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Abstract

Appell’s functions F1–F4 turned out to be particularly useful in solving a variety of problems in both pure
and applied mathematics. In literature, there have been published a significant number of interesting and
useful results on these functions. In this paper, we prove that the branched continued fraction, which is an
expansion of ratio of hypergeometric functions F2 with a certain set of parameters, converges uniformly to a
holomorphic function of two variables on every compact subset of some domain of C2, and that this function
is an analytic continuation of such ratio in this domain. As a special case of our main result, we give the
representation of hypergeometric functions F2 by a branched continued fraction. To illustrate this, we have
given some numerical experiments at the end.

1 Introduction
Appel’s functions F1–F4, which were introduced back in 1880 [7, 8], are probably one of the most well-known and researched
families of hypergeometric functions that appear in a number of problems in applied mathematics, physics, statistics, and other fields.
The study of these functions concerns, in particular, the establishment of recurrence relations [22, 36], the construction of analytic
continuations [28, 34], integral representations [27, 31, 33], and branched continued fraction representations [19–21, 29, 32].

Appell’s hypergeometric function F2 is defined by double power series (see, [26])

F2(a,b,b′;c,c′;z) =
∞

∑
r,s=0

(a)r+s(b)r(b′)s

(c)r(c′)s

zr
1

r!
zs

2
s!
, |z1|+ |z2|< 1,

where a, b, b′, c, and c′ are complex constants; c and c′ are not equal to a non-positive integer; (·)k is the Pochhammer symbol defined
for any complex number α and non-negative integer n by (α)0 = 1 and (α)n = α(α +1) . . .(α +n−1), z = (z1,z2) ∈ C2.

In 1993 Bodnar obtained a formal expansion ratio (see, [18])

F2(a,b,b′;c,c′;z)
F2(a+1,b,b′;c+1,c′;z)

into branched continued fraction
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pi(2)zi2
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qi(2)zi2

1− . . .

,

where i(k) = (i1, i2, . . . , ik) is a multiindex,

p1 =
b(c−a)
c(c+1)

, p2 = 1,
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and for k ≥ 1

pi(k+1) =


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(c+2r)(c+2r+1)

, if ik = ik+1 = 1,

(c′−a− r+ s−1)(b′+ s)
(c′+2s)(c′+2s−1)

, if ik = ik+1 = 2,

b+ r
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, if ik = 2, ik+1 = 1,

c′+ s
c′+2s

, if ik = 1, ik+1 = 2,

qi(k) =


(c−b+ r)(a+ r+ s)
(c+2r−1)(c+2r)

, if ik = 1,

(c′−b′+ s−1)(a+ r+ s)
(c+2r−2)(c+2r−1)

, if ik = 2,

where r is the number of times 1 appears in the multiindex i(k), s = n− r.
In the case b = c, we have the following result.

Theorem 1.1. The ratio

F2(a,b,b′;b,c′;z)
F2(a+1,b,b′;b,c′+1;z)

(1)

has a formal branched continued fraction expansion of the form

1− z1−
d1z2

1− d2z2

1− z1−
d3z2

1− d4z2

1− z1−
d5z2

1− . . .

, (2)

where

d2k−1 =
(b′+ k−1)(c′−a+ k−1)
(c′+2k−2)(c′+2k−1)

and d2k =
(a+ k)(c′−b′+ k)
(c′+2k−1)(c′+2k)

for k ≥ 1, (3)

Note that (2) is a so-called ’confluent branched continued fraction with independent variables’, not a continued fraction. Here,
the fundamental difference between them lies in the different approach to understanding approximants. Namely, the sequence of
approximants of the continued fraction for the branched continued fraction is a sequence of so-called ’figured approximants’ [5,6,13–15].
More about branched continued fractions with independent variables can be found in the works [1, 4, 11, 12, 17, 23, 25].

In this paper, we prove that the branched continued fraction (2) uniformly converges to a holomorphic function of two variables
on every compact subset of some domain of C2, and that this function is an analytic continuation of the ratio (1) in this domain. In
Corollary 2.3, we give the representation of hypergeometric functions F2(1,b,b′;b,c′;z) by a branched continued fraction. In Section 3,
we present some numerical experiments.

2 Convergence of Branched Continued Fractions
To prove our main result, we need a theorem that directly follows from [24, Theorem 1].

Theorem 2.1. Let g0,k, k ≥ 1, be real numbers such that

0 < g0,k ≤ 1 for all k ≥ 1.

Then the branched continued fraction

1− z1,0−
g0,1z0,1

1−
g0,2(1−g0,1)z0,2

1− (1−g0,2)z1,2−
g0,3(1−g0,2)z0,3

1−
g0,4(1−g0,3)z0,4

1− (1−g0,4)z1,4−
g0,5(1−g0,4)z0,5

1− . . .

converges if

|z1,2k| ≤
1
2

and |z0,k+1| ≤
1
2

for all k ≥ 0.

The following is true.

Theorem 2.2. Let a, b′, and c′ be real constants such that

0 < dk ≤ r for all k ≥ 1, (4)

where dk, k ≥ 1, are defined by (3), r is a positive number. Then:
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(A) the branched continued fraction (2) converges uniformly on every compact subset of the domain

Hr,s =
⋃

−π/2<α<π/2

Pr,s,α , (5)

where

Pr,s,α =

{
z ∈ C2 : |z1|+Re(z1e−2iα )< 2(1− s)cos2

α, |z2|+Re(z2e−2iα )<
scos2 α

2r

}
, 0 < s < 1, (6)

to a function f (z) holomorphic in Hr,s;

(B) the function f (z) is an analytic continuation of (1) in the domain (5).

Note that the assumption on the sequence {dk} in Theorem 2.2 involves (together with positivity) an upper bound r, and that the
domain of the analytic continuation also depends on this r; and the smaller r, the larger domain.

Proof of Theorem 2.2. Let

F(n)
n (z) = 1, n≥ 1, (7)

and
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,

where n≥ 1, 1≤ k ≤ n. Then
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F(2n)
2k (z)

, F(2n)
2k−2(z) = 1− z1−
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, (8)

and
F(2n+1)

2k−1 (z) = 1− d2kz2

F(2n+1)
2k (z)

, F(2n+1)
2k (z) = 1− z1−
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,

where n≥ 1, 1≤ k ≤ n, and, thus, for each n≥ 1 we write the nth approximants of (2) as

fn(z) = 1− z1−
d1z2

F(n)
1 (z)

. (9)

We show that each approximant fn(z) of (2) is a function holomorphic in (5). Since the numerator and denominator of the
approximant are polynomials, they are entire functions of two variables. The quotient of two entire functions is a holomorphic function
everywhere where the denominator does not vanish. Therefore, taking into account (9), it suffices to prove that F(n)

1 (z) 6= 0 for all
n≥ 1, and for all z ∈ Hr,s .

Let n be an arbitrary natural number, α be any real from the interval (−π/2,π/2), and z be an arbitrary fixed point from (6). By
induction on k for each index k, 1≤ k ≤ n, we show that the following inequalities are valid

Re(F(2n)
2k−1(z)e

−iα )>
scosα

2
> 0 (10)

and

Re(F(2n+1)
2k−1 (z)e−iα )>

scosα

2
> 0. (11)

From (7) it is clear that for k = n the inequality (10) holds. By the induction hypothesis that (10) holds for k = p+1 such that
p+1≤ n, we prove (10) for k = p. Indeed, using of (8) leads to

F(2n)
2p−1(z)e

−iα = e−iα −
d2pz2e−2iα

F(2n)
2p (z)e−iα

and

F(2n)
2p (z)e−iα = e−iα − z1e−2iα

e−iα −
d2p+1z2e−2iα

F(2n)
2p+1(z)e−iα

.
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In the proof of Lemma 4.41 in [30] it is shown that if x≥ c > 0 and v2 ≤ 4u+4, then

min
−∞<y<+∞

Re
(

u+ iv
x+ iy

)
=−
√

u2 + v2−u
2x

. (12)

Using (4), (6), (12) and the induction hypothesis, we have

Re(F(2n)
2p (z)e−iα )≥ cosα− |z1e−2iα |+Re(z1e−2iα )

2Re(e−iα )
−

d2p+1(|z2e−2iα |+Re(z2e−2iα ))

2Re(F(2n)
2p+1(z)e−iα )

> cosα− (1− s)cosα− scosα

2

=
scosα

2
> 0

and

Re(F(2n)
2p−1(z)e

−iα )≥ cosα−
d2p(|z2e−2iα |+Re(z2e−2iα ))

2Re(F(2n)
2p (z)e−iα )

> cosα− cosα

2

=
cosα

2
> 0.

Similarly, we obtain inequalities (11).
Therefore,

F(n)
1 (z) 6= 0 for all n≥ 1 and z ∈ Pr,s,α .

It follows that the approximants fn(z), n≥ 1, of (2) form a sequence of functions holomorphic in (6), and, consequently, in domain
Hr,s by virtue of arbitrariness α.

Let K be an arbitrary compact subset of Hr,s . Then there exists an open bi-disk

DL = {z ∈ C2 : |z1|< L, |z2|< L},

containing K . Let us cover K by domains of the form

Gr,s,α,L = Pr,s,α
⋂

DL .

From this cover we choose a finite subcover
Gr,s,α1,L, Gr,s,α2,L, . . . , Gr,s,αk ,L .

Using (9), (10), and (11), for the arbitrary p ∈ {1, 2, . . . , k} we obtain for any z ∈ Gr,s,αp,L and n≥ 1

| fn(z)| ≤ 1+ |z1|+
d1|z2|

Re(F(n)
1 (z)e−iαp)

< 1+L+
2rL

cosαp

= M(Gr,s,αp,L).

We set
M(K) = max

1≤p≤k
M(Gr,s,αp,L).

Then for arbitrary z ∈ K we have
| fn(z)| ≤M(K), for n≥ 1,

i.e., the sequence { fn(z)} is uniformly bounded on every compact subset of the domain Hr,s .

We assume that the domain

QR =

{
z ∈ R2 : −1

4
<−R < z1 < 0, − 1

8r
<−R < z2 < 0

}
is contained in Hr,s for each 0 < R < 1/(8r), in particular, say Q1/(16r) ⊂ Hr,s . Using (4) it is easy to show that for arbitrary z ∈ QR,

QR ⊂ Hr,s, the following inequalities are valid

|z1|<
1
4

and |dkz2|<
1
8

for all k ≥ 1,
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i.e. the elements of (11) satisfy the conditions of Theorem 2.1, with

g0,k =
1
2

for all k ≥ 1.

It follows from Theorem 2.1 that (2) converges in QR, QR ⊂ Hr,s . Hence by [2, Theorem 3] (see also [16, Theorem 2.17] and [35,
Theorem 24.2]), the branched continued fraction (2) converges uniformly on compact subsets of Hr,s to a holomorphic function. These
completes the proof of (A).

The proof of (B) is similar to the proof of Theorem 3 in [3]; hence it is omitted.

Setting a = 0 and replacing c′ by c′−1 in Theorem 2.2, we obtain the following result.

Corollary 2.3. Let b′ and c′ be real constants such that

0 <
b′

c′
≤ r, 0 <

(b′+ k)(c′+ k−1)
(c′+2k−1)(c′+2k)

≤ r and 0 <
k(c′−b′+ k−1)

(c′+2k−2)(c′+2k−1)
≤ r for all k ≥ 1,

where r is a positive number. Then:

(A) the branched continued fraction
1

1− z1−

b′

c′
z2

1−

(c′−b′)
c′(c′+1)

z2

1− z1−

(b′+1)c′

(c′+1)(c′+2)
z2

1−

2(c′−b′+1)
(c′+2)(c′+3)

z2

1− . . .
converges uniformly on every compact subset of the domain (5) to a function f (z) holomorphic in Hr,s;

(B) the function f (z) is an analytic continuation of F2(1,b,b′;b,c′;z) in the domain (5).

3 Numerical Experiments
By Corollary 2.3 we have

ln
(

1+
z2

1+ z1

)
= z2F2(1,b,1;b,2;−z1,−z2)

=
z2

1+ z1 +

1
2

z2

1+

1
6

z2

1+ z1 +

1
3

z2

1+

1
5

z2

1+ . . .

. (13)

The branched continued fraction in (13) converges and represents a single-valued branch of the analytic function

ln
(

1+
z2

1+ z1

)
(14)

in the domain
Hs =

{
z ∈ C2 : |arg(z1 +1− s)|< π,

∣∣∣arg
(

z2 +
s
2

)∣∣∣< π

}
, 0 < s < 1.

The results of evaluations (13) and

ln
(

1+
z2

1+ z1

)
= z2F2(1,b,1;b,2;−z1,−z2)

=−
∞

∑
r,s=0

(1)r+s(1)s

(2)s

(−z1)
r

r!
(−z2)

s+1

s!
(15)

Dolomites Research Notes on Approximation ISSN 2035-6803



Antonova · Cesarano · Dmytryshyn · Sharyn 27

Table 1: Relative error of 10th partial sum and 10th approximants for ln(1+ z2/(1+ z1)).

z (14) (13) (15)
(−0.01,0.1) 0.096228 2.8844×10−16 2.2613×10−13

(0.1+0.01i,0.1+0.01i) 0.0871089+0.00757447i 9.5235×10−16 3.4973×10−09

(1.0,1.0) 0.40546511 1.7002×10−12 2.9649×10+03

(1+ i,1− i) 0.2938933−0.4636476i 6.9884×10−11 2.2319×10+02

(3.0,5.0) 0.81093022 6.0879×10−09 8.4668×10+08

(6.0,30.0) 1.66500777 1.9580×10−05 6.9735×10+15

(10+10i,−10−10i) −2.6990814−0.7378151i 3.6187×10−03 1.3918×10+11

(10.0,100.0) 2.311634929 5.3044×10−04 1.1109×10+21

(1+100i,1+100i) 0.6930597+0.0049985i 9.7041×10−10 2.6863×10+24

(1000,1000) 0.6926476 9.6335×10−10 2.6852×10+35

(1−1000i,1−1000i) 0.6931463−0.0004999i 9.7152×10−10 2.6847×10+35

(−1000+1000i,1000−1000i) −7.2538289−2.3556942i 4.2875×10−01 5.3972×10+32

(10000,10000) 0.6930972 9.7071×10−10 2.6848×10+46

are displayed in the Table 1. Plots of the values of the nth approximants of (13) are shown in Figure 1 (a)–(b). Here we can see the
so-called ‘fork property’ for a branched continued fraction with positive elements (see [16, p. 29]). That is, the plots of the values of
even (odd) approximations of (13) approaches from below (above) to the plot of the function ln(1+ z2/(1+ z1)) at fixed values of z1.

The plots at fixed values of z2 are similar. Figure 2 (a)–(d) shows the plots where the 10th approximant of (13) guarantees certain
truncation error bounds for function ln(1+ z2/(1+ z1)).
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(a) At z1 = 0.1.

50 100 150 200 250 300
2

3

4

5

6

z2

10th approximant

15th approximant

20th approximant

25th approximant

30th approximant

ln(1+z2/2.0)
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Figure 1: The plots of values of the nth approximants of (13) for ln(1+ z2/(1+ z1)).

One more example, by Corollary 2.3 we obtain

arctan
√

z2

1+ z1
=
√

z2(1+ z1)F2

(
1,b,

1
2

;b,
3
2

;−z1,−z2

)
=

√
z2(1+ z1)

1+ z1 +

1
3

z2

1+

4
15

z2

1+ z1 +

9
35

z2

1+

16
63

z2

1+ . . .

, (16)

where the branched continued fraction converges and represents a single-valued branch of the analytic function of two variables

arctan
√

z2

1+ z1
(17)

in the domain

Rs =

{
z ∈ C2 : |arg(z1 +1− s)|< π,

∣∣∣∣arg
(

z2 +
3s
4

)∣∣∣∣< π

}
, 0 < s < 1.
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Figure 2: The plots where the 10th approximant of (13) guarantees certain truncation error bounds for ln(1+ z2/(1+ z1)).

The numerical illustration of (16) and

arctan
√

z2

1+ z1
=
√

z2(1+ z1)F2

(
1,b,

1
2

;b,
3
2

;−z1,−z2

)
=
√

z2(1+ z1)
∞

∑
r,s=0

(1)r+s(1/2)s

(3/2)s

(−z1)
r

r!
(−z2)

s

s!
(18)

is given in the Table 2. The graphical illustrations of (16) and (17) are given in Figures 3 (a)–(b) and 4 (a)–(d). Here we have results
like to the results in the previous example.

Thus, numerical experiments confirmed the expediency and effectiveness of using branched continued fractions as an approximation
tool, in particular, of analytic functions,

Calculations and plots were made using Wolfram Mathematica software.
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