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Abstract. In the present note, we study the focusing NLS equation in dimension two with a point interaction in the
supercritical regime, showing two results. After obtaining the (nonstandard) virial formula, we exhibit a set of initial data
that shows blow-up. Moreover, we show that the standing waves eiωtϕω corresponding to ground states ϕω of the action
functional are strongly unstable, at least for sufficiently high ω.
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1. Introduction

In the present paper, we study the blow-up of solutions of a focusing nonlinear Schrödinger equation
(NLS) with a power nonlinearity in two dimensions and in the L2 supercritical regime, perturbed by a
point defect. The point defect is represented as a point interaction, sometimes improperly called delta
potential. Namely, we consider the model{

iψ̇(t) = Hαψ(t) − |ψ|p−1ψ

ψ(0) = ψ0

(1.1)

where Hα is defined as a self-adjoint extension of the symmetric operator −Δ starting from the domain
C∞(R2 \ {0}), and α is a parameter classifying the self-adjoint extension. A typical feature of the point

interactions Hα is that its operator domain Dα or its energy domain D 1
2
α (see Sect. 2.1 for details) are

larger than the corresponding domains for the Laplacian, respectively, the Sobolev spaces H2 and H1.
This is the reason why they have to be considered as singular perturbations of the Laplacian operator
(see Sect. 2.1 for details or the treatise [4]). The operator Hα, that can be defined only in dimension
n � 3, describes a zero range interaction, meaning that the interaction is concentrated at a point. In
Quantum Mechanics, this fact is exploited to describe situations in which the details of the interactions
are irrelevant, and the effective behavior of the system is well described by the Hamiltonian Hα, where a
single physical parameter characterizes the behavior of the system. This occurs, for example, in a system
of non-relativistic particles at low temperature, where the thermal wavelength is much larger than the
range of the two body interactions so that the only effective parameter is the scattering length, directly
related to α (see [4] for extensive treatment and bibliography). In the case of Nonlinear Schrödinger
equation 1.1 in which a nonlinear continuous medium is considered, for example, a Kerr medium in fiber
optics or also a Bose-Einstein condensate, both described in suitable approximation by the NLS equation,
the singular perturbation of the Laplacian given by Hα is typically interpreted as the presence in the
medium of a defect perturbing the wave propagation. This model has been studied extensively in one
dimension, where a wealth of results have been obtained as regards well posedness, blow-up, existence
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of standing waves, and their orbital and asymptotic stability, with several variations on the theme (see
[8,12–16,19] and references therein for a sample of the literature).
The model in dimensions two and three has been tackled only recently. The well posedness of the two-
dimensional model has been given first in the strong setting, i.e., for solutions in the operator domain Dα

in [6] (where also the three-dimensional case is treated). Then, the problem as been settled in the energy

space, i.e. for solutions in D 1
2
α in [9] (see Sect. 2.2.1 below for the state-of-the-art of well-posedness results).

The critical nonlinearity power in dimension two, namely the power nonlinearity above which global well
posedness is not anymore granted, as in the unperturbed model, is p = 3 (notice in this respect the rather
different behavior of the model studied in [3]). In this paper, we want to give information about the blow-
up of solutions for p > 3. We will firstly show that for definite and large classes of initial data ψ0, one has
a finite existence time T ∗(ψ0). Then, we will show strong instability behavior around ground states of the
action, i.e. existence of blowing-up states in any neighborhood of such ground states. The starting point
is the formula for the second derivative of the variance, or virial identity, obtained in Sect. 3 (see Lemma
3.2). Such a formula contains an anomalous term with respect to the standard unperturbed model, which
is positive definite and not conserved by the evolution, and that prevents a simple identification of an
invariant set of initial data that blow-up. To overcome the issue, we adopt a strategy originally developed
in the classical paper [5] for the unperturbed model (see for more details Sect. 8.2 in [7]). However, one
has to suitably modify the analysis, exploiting the variational properties of the action functional Sω on
the Nehari manifold (see Sect. 2.2.2 for definitions and further details). Existence and properties of the
ground state ϕω of the action have been studied in [2] and [9]. In particular, ϕω exists for any α and for
any ω > −Eα where −Eα is the always existing eigenvalue of Hα. Our first main result gives a class of
initial data (containing an open set in the phase space) that undergoes blow-up. In the statement below,
E is the total energy (2.4), Q is the functional defined in (3.4)) and Σα is the subset of finite energy

states D 1
2
α with ‖xψ‖ < ∞ (see formula (2.8)).

Theorem 1.1. Let p > 3 and ψ0 ∈ Σα. Suppose that S(ψ0) < Sω(φω) , E(ψ0) � 0 , and Q(ψ0) < 0 .
Then, T ∗(ψ0) < +∞ .

We notice that analogous results with a similar strategy have already been obtained in different models,
including the already mentioned one-dimensional delta interaction (see in particular [10,18]); in this case,
however, the delta term is a form perturbation of the Laplacian, and in this sense, it can be considered
a standard potential, allowing for an easier treatment in comparison to the present model. Notice also
that the virial identity (see (3.3)) needs a somewhat different treatment than the standard formula; in
particular, we analyze the transformation properties of the mass preserving map T σ given by dilatations
(see Proposition 3.6). The second result concerns the strong instability of the standing waves, i.e. the
fact that in the vicinity of any standing waves, there are solutions that blow-up (see Definition 2.3). This
fact, again following the ideas contained in [5] and in the cited papers related to more standard potential
perturbation of the Laplacian, is contained in the second main result.

Theorem 1.2. Let p > 3, ω > |Eα| and ϕω a ground state of the action Sω with E(ϕω) > 0 . Then, the
standing wave eiωtϕω is strongly unstable.

It is well known that in the unperturbed NLS equation, the ground states with p > 3 have positive
energy, while in the present case one expects positive energy only for sufficiently big ω in analogy with
the known case of the presence of external potentials (See Remark 3.10).

In the last section, we consider a different condition for the strong instability of standing waves,
replacing the positivity of the total energy with the more general condition d2

dσ2 Sω(T σϕω)|σ=1 � 0. It is
known that this requirement is sufficient to guarantee strong instability in the case of NLS with a delta
potential in one dimension and with the generalized Coulomb potential with arbitrary dimension (see
[10,18]). We show first that an invariant set of blowing-up initial data exist (see Theorem 4.3), and then
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that the Action ground states with d2

dσ2 Sω(T σϕω)|σ=1 � 0 belong to the norm closure of this set and so
they are strongly unstable (see Theorem 4.4).

We end the introduction noticing that the above results and their proofs actually do not depend on
the α parameter. For this reason and to ease formulae and reading, we will omit the subscript α from
Sects. 3 and 4 in which proof of the main results are given.

2. Preliminaries

2.1. Point interaction in 2d

In the following, we shall denote with boldface, points in R
2. Norms in Lp will be denoted by ‖ · ‖p; we

omit the subscript when p = 2. Let us recall, see for example, chapter II.4 of [4], that for n = 2 the
operator Hα has the domain:

D(Hα) =
{
ψ ∈ L2(Rn)| ψ = φλ + q Gλ, φλ ∈ H2(R2), q = (Γλ

α)−1 φλ(0)
}

with Gλ fundamental solution of the Laplacian and Γλ
α a certain fixed constant. Explicitly (indicating

from now on by the symbol F the Fourier transform)

Gλ := (−Δ + λ)−1δ0 =
1
2π

F−1

[
1

|k|2 + λ

]
=

1
2π

K0(
√

λ|x|) (2.1)

Γλ
α := α +

1
2π

γ +
1
2π

ln(
√

λ/2) α ∈ R ∪ {+∞}.

Here, K0 is the MacDonald function of order zero and γ is the Euler-Mascheroni constant. The constant
α is real (nontrivial interaction) or +∞ (q = 0, corresponding to the standard Laplacian). It enters in the
relation φλ(0) = Γλ

α q, playing the role of a boundary condition at the singularity, and more concretely,
it is related to the s-wave scattering length a0 through the relation a0 = (−2πα)−1. The number λ can
be any number in R

+ \ {−Eα}, where Eα is the negative eigenvalue of Hα, always existing when α ∈ R

(see later). The action of the operator is given by

(Hα + λ)ψ = (−Δ + λ)φλ ( ⇐⇒ Hαψ = −Δφλ − λqGλ) ∀ψ ∈ D(Hα)

It is easily seen and well known that while the decomposition in regular part φλ and singular part qGλ

of any element ψ ∈ D(Hα) depends on the choice of λ, the definition of Hα does not. We often use the
short notation Dα := D(Hα) . One has σc(Hα) = σac(Hα) = [0,∞); Hα has a simple negative eigenvalue
{Eα} for any α ∈ R and ψα is the corresponding eigenvector. Explicitly

Eα = −4e−2(2πα+γ) , ψα(x) =
1
2π

K0(2 e−(2πα+γ)x) .

Let us also introduce the quadratic form Fα on L2(Rn) with domain and action

D(Fα) = {ψ ∈ L2(R2) | ∃q ∈ C, φλ ∈ H1(R2) : ψ = φλ + qGλ}
Fα(ψ) = Fλ(ψ) + Γλ

α|q|2 and Fλ(ψ) = ‖∇φλ‖2 + λ(‖φλ‖2 − ‖ψ‖2)
It does not depend on λ, and it is symmetric, closed and bounded from below. The map ψ �→ Fα(ψ) +
λ‖ψ‖2 is positive for every λ > −Eα and it coincides with 〈ψ, (Hα + λ)ψ〉 ∀ψ ∈ D(Hα). This allows to
interpret the form domain D(Fα) as the domain of the square root of the positive self-adjoint operator
Hα + λ, so that we make use of the notation

D(Fα) = D
(
(Hα + λ)

1
2
)

=: D 1
2
α , λ > −Eα .
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Notice that algebraically and topologically, one has D(Fα) ∼= H1(R2) ⊕ C and the form domain is in a
natural way a Hilbert space. By functional calculus, we can introduce the scale of Hilbert spaces

Ds
α := D

(
(Hα + λ)s

)
, s ∈ R, λ > −Eα .

Ds
α is equipped with the norm ‖ψ‖Ds

α
:= ‖(Hα + λ)sψ‖, equivalent to the graph norm of the operator

(Hα + λ)s. In particular, the spaces Ds
α and D−s

α are in duality and

Ds
α ↪→ L2(R2) ↪→ D−s

α

is a Hilbert triplet. We denote the duality product by 〈·, ·〉−s,s . In the following, we will only consider
the case s = 1

2 and we stress that ‖ψ‖
D

1
2
α

∼= ‖φ‖H1 + |q|. Finally, we recall that the fundamental solution

Gλ is positive, radial, strictly decreasing, and moreover it has the following asymptotic behavior (see [1],
formulae 9.6.12 and 9.6.13 for the first asymptotic and 9.7.2 for the second)

Gλ = − 1
2π

ln(

√
λ

2
|x|) − γ

2π
+ o(1) x → 0 , Gλ ∼ 1√

8π
√

λ|x|
e−√

λ|x| x → ∞ . (2.2)

2.2. The NLS equation with a point interaction

2.2.1. Well posedness. We are interested in solutions of the Cauchy problem for the NLS equation{
i∂tψ(t) = Hαψ(t) + f(ψ)(t)

ψ(0) = ψ0 ∈ Dα or D 1
2
α

(2.3)

where f(ψ) = g|ψ|p−1ψ, and g = ±1.
The following theorem collects the known results about well posedness in the energy domain (mild
solution) and operator domain (strong solution) for the equation (2.3) (see [6] where a detailed analysis
of the well posedness of strong solutions is given, also for the three-dimensional case, and [9] where
treatment of the solutions in the energy domain is given).

Theorem 2.1. (Well-Posedness in D 1
2
α and Dα) Assume p > 1 and ψ0 ∈ D 1

2
α . Then, the following properties

hold true.
(1) There exists T > 0 and a unique weak solution of (2.3) in C([0, T ];D 1

2
α ) ∩ C1([0, T ];D− 1

2
α ).

(2) The following blow-up alternative holds. Let the maximal existence time be defined as

T ∗ = sup
T>0

{
ψ ∈ C([0, T ],D 1

2
α )) ∩ C1([0, T ],D− 1

2
α ) solves mildly (2.3)

}
;

then

lim
t→T ∗

‖ψ(t)‖
D

1
2
α

< ∞ =⇒ T ∗ = ∞.

(3) L2- mass is conserved along the evolution: ‖ψ(t)‖2 = ‖ψ0‖2 ∀t ∈ [0, T ∗) .
(4) Energy is conserved along the evolution: E(ψ(t)) = E(ψ0) ∀t ∈ [0, T ∗)
where

E(ψ) =
1
2
Fα(ψ) +

g

p + 1
‖ψ‖p+1

p+1 ∀ψ ∈ D 1
2
α . (2.4)

(5) Let ψ0 ∈ Dα. Then, there exists T > 0 and a unique strong solution ψ of (2.3) in C([0, T ];Dα) ∩
C1([0, T ];L2(R2)).

(6) Let ψ0 ∈ Dα and the maximal existence time be defined as

T̃ ∗ = sup
T>0

{
ψ ∈ C([0, T ],D(Hα)) ∩ C1([0, T ], L2) solves strongly (2.3)

}
;
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then limt→T̃ ∗ ‖ψ(t)‖Dα
< ∞ =⇒ T̃ ∗ = ∞.

(7) T̃ ∗ = T ∗ .
(8) T ∗ = +∞ if g = +1 and p > 1 or if g = −1 and 1 < p < 3 .

In the following, we will denote as T ∗(ψ0) the maximal existence time of the solution of (2.3). When
T ∗(ψ0) < +∞ we say that the solution ψ(t) corresponding to the initial datum ψ0 blows-up in a finite
time (in the future; analogous definition holds for blow-up in the past). We will omit the dependence of
T ∗ on ψ0 when it is clear from the contest.

2.2.2. Standing waves. Recall that a standing wave of (2.3) is a solution of the form ψ(t) = eiωtϕ . The
profile ϕ is a solution of the stationary equation

Hαϕ + ωϕ + f(ϕ) = 0 (2.5)

equivalent to S′
ω(ϕ) = 0 , where the action functional Sω is defined as

Sω(ϕ) = E(ϕ) +
ω

2
‖ϕ‖2 ∀ϕ ∈ D 1

2
α . (2.6)

The set of ground states of the action Sω is defined as

G =
{

ϕω ∈ D 1
2
α s.t. Sω(ϕω) � Sω(ϕ) ∀ϕ ∈ D 1

2
α satisfying S′

ω(ϕ) = 0
}

(2.7)

Recently in [9] and [2] existence and properties of ground states of the action Sω for the case of attractive
nonlinearity (i.e.g = −1) in (2.3) have been proved by variational methods. In particular, a ground state
exists for every ω > −Eα and if ϕω ∈ G is a ground state, then it coincides with the infimum of the
action constrained on the Nehari manifold:

d(ω) = inf
{

Sω(ϕ) s.t. ϕ ∈ D 1
2
α , ϕ �= 0, Nω(ϕ) = 0

}
= Sω(ϕω)

where Nω is the Nehari functional

Nω(ϕ) = Fα(ϕ) + ω‖ϕ‖2 − ‖ϕ‖p+1
p+1 .

The following fact is an immediate consequence of the results in [9] and [2] and it will be useful later (see
also the analogous Lemma in [10]).

Proposition 2.2. Let ϕω ∈ G a ground state of the action Sω and ψ ∈ D 1
2
α s.t. ‖ψ‖p+1

p+1 = ‖ϕω‖p+1
p+1 . Then

(a) Nω(ψ) � 0
(b) Sω(ψ) � Sω(ϕω).

Proof. From Lemma 3.3 in [9] and d(ω) = inf{ p−1
2(p+1)‖ψ‖p+1

p+1, ψ ∈ Nω} = p−1
2(p+1)‖ϕω‖p+1

p+1 = Sω(ϕω) prop-

erty a) follows. Taking into account a) one has Sω(ϕω) = p−1
2(p+1)‖ϕω‖p+1

p+1 = p−1
2(p+1)‖ϕω‖p+1

p+1 + 1
2Nω(ϕω) �

p−1
2(p+1)‖ψ‖p+1

p+1 + 1
2Nω(ψ) = Sω(ψ) . �

Finally, we recall the definition of strong instability of a standing wave.

Definition 2.3. The standing wave ψ(t) = eiωtϕω is said to be strongly unstable if for every ε > 0 there

exist ψ0 ∈ D 1
2
α such that ‖ψ0 − ϕω‖

D
1
2
α

< ε with T ∗(ψ0) < +∞ .

As a last preliminary definition, we adapt a classic tool needed in the treatment of the virial functional
to the point interaction framework. We put

Σα := {ψ ∈ D 1
2
α (R2) | xψ ∈ L2(R2)}. (2.8)
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3. Blow-up and strong instability.

In the following, the value and sign of α will be irrelevant, so we will omit the corresponding subscript
in the symbol Hα, Fα, Dα , D 1

2
α and Σα, with the sole exception of Remark 3.5.

3.1. Virial identity

Lemma 3.1. Let ψ0 ∈ Σ and ψ ∈ C([0, T ∗) ;D 1
2 (R2)) the corresponding weak maximal solution of (2.3).

Then, ψ ∈ C([0, T ∗) ; Σ). Moreover, for any fixed ψ ∈ D 1
2 (R2), the variance

I(t) :=
∫
R2

|x|2 |ψ(t,x)|2 dx

defines a C1([0, T ∗) ;R) function and

d

dt
I(t) = 4 Im

∫
R2

ψ̄(t,x)x · ∇xψ(t,x) dx. (3.1)

Proof. We firstly show that t �→ xψ(t,x) ∈ C0([0, T ∗) ;L2(R2)). Let χε ∈ S(R2) , χε(x) = e−ε|x|2 and
define a regularized variance

Iε(t) :=
∫
R2

|xχεψ(t,x)|2 dx.

Let ψ0 ∈ Σ and ψ ∈ C([0, T ∗),D 1
2 ) ∩ C1([0, T ∗) ;D− 1

2 (R2)) the weak solution of the (2.3). One has
xχεψ ∈ C([0, T ∗),D 1

2 ) and for any t ∈ [0, T ∗) we have

d

dt

∫
R2

|xχεψ(t,x)|2 dx = 2Re 〈|x|2χ2
εψ, ∂tψ〉− 1

2 , 12

= 2Re 〈|x|2χ2
εψ,−iHαψ − ig|ψ|p−1ψ〉− 1

2 , 12

= 2 Im 〈H(|x|2χ2
εψ), ψ〉− 1

2 , 12

= 2 Im 〈−Δ(|x|2χ2
εψ), ψ〉− 1

2 , 12

= −2 Im
∫
R2

ψ∇ · ∇(|x|2χ2
εψ) dx

= −2 Im
∫
R2

ψ∇ · [
χ2

ε(|x|2∇ψ + 2xψ − 2εx|x|2ψ)
]

dx .

Now we can integrate by parts noticing that x∇ψ ∈ L2
loc(R

2) and after suppressing a real term in the
integrand we obtain

d

dt

∫
R2

|xχεψ(t,x)|2 dx = 4 Im
∫

χ2
ε(1 − ε|x|2)ψ x · ∇ψ dx
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and integrating in time

Iε(t) = Iε(0) + 4 Im

t∫
0

∫
χ2

ε(1 − ε|x|2)ψ x · ∇ψ dx ds (3.2)

Notice now that x·∇ψ = x·∇φλ+qx·∇Gλ and taking into account that ‖∇φλ‖ � c‖ψ‖D 1
2
, ‖x·q∇Gλ‖ �

c‖ψ‖D 1
2

one gets

Iε(t) � Iε(0) + c(m)

t∫
0

‖ψ(s)‖ 1
2

ds + c

t∫
0

‖ψ(s)‖ 1
2
I

1
2
ε (s) ds

where c(m) is a constant depending on the mass. From Grönwall inequality it follows that there exists a
constant c independent on ε such that

Iε(t) � c t ∈ [0, T ∗]

From Fatou’s lemma one finally concludes that

I(t) =
∫

lim inf
ε

χ2
ε|x|2|ψ(t,x)|2 dx � lim inf

ε

∫
χ2

ε|x|2|ψ(t,x)|2 dx � c t ∈ [0, T ∗]

which gives I(t) ∈ L∞ ∀t ∈ [0, T ∗] , the map t �→ ‖| · |u(t, ·)‖ is bounded on any (0, T ) with T < T ∗ and
consequently weakly continuous as a map (0, T ∗) → L2(R2). From (3.2), the fact that ψx · ∇ψ ∈ CtL

1
x

and the dominated convergence theorem, we also obtain

I(t) = I(0) + 4 Im

t∫
0

∫
ψ x · ∇ψ dx ds ∀t ∈ [0, T ∗]

which gives at once that the ψ ∈ C0([0, T ∗) ; Σ) and validity of (3.1). �

The crucial information is contained in the following lemma

Lemma 3.2. (Virial identity) Let ψ0 ∈ Σ and ψ ∈ C([0, T ∗) ;D 1
2 ) the corresponding maximal weak solu-

tion of (2.3). Then, the function

t �→ I(t) =
∫
R2

|x|2 |ψ(t, x)|2 dx

is in C2([0, T ∗) ;R) and the following identity holds

d2

dt2
I(t) = 16E(ψ) + 8g

(p − 3)
p + 1

‖ψ(t)‖p+1
p+1 +

2
π

|q|2

= 8F(ψ) + 8g
(p − 1)
p + 1

‖ψ(t)‖p+1
p+1 +

2
π

|q|2 = 8Q(ψ) (3.3)

where

Q(ψ) := F(ψ) + g
(p − 1)
p + 1

‖ψ(t)‖p+1
p+1 +

1
4π

|q|2 . (3.4)

Proof. Let us show the result first assuming that ψ0 ∈ Σ ∩ D and considering the corresponding strong
solution ψ ∈ C([0, T ∗) ;D) ∩ C1([0, T ∗) ;L2(R2)). We need to derive in time the r.h.s. of (3.1). We
regularize it writing

hε(t) := Im
∫
R2

e−ε|x|2 ψ x · ∇ψ dx . (3.5)
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Admitting that ψ ∈ C1([0, T ∗),D 1
2 ) one can safely derive in time (3.5), obtaining

ḣε(t) := Im
∫
R2

e−ε|x|2 ψ̇ x · ∇ψ dx + Im
∫
R2

e−ε|x|2 ψ x · ∇ψ̇ dx .

Both addenda are well defined, and more precisely the map t �→ e−ε|x|2 x · ∇ψ is in C1([0, T ∗), L2(R2))
because

‖e−ε|x|2 x · ∇ψ‖ = ‖e−ε|x|2x · ∇φ + e−ε|x|2 q(t)x · ∇Gλ‖ � cε (‖∇φ‖ + |q(t)|) � ‖ψ‖D 1
2

,

Now, integrating by part the second addendum, one has

ḣε(t) := Im

⎧⎨
⎩

∫
R2

e−ε|x|2
(
ψ̇ x · ∇ψ − ψ̇ x · ∇ψ

)
dx − 2

∫
R2

e−ε|x|2
(
ψ ψ̇ − ε|x|2ψψ̇

)
dx

⎫⎬
⎭ (3.6)

and the r.h.s. is well defined and continuous in time only assuming ψ ∈ C1([0, T ∗),D 1
2 ). By density of

C1([0, T ∗),D 1
2 ) in C([0, T ∗),D 1

2 ) ∩ C1([0, T ∗), L2) (which is proven as in the case of standard Sobolev
case), formula (3.6) still holds in these hypotheses. Now we perform a second regularization considering
ψ ∈ C0([0, T ∗),D) ∩ C1([0, T ∗), L2), so that we can apply the equation in strong form. From (3.6), by
using Im z = − Im z and then the equation in (2.3), one obtains

ḣε(t) = 2 Im
∫
R2

e−ε|x|2 ψ̇ (x · ∇ψ + ψ) dx + 2 Im ε

∫
R2

e−ε|x|2 |x|2ψψ̇ dx

= 2 Im
∫
R2

e−ε|x|2i
(
Hψ + f(ψ)

)
(x · ∇ψ + ψ) dx + 2ε Im (−i)

∫
R2

e−ε|x|2 |x|2ψ (Hψ + f(ψ)) dx

= 2Re
∫
R2

e−ε|x|2
(
Hψ + f(ψ)

)
ψ dx − 2ε Re

∫
R2

e−ε|x|2 |x|2ψ (Hψ + f(ψ)) dx +

2Re
∫
R2

e−ε|x|2Hψ (x · ∇ψ) dx + 2Re
∫
R2

e−ε|x|2f(ψ) (x · ∇ψ) dx = I + II + III + IV

Thanks to the dominated convergence theorem, the term I converges to

2
(
〈Hψ,ψ〉 + g‖ψ‖p+1

p+1

)
=4E(ψ) − 4

∫
R2

F (ψ) dx + 2(p + 1)
∫
R2

F (ψ) dx

=4E(ψ) + 2(p − 1)
∫
R2

F (ψ) dx (3.7)

where we have denoted

F (ψ) =
g

p + 1
|ψ|p+1 .

The term II is vanishing and now let us consider III and IV . To treat IV , we make use of the identity

2Re e−ε|x|2f(ψ) x · ∇ψ = ∇ · (2xe−ε|x|2F (ψ)) + 4ε|x|2e−ε|x|2F (ψ) − 4e−ε|x|2F (ψ)

and it follows by the divergence theorem and dominated convergence that

2Re
∫
R2

e−ε|x|2f(ψ)x · ∇ψ dx =
∫
R2

(
4ε|x|2e−ε|x|2F (ψ) − 4e−ε|x|2F (ψ)

)
dx −→ −4

∫
R2

F (ψ) dx (3.8)
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For III, we preliminarily decompose the domain element in regular and singular part, obtaining

2Re
∫
R2

e−ε|x|2Hψ x · ∇ψ dx =

2Re
∫
R2

e−ε|x|2
(
−Δφλ x · ∇φλ − λ qGλx · ∇φλ − qΔφλx · ∇Gλ − λ|q|2Gλx · ∇Gλ

)
dx =

IIIa + IIIb + IIIc + IIId

Now we treat the various addenda separately. Integrating by parts IIIa, one has

IIIa =2Re
∫
R2

(−Δφλ) e−ε|x|2x · ∇φλ dx = 2Re
∫
R2

∇φλ · ∇(e−ε|x|2x · ∇φλ) dx =

2Re
∫
R2

∇φλ · ∇(x · ∇φλ)e−ε|x|2 dx − 4ε Re
∫
R2

e−ε|x|2 |x · ∇φλ|2 dx

The second term vanishes by dominated convergence and the first term vanishes as well exploiting the
following identity, which holds true in the two-dimensional case,

2Re e−ε|x|2∇φλ · ∇(x · ∇φλ) = 2ε|x|2e−ε|x|2 |∇φλ|2 + ∇ · (xe−ε|x|2 |∇φλ|2) ,

and then integrating and applying the divergence theorem and dominated convergence again.
To proceed, let us note preliminarily the following identities easily obtained by Fourier transform

(where formula (2.1) is used and it is essential the dimension 2 in the first):

F (x · ∇Gλ) = − 1
2π

∇ · k
(|k|2 + λ)

= − 1
2π

2λ

(|k|2 + λ)2
(3.9)

F (∇ · xGλ) = − 1
2π

k · ∇ 1
|k|2 + λ

=
1
2π

2|k|2
(|k|2 + λ)2

(3.10)

In particular, one sees that x · ∇Gλ ∈ H2(R2) and xGλ ∈ H1(R2), and we can integrate by parts in

IIIb + IIIc =2Re
∫
R2

e−ε|x|2
(
−λ qGλx · ∇φλ − qΔφλx · ∇Gλ

)
dx

= 2Re
∫
R2

(
λGλqφλx · ∇e−ε|x|2 − qφ

λ
x · ∇Gλ(Δe−ε|x|2) − 2qφ

λ∇(x · ∇Gλ) · ∇e−ε|x|2
)

dx

+ 2Re
∫
R2

e−ε|x|2(λqφλ∇ · (xGλ) − qφ
λ
Δ(x · ∇Gλ)) dx

The last integral identically vanishes and from anyone of the terms in the first integral can be extracted
a factor ε; one concludes that IIIb + IIIc −→ 0 by dominated convergence.

It remains to consider the limit for ε → 0 of IIId, which can be computed explicitly thanks to the
Plancherel theorem and identities (2.1) and (3.9):

IIId =2Re
∫
R2

e−ε|x|2 (−λ|q|2Gλx · ∇Gλ
)
dx −→ −2λ|q|2 Re

∫
R2

Gλx · ∇Gλdx

=
2λ2|q|2

π

∞∫
0

r

(r2 + λ)3
dr =

1
2π

|q|2. (3.11)
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Finally, collecting (3.7),(3.8), (3.11) and taking into account that the other terms involved vanish, we
obtain

Ï(t) =4 lim
ε→0

ḣε(t) = 16E(ψ) + (8p − 24)
∫
R2

F (ψ) dx +
4
π

|q|2

=16E(ψ) + 8g
p − 3
p + 1

∫
R2

|ψ|p+1 dx +
2
π

|q|2

=8F(ψ) + 8g
(p − 1)
p + 1

‖ψ(t)‖p+1
p+1 +

2
π

|q|2

Having proved the identity (3.3) for strong solutions, the same identity follows for weak solutions exploit-
ing continuous dependence and density, and this ends the proof of the Lemma. �

3.2. Mass preserving scaling and its properties

From now on, we will only consider the attractive nonlinearity, i.e. the case g = −1.

Definition 3.3. Let us introduce the mass preserving scaling map T σ : L2(R2) → L2(R2), σ ∈ R σ > 0

T σ(ψ) ≡ ψσ(x) = σψ(σx) ∀ψ ∈ L2(R2)

Remark 3.4. By using Gλ(σx) = 1
2π K0(

√
λσ|x|) = 1

2π K0(
√

λσ2|x|) = Gλσ2
(x) := Gλσ

(x) one obtains

ψσ(x) = σφ(σx) + qσGλ(σx) = σφ(σx) + σqGλσ2
(x) = φσ(x) + qσGλσ

(x)

and the map ψ → ψσ leaves invariant D 1
2 (with the same α). It also follows that qσ = σq .

Remark 3.5. One has Gλ −Gλσ2 ∈ H3−ε ∀ε > 0 and exploiting the first asymptotic relation in (2.2), one
obtains (Gλσ2 − Gλ)(0) = − 1

2π log σ. From this one concludes that T σ does not preserve Dα . Instead,
T σ : Dα → Dα− 1

2π log σ. In fact, from ψ = φλ + q Gλ, φλ(0) = Γλ
αq, it follows

ψσ(x) = σφλ(σx) + σq Gλ(σx) = σφλ(σx) + σq(Gλσ2 − Gλ)(σx) + σqGλ(x)

= (φλ)σ(x) + qσGλ(x)

and (φλ)σ(0) = σφλ(0) − σq 1
2π log σ = σq(Γλ

α − 1
2π log σ) = qσΓλ

α− 1
2π log σ

, hence ψσ ∈ Dα− 1
2π log σ .

Proposition 3.6. Let ψ ∈ D 1
2 . Then

F(ψσ) = σ2F(ψ) +
|q|2
2π

σ2 log σ

‖ψσ‖p+1
p+1 = σp−1‖ψ‖p+1

p+1

d

dσ
F(ψσ)|σ=1 = 2F(ψ) +

1
2π

|q|2

d

dσ
‖ψσ‖p+1

p+1|σ=1 = (p − 1)‖ψ‖p+1
p+1

d

dσ
E(ψσ)|σ=1 =

d

dσ
S(ψσ)|σ=1 = Q(ψ) .

Proof. From ψσ = σφ(σx) + σqGλσ2
and the identity Γλσ2

= Γλ + 1
2π log σ one obtains immediately

F(ψσ) = σ2‖∇φ‖2 + σ2Γλσ2

α |q|2 + λσ2(‖φ‖2 − ‖ψ‖2) = σ2F(ψ) + |q|2
2π σ2 log σ . The other identities are

obtained by direct computation without difficulty. �
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For fixed ϕω ∈ G let us define the functions σ �→ Sω(ϕσ
ω) and σ �→ Qω(ϕσ

ω) given by

Sω(ϕσ
ω) =

σ2

2
F(ϕω) +

ω

2
‖ϕω‖2 +

σ2

4π
log σ|qω|2 − 1

p + 1
σp−1‖ϕω‖p+1

p+1 (3.12)

Q(ϕσ
ω) = σ2F(ϕω) +

σ2

2π
log σ|qω|2 − p − 1

p + 1
σp−1‖ϕω‖p+1

p+1 +
σ2

4π
|qω|2 (3.13)

It is immediate that the functions σ �→ Sω(ϕσ
ω) and σ �→ Q(ϕσ

ω) belong to ∈ C∞(R+).
Let us now denote, again for fixed ϕω ∈ G,

A = F(ϕω) +
1
4π

|qω|2, B =
1
2π

|qω|2, C =
p − 1
p + 1

‖ϕω‖p+1
p+1 . (3.14)

Then, we have

Proposition 3.7. Let ϕω ∈ G. Then, the following identities hold:

d

dσ
Sω(ϕσ

ω) =Aσ + Bσ log σ − Cσp−2 (3.15)

d2

dσ2
Sω(ϕσ

ω) =(A + B) + B log σ − C(p − 2)σp−3 (3.16)

d3

dσ3
Sω(ϕσ

ω) =
B

σ
− C(p − 2)(p − 3)σp−4 (3.17)

d

dσ
Sω(ϕσ

ω)|σ=1 =0 or equivalently A = C (3.18)

Q(ϕω) =0 (3.19)

Q(ϕσ
ω) =σ

d

dσ
Sω(ϕσ

ω) (3.20)

d

dσ
Q(ϕσ

ω) =
d

dσ
Sω(ϕσ

ω) + σ
d2

dσ2
Sω(ϕσ

ω. (3.21)

Proof. The proof of (3.15), (3.16), (3.17)) is obtained by direct computation of the derivatives taking
into account (3.12) and (3.14). Property (3.18) is obtained just exploiting ϕω ∈ G i.e. S′

ω(ϕω) = 0 .
Property (3.19) is a reformulation of (3.18). Properties (3.20) and (3.21) are based on the previously
proven identities. For (3.20),

σ
d

dσ
Sω(ϕσ

ω) = σ2F(ϕω) +
σ2

2π
log σ|qϕω

|2 +
σ2

4π
|qϕω

|2 − p − 1
p + 1

σp−1‖ϕω‖p+1
p+1 = Q(ϕσ

ω) .

Identity (3.21) is obtained by deriving (3.20). �

Remark 3.8. In the previous proposition, properties (3.15), (3.16), (3.17), (3.20), (3.21) do not depend
on ϕω being a stationary state and they hold for every ϕ ∈ D 1

2 .

3.3. Blow-up and strong instability

The next result is crucial for the analysis.

Lemma 3.9. Let p > 3, ϕ ∈ D 1
2 , ϕ �= 0, E(ϕ) � 0 , Q(ϕ) � 0 and ϕω ∈ G; then

Sω(ϕω) < Sω(ϕ) − 1
2
Q(ϕ) .
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Proof. Let

σ0 =

(
‖ϕω‖p+1

p+1

‖ϕ‖p+1
p+1

) 1
p−1

.

Then, ‖ϕσ0‖p+1 = ‖ϕω‖p+1, and thanks to Lemma 2.2, it follows Sω(ϕω) � Sω(ϕσ0) . Now consider the
real function

g(σ) := Sω(ϕσ) − σ2

2
Q(ϕ) =

ω

2
‖ϕ‖2 +

σ2

4π
(log σ − 1

2
)|qϕ|2 − σ2

p + 1

(
σp−3 − p − 1

2

)
‖ϕ‖p+1

p+1

Suppose that g(σ0) � g(1); then, from the variational characterization 2.2 of ϕω and Q(ϕ) � 0 it follows

Sω(ϕω) � Sω(ϕσ0) � Sω(ϕσ0) − σ2
0

2
Q(ϕ) � Sω(ϕ) − 1

2
Q(ϕ)

which is the thesis. So it is enough to show that g(σ0) � g(1) . Actually, we will show that σ = 1 is the
unique point of absolute maximum of g. One has

g′(σ) = Bσ log σ − Aσ(σp−3 − 1) .

It is immediate that σ = 1 is a root. An elementary analysis shows that a second root σ∗ exists in (0, 1].
It is an easy check that in σ = 1, there is a maximum, and in σ∗ ∈ (0, 1), there is a minimum, whatever
are A and B. Moreover, being Q(ϕ) � 0 and E(ϕ) > 0, one has that

g(1) = Sω(ϕ) − 1
2
Q(ϕ) � Sω(ϕ) � ω

2
‖ϕ‖2 = g(0+) .

Finally, thanks to p > 3, one has limσ→+∞ g(σ) = −∞ and this ends the proof. �

Proof of Theorem 1.1. Let us set

Uω =
{

ϕ ∈ D 1
2 (R2) s.t. Sω(ϕ) < Sω(ϕω), E(ϕ) � 0, Q(ϕ) < 0

}
.

We firstly show that the set Uω is invariant for the flow of (2.3). Let ψ0 ∈ Uω and ψ(t) be the corresponding
weak solution of (2.3). Thanks to the conservation law of mass and energy, one has that Sω(ψ(t)) <
Sω(ϕω) and E(ψ(t)) � 0 ∀t ∈ (0, T ∗). It remains to show that Q(ψ(t)) < 0 . Suppose, by absurd, that
there exist a time t ∈ (0, T ∗) such that Q(ψ(t)) = 0. Being necessarily ψ(t) �= 0, applying Lemma 3.9 one
obtains

Sω(ϕω) < Sω(ψ(t)) − 1
2
Q(ψ(t)) = Sω(ψ(t))

against the hypotheses. So Q(ψ(t)) < 0 ∀t ∈ (0, T ∗) . Now let ψ0 ∈ Uω ∩ Σ, it follows from Lemma 3.1
and the invariance of Uω that the solution ψ(t) ∈ Uω ∩Σ ∀t ∈ (0, T ∗) . From Lemma 3.2 and in particular
3.3, exploiting conservation laws of mass and energy, it follows that

1
8

d2

dt2
Iψ(t) = Q(ψ(t)) < 2(Sω(ψ(t)) − Sω(ϕω)) = 2(Sω(ψ0) − Sω(ϕω)) < 0 ∀t ∈ (0, T ∗(ψ0))

and this implies T ∗(ψ0) < +∞ by the classical elementary concavity estimate. �

Proof of Theorem 1.2. By elliptic regularity, it follows that ϕω ∈ Σ . Now consider ϕσ
ω(x) = σϕω(σx) ∈

Σ . Notice that from formula (3.14) and formula (3.18)

E(ϕω) > 0 ⇐⇒ 1
2
(A − B

2
) − 1

p − 1
C > 0 ⇐⇒ 1

2π
|qω|2 < 2

p − 3
p + 1

‖ϕω‖p+1
p+1
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As already known, σ = 1 is a stationary point of σ �→ Sω(ϕσ
ω), Moreover, d2

dσ2 Sω(ϕσ
ω)|σ=1 = {(A + B) +

B log σ − A(p − 2)σp−3}|σ=1 = A(3 − p) + B so that

d2

dσ2
Sω(ϕσ

ω)|σ=1 < 0 ⇐⇒ B < (p − 3)A ⇐⇒ 1
2π

|qω|2 <
(p − 1)(p − 3)

p + 1
‖ϕω‖p+1

p+1

This means that p > 3 and E(ϕω) > 0 imply that σ = 1 is a local maximum for σ �→ Sω(ϕσ
ω) and actually

the absolute maximum, thanks to S(ϕω) > ω‖ϕω‖2 = S(ϕσ
ω)|0+ . Consequently Sω(ϕσ

ω) < Sω(ϕω) ∀σ > 1 .
Finally, from formula (3.20) and σ > 1 one has

Q(ϕσ
ω) = σ

d

dσ
Sω(ϕσ

ω) < 0 .

To summarize, ϕσ
ω ∈ Uω ∩ Σ ∀σ > 1. Being ‖ϕσ

ω − ϕω‖D 1
2

→ 0 as σ → 1 the proof is complete. �

Remark 3.10. The condition E(ϕω) > 0 is expected to be true for ω > ω∗ great enough. That this should
be true can be understood by means of the scaling ϕω(x) → ϕ̂ω(x) = ω− 1

p−1 ϕω( x√
ω
) . One has

Hα̂ϕ̂ω + ϕ̂ω − |ϕ̂ω|p−1|ϕ̂ω| = 0 (3.22)

with the modified parameter α̂ = α+ 1
4π log ω. Formally, α̂ → +∞ as ω → ∞ and the operator Hα̂ → −Δ

so that (3.22) reduces to the standard NLS, for which it is well known that the ground state has positive
energy if p > 3 (see for example Corollary 8.1.3 in [7]). The previous formal argument works rigorously
for fairly general Schrödinger operators −Δ + V (see [11]).

4. Strong instability with d2

dσ2 Sω (ϕσ
ω )|σ=1 � 0.

It appears from the proof of the previous result that the condition E(ϕω) � 0 is, in general, stronger
than the condition d2

dσ2 Sω(ϕσ
ω)|σ=1 � 0. So is a natural generalization of the result given in the previous

section consists in assuming d2

dσ2 Sω(ϕσ
ω)|σ=1 � 0 as the condition selecting the frequencies of the ground

waves the instability of which we want to prove. This more general condition has been advocated by M.
Ohta in several papers with various collaborators ( [11,13], see also [18]).

Definition 4.1. Let ϕω ∈ G and set

Vω =
{

ϕ ∈ D 1
2 (R2) s.t. Sω(ϕ) < Sω(ϕω), Q(ϕ) < 0, ‖ϕ‖ � ‖ϕω‖, ‖ϕ‖p+1 > ‖ϕω‖p+1

}
.

Lemma 4.2. Let p > 3, ϕω ∈ G with ω s.t. d2

dσ2 Sω(ϕω) � 0, and let ϕ ∈ D 1
2 such that ϕ �= 0, Q(ϕ) � 0,

‖ϕ‖ � ‖ϕω‖, ‖ϕ‖p+1 > ‖ϕω‖p+1 ; then

Sω(ϕω) < Sω(ϕ) − 1
2
Q(ϕ) .

Proof. Let

σ0 =

(
‖ϕω‖p+1

p+1

‖ϕ‖p+1
p+1

) 1
p−1

.

Then, σ0 ∈ (0, 1], ‖ϕσ0‖p+1 = ‖ϕω‖p+1 = σ
p−1
p+1
0 ‖ϕ‖p+1. Now consider the real function

g(σ) := Sω(ϕσ) − σ2

2
Q(ϕ) =

ω

2
‖ϕ‖2 +

σ2

4π

(
log σ − 1

2

)
|qϕ|2 − σ2

p + 1

(
σp−3 − p − 1

2

)
‖ϕ‖p+1

p+1
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Suppose that g(σ0) � g(1) ; then, thanks to lemma 2.2, it follows Sω(ϕω) � Sω(ϕσ0) and being Q(ϕ) � 0
one has

Sω(ϕω) � Sω(ϕσ0) � Sω(ϕσ0) − σ2
0

2
Q(ϕ) � Sω(ϕ) − 1

2
Q (ϕ)

which is the thesis. So it is enough to show that g(σ0) � g(1) . This inequality is equivalent to

σ2
0

4π

(
log σ0 − 1

2

)
|qϕ|2 − σ2

0

p + 1

(
σp−3
0 − p − 1

2

)
‖ϕ‖p+1

p+1 � − 1
8π

|qϕ|2 +
p − 3

2(p + 1)
‖ϕ‖p+1

p+1(
σ2
0 log σ0

4π
− σ2

0

8π
+

1
8π

)
|qϕ|2 � 1

p + 1

(
σp−1
0 − (p − 1)

2
σ2
0 +

p − 3
2

)
‖ϕ‖p+1

p+1

or also

|qϕ|2 � 4π

p + 1
2σp−1

0 − (p − 1)σ2
0 + (p − 3)

2σ2
0 log σ0 − σ2

0 + 1
‖ϕ‖p+1

p+1 .

The idea is to find an estimate of the type |qϕ|2 � h(σ0)‖ϕ‖p+1
p+1 by making use of the hypotheses on ϕ,

and then verify that

h(σ0) � 4π

p + 1
2σp−1

0 − (p − 1)σ2
0 + (p − 3)

2σ2
0 log σ0 − σ2

0 + 1
∀σ ∈ (0, 1)

that would prove g(σ0) � g(1) .
Notice that from (3.16) and (3.18),

d2

dσ2
Sω(ϕσ

ω)|σ=1 � 0 ⇐⇒ F(ϕω) +
3
4π

|qω|2 � (p − 1)(p − 2)
p + 1

‖ϕω‖p+1
p+1

⇐⇒ 1
2π

|qω|2 � (p − 3)(p − 1)
p + 1

‖ϕω‖p+1
p+1 (4.1)

The following Pohozaev identity is obtained applying the computations done in Lemma 3.2 to the sta-
tionary equation (2.5), or equivalently combining the constraints Nω(ϕω) = 0 and Q(ϕω) = 0:

ω‖ϕω‖2 =
|qω|2
4π

+
2

p + 1
‖ϕω‖p+1

p+1

and making use of inequality (4.1) one gets

ω‖ϕω‖2 =
|qω|2
4π

+
2

p + 1
‖ϕω‖p+1

p+1 �
(

2
p + 1

+
1
2

(p − 3)(p − 1)
p + 1

)
‖ϕω‖p+1

p+1 =
p2 − 4p + 7

2(p + 1)
‖ϕω‖p+1

p+1

Now, from ‖ϕ‖ � ‖ϕω‖, σp−1
0 ‖ϕ‖p+1 = ‖ϕω‖p+1 one obtains

ω‖ϕ‖2 � p2 − 4p + 7
2(p + 1)

σp−1
0 ‖ϕ‖p+1

p+1 . (4.2)

The condition N(ϕσ0) � 0 which holds thanks to proposition 2.2 is equivalent to

σ2
0F(ϕ) +

1
2π

σ2
0 log σ0|qϕ|2 + ω|ϕ|2 − σp−1

0 ‖ϕ‖p+1
p−1 � 0

and exploiting Q(ϕ) < 0 one arrives to

− 1
2π

σ2
0 log σ0|qϕ|2 < σ2

0

p − 1
p + 1

‖ϕ‖p+1
p−1 − σ2

0

4π
|qϕ|2 + ω|ϕ|2 − σp−1

0 ‖ϕ‖p+1
p−1

that combined with (4.2) yields

1
4π

σ2
0(1 − 2 log σ0)|qϕ|2 <

(
σ2
0

p − 1
p + 1

+
p2 − 4p + 7

2(p + 1)
σp−1
0 − σp−1

0

)
‖ϕ‖p+1

p−1
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or also

|qϕ|2 <
4π

p + 1

(
2(p − 1) + (p2 − 4p + 7)σp−3

0 − 2(p + 1)σp−3
0

)
2(1 − 2 log σ0)

‖ϕ‖p+1
p−1

so that the inequality that has to be checked is

2(p − 1) + (p2 − 4p + 7)σp−3
0 − 2(p + 1)σp−3

0

2(1 − 2 log σ0)
� 2σp−1

0 − (p − 1)σ2
0 + (p − 3)

2σ2
0 log σ0 − σ2

0 + 1
.

The previous inequality is equivalent to f(σ0) � 0 where

f(σ) = (p − 3)2
(
σp−1 − 2σp−1 log σ

) − 4(p − 3) log σ − 4 − (p2 − 6p + 5)σp−3

Notice that f(0+) = +∞, f(1) = 0, so that to prove the inequality it is sufficient to prove that f is
decreasing. That this is indeed the case is a lengthy but elementary check based on the analysis of the
derivatives of the function f up to the third one. We omit the details. �

Theorem 4.3. Let g = −1, p > 3 and ψ0 ∈ Σ ∩ Vω . Then, T ∗(ψ0) < +∞ .

Proof. It is already known that ψ(t) ∈ Σ and by the conservation laws that Sω(ψ(t)) < Sω(ϕω) and
‖ψ(t)‖ � ‖ϕω‖. Thanks to Proposition 2.2 and Sω(ψ(t)) < Sω(ϕω) necessarily ‖ψ(t)‖p+1 �= ‖ϕω‖p+1 ∀t ∈
(0, T ∗(ψ0)) ; being ‖ψ0‖p+1 > ‖ϕω‖p+1, by continuity ‖ψ(t)‖p+1 > ‖ϕω‖p+1 ∀t ∈ (0, T ∗(ψ0)) . Finally,
Q(ψ(t)) < 0 is a consequence of Lemma 4.2. Now, from 4.2 and the virial identity 3.3, one gets

1
8

d2

dt2
Iψ(t) = Q(ψ(t)) < 2(Sω(ψ(t)) − Sω(ϕω)) = 2(Sω(ψ0) − Sω(ϕω)) < 0 ∀t ∈ (0, T ∗) .

This gives the thesis by the classical concavity argument. �

Now we will consider the standing waves, and we will show that they are strongly unstable.

Theorem 4.4. Let g = −1 and p > 3. Let ω > −Eα and ϕω ∈ G such that d2S(ϕσ
ω)

dσ2 |σ=1 � 0 . Then, the
standing wave ϕωeiωt is strongly unstable.

Proof. One has ‖ϕσ
ω‖ = ‖ϕω‖, ‖ϕσ

ω‖p+1 = σ
p−1
p+1 ‖ϕω‖p+1 > ‖ϕω‖p+1 ∀σ > 1 . Now consider the function

S(ϕσ
ω) given in 3.12. We want to show that Sω(ϕσ

ω) < Sω(ϕω) ∀σ > 1 . Thanks to (3.17) in Proposition 3.7,
we have d3

dσ3 Sω(ϕσ
ω) < 0 ∀σ > 1 from which we deduce that d2

dσ2 Sω(ϕσ
ω) is decreasing for σ > 1. Exploiting

the hypothesis d2S(ϕσ
ω)

dσ2 |σ=1 � 0 we obtain d2S(ϕσ
ω)

dσ2 < 0 ∀σ > 1 and consequently dS(ϕσ
ω)

dσ decreasing. Being
dS(ϕσ

ω)
dσ |σ=1 = 0, we finally obtain that Sω(ϕσ

ω) < Sω(ϕω) ∀σ > 1 as claimed. Finally, using properties 3.19
and 3.21 of Proposition 3.7 we get d

dσ Q(ϕσ
ω) = d

dσ Sω(ϕσ
ω) + σ d2

dσ2 Sω(ϕσ
ω) < 0 by using the monotonicity

properties just proved. By 3.19, one finally gets Q(ϕσ
ω) < Q(ϕω) = 0. The proof is completed thanks to

limσ→1 ‖ϕσ
ω − ϕω‖D 1

2
= 0 . �
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Facoltà di Ingegneria
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