its roles in stochastic processes and probability theory, may reveal
deeper connections and broader applications. Furthermore, developing analogues of q and investigating
its properties within the framework of quantum calculus could provide new perspectives and broaden the
theoretical landscape of Apostol Hermite Bernoulli-type polynomials.
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