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Abstract: This paper is devoted to building a general framework for constructing a solution to
fractional Phi-4 differential equations using a Caputo definition with two parameters. We briefly
introduce some definitions and properties of fractional calculus in two parameters and the Phi-4
equation. By investigating the homotopy analysis method, we built the solution algorithm. The
two parameters of the fractional derivative gain vary the behavior of the solution, which allows the
researchers to fit their data with the proper parameter. To evaluate the effectiveness and accuracy
of the proposed algorithm, we compare the results with those obtained using various numerical
methods in a comprehensive comparative study.
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1. Introduction

Fractional differential equations provide a versatile framework for describing complex
phenomena in various scientific and engineering disciplines. These equations involve frac-
tional derivatives, enabling a more nuanced representation of processes with memory and
non-local effects. Several physical applications are studied based on fractional derivatives;
for instance, Gómez-Aguilar et al. [1] analyze the RC circuit in terms of delay, rise, and
settling times, and the Lyapunov-like functions with some applications are also presented
based on the fractional derivative [2]. One notable example within this realm is the frac-
tional Phi-4 equation [3], which extends the traditional Phi-4 equation by incorporating
fractional calculus concepts. This inclusion allows for a more accurate modeling of intricate
physical and chemical systems, making fractional differential equations a valuable tool in
understanding the intricacies of dynamic processes:

utt(x, t) = uxx(x, t)− m2u(x, t)− λu3(x, t), (1)

where m is a constant representing the wave’s propagation speed. The equation is widely
studied in nonlinear dynamics and field theory. It incorporates nonlinear terms (u3), which
leads to interesting phenomena, such as soliton solutions.

The solution of the Phi-4 equation is explored with various numerical methods, aiming
to achieve precise approximations and elucidate their properties. These methods provide
insights into key aspects, such as the behavior of solutions over time, stability characteristics,
convergence properties, and the impact of different parameters on the system dynamics.
The utilization of diverse numerical techniques enhances our understanding of the Phi-4
equation’s complex behavior and contributes to the development of robust computational
tools for investigating its properties under varying conditions, such as the spectral collection
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method [4], Natural transform decomposition method [5] and Jacobi elliptic sine–cosine
expansion method used by M. Alquran [6], the B-spline collocation method by W. K.
Zahra [7], and Bhrawy, A. H. [8]. A. K. Alomari used the homotopy Sumudu approach [3];
further examples are the modified residual power series method used by M. Alquran [9],
the homotopy perturbation method in [10] by Ehsani, the tanh method [11] by Hira Tariq,
the q-homotopy analysis transform method (q-HATM) by Gau et al. [12], and, very recently,
the Yang transform decomposition method (YTDM) in [13].

The homotopy analysis method (HAM) has been developed as a crucial and adaptable
strategy for approximating solutions to both linear and nonlinear differential equations,
and its scope extends to fractional differential equations. Its inception can be traced back
to Shijun Liao’s Ph.D. dissertation in 1992 [14–16]. Since then, the HAM methodology
has gained widespread adoption, effectively addressing various classes of well-known
differential equations [17].

The HAM is one of the most powerful methods for solving differential equations
because of several features, such as the freedom of choosing the initial function, the fact
that it does not depend on the large and small parameters of the equations, and the fact
that it has a convergent control parameter that can enlarge the convergent region and give
accurate results with few terms of the series solution.

Usually, fractional differential equations typically involve a single fractional parameter.
However, recent advancements have brought forth formulations incorporating multiple
fractional parameters. Notably, the Caputo–Katugampola derivative is introduced by
Almeida [18], characterized by two parameters. The Caputo–Katugampola derivative is
presented in diverse cases by Odibat and Baleanu [19], while Abdeljawad [20] presents gen-
eralized Mittag–Leffler kernel fractional operators (GMLKs), encompassing three fractional
parameters. The incorporation of these additional parameters introduces a heightened level
of complexity to the equations, influencing the behaviors of their solutions. The impact
of these new parameters on solution behaviors is evident in various studies. For instance,
Alomari et al. [21] investigated the effect of GMLKs on fractional parabolic equations.

In this paper, our focus is on applying the HAM to a fractional differential equation
with two parameters. This exploration aims to unravel the solution characteristics and gain
insights into the behavior of the system concerning the introduced fractional parameters [3].

CDα,ρ
a+ ,tu(x, t) = uxx(x, t)− m2u(x, t)− λu3(x, t), (2)

where CDα,ρ
a+ ,t is the Caputo fractional derivative (CFD) operator with parameters 1 < α ≤ 2

and ρ > 0. We extend the fractional derivative for more generalized parameters to un-
derstand how the field’s dynamics evolve under different conditions and provide a more
comprehensive and flexible modeling approach. The consideration of generalized deriva-
tives allows us to delve into the nuances of behavioral changes, offering a more nuanced
and versatile understanding of system dynamics. By incorporating these generalized
parameters, we aim to enhance the accuracy and applicability of our model, paving the
way for a more robust exploration of the diverse phenomena that may emerge in the
studied system.

This paper is meticulously structured to offer a comprehensive overview of the ho-
motopy analysis method (HAM) as applied to the resolution of fractional Phi-4 equations
featuring two parameters. The document meticulously delineates the essential components
of the study, underscoring the efficacy of the HAM as a potent analytical tool. The outline
encapsulates the fundamental concepts and definitions pertinent to the Phi-4 equation,
incorporating the generalized fractional derivative in the Caputo sense, which is presented
in Section 2. This strategic inclusion establishes the foundation for systematically explor-
ing the proposed methodology in Section 3. Section 4 gives numerical simulations of
the solution. Then, some conclusions are drawn in Section 5. Throughout this paper,
readers are afforded valuable insights into the deliberate application of the HAM and its
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numerical significance in tackling intricate fractional Phi-4 equations distinguished by
dual parameters.

2. Some Definitions and Theorems of Fractional Calculus

The R-L fractional operator for a function f of order α ≥ 0 is defined as

Iα f (t) = 1
Γ(α)

∫ t
0 (t − ζ)α−1 f (ζ)dζ,

I0 f (t) = f (t).

The CFD of a given function f for n − 1 < α < n, n ∈ N, is

Dα
C f (t) =

1
Γ(n − α)

∫ t

0
(t − ζ)n−α−1 f (n)(ζ)dζ.

The generalized fractional integral (GFI) of f, Iα,ρ
a+ f (t), of order α > 0 and ρ > 0 is [19]

(
Iα,ρ
a+ f

)
(t) =

ρ1−α

Γ(α)

∫ t

a
ζρ−1(tρ − ζρ)α−1 f (ζ)dζ, α > 0, t > a ≥ 0,

and the Caputo–Katugampola derivative with two parameters is defined by Almeida
et al. [18], with 0 < α ≤ 1 and ρ > 0, as

(
CDα,ρ

a+ f
)
(t) =

ρα

Γ(1 − α)

∫ t

a
(tρ − ζρ)−α f ′(ζ)dζ, 0 < α ≤ 1, t > a ≥ 0.

Recently, the definition of CFD with two parameters for n − 1 < α ≤ n was modified by
Odibat and Baleanu [19,22].

Definition 1. The generalized Caputo derivative (GCFD) of f : [0, ∞) −→ R , CDα,ρ
a+ f (t), of order

α > 0 is given by

(
CDα,ρ

a+ f
)
(t) =

ρα−n+1

Γ(n − α)

∫ t

a
ζρ−1(tρ − ζρ)n−α−1

(
ζ1−ρ d

dζ

)n
f (ζ)dζ, n − 1 < α ≤ n.

whenever it exists, where n = ⌈α⌉ and t > a ≥ 0.

It is worthy to mention that the GCFD gives the Caputo derivative when ρ = 1 and
the Hadamard derivative whenever limρ→0+ [23]. This is one of the features of using this
kind of derivative.

Theorem 1. ([19]). Let n − 1 < α ≤ n, s ≥ 0, ρ > 0, and f ∈ Cn[a, b]. Then, for a < t ≤ b,

Iα,ρ
s+ Dα,ρ

s+ f (t) = f (t)−
n−1

∑
k=0

1
ρkk!

(tρ − sρ)k

[(
x1−ρ d

dx

)k
f (x)

]

x=s

. (3)

Theorem 2. ([19]). For n − 1 < α ≤ n, a ≥ 0, ρ > 0, and f ∈ Cn[a, b],

Dα,ρ
a+ Iα,ρ

a+ f (t) = f (t), (4)

where a < t ≤ b.
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3. Analytic Approach

To commence, we establish the overarching framework for solving FDEs with two
parameters using the HAM. The equation under consideration takes the following form:

CDα,ρ
a+ u(x, t) +Ru(x, t) +Nu(x, t) = f (x, t), (5)

where CDα,ρ
a+ u(x, t) is the GCFD of u(x, t), with 0 < α ≤ 1, ρ > 0; the initial guess, denoted

by u0(x, t), satisfies the initial or boundary conditions; R is the linear operator; N is a
nonlinear operator, such as u3; and f (x, t) is the source term, which might be zero. To
implement the HAM, as detailed in references [14–16], we introduce the nonlinear operator
as follows:

N[ψ(x, t, q)] = CDα,ρ
a+ ψ(x, t, q) +Rψ(x, t, q) +Nψ(x, t, q)− f (x, t), (6)

where the function ψ(x, t, q) is a real-valued function dependent on x, t, and q ∈ [0, 1].
Liao’s zeroth-order deformation [14,15] is

(1 − q)L[ψ(x, t, q)− u0(x, t)] = ℏqN[ψ(x, t, q)]. (7)

where the parameter ℏ ̸= 0 serves as a nonzero convergent control parameter, N denotes
the nonlinear operator, and L is an injective linear operator. For our purposes, we define
L = Dα,ρ

a+ . Notably, ψ(x, t, 0) = u0(x, t), and ψ(x, t, 1) = u(x, t). By expanding ψ(x, t, q) in
a Taylor series with respect to q, we have

ψ(x, t, q) =
∞

∑
i=0

ui(x, t)qi,

where

ui(x, t) =
1
i!

∂iψ(x, t, q)
∂qi |q=0, (8)

the m-th order Liao’s deformation equation is

L[um(x, t)− λmum−1(x, t)] = ℏRm

(→
u m−1(x, t)

)
, (9)

where
→
u m−1 = {u0, u1, u2, · · · , um−1}, and

Rm(um−1(x, t)) =
1

(m − 1)!
∂m−1N[ψ(x, t, q)]

∂qm−1

∣∣∣∣
q=0

.

By applying L−1 = Iα,ρ
a+ in (9), we obtain

um(x, t) = λmhm−1(x, t) + ℏIα,ρ
a+ [Rm(um−1(x, t))]

+
⌈α⌉−1

∑
k=0

1
ρkk! (t

ρ − aρ)k
[(

s1−ρ d
ds

)k
(um(x, s)− λmum−1(x, s))

]

s=a
,

(10)

where

λm =

{
0, m ≤ 1,
1, m > 1

.

Now, considering our Equation (2) along with I.C u(x, 0) = f1(x), v(x, 0) = f2(x), we
have N as follows:

N
[
ψ(x, t, q) = Dα,ρ

a+ ψ(x, t, q)− m2ψ(x, t, q)− λψ3(x, t, q), (11)
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where

ψ(x, t, q) =
n

∑
m=0

um(x, t)qm, um(x, t) =
1

m!
∂mψ(x, t, q)

∂qm |q=0. (12)

So, the m-th order deformation equation is

Dα,ρ
a+ [um(x, t)− λmum−1(x, t)] = ℏ

(
Dα,ρ

a+ um−1 + Rm

[→
u m−1(x, t)

])
, (13)

with

Rm =
∂2un−1

∂x2 − m2un−1 − λ
n−1

∑
i=0

un−1−i

i

∑
j=0

ujui−j,

subject to the initial conditions um(x, 0) = 0 for m = 1, 2, 3, · · · At this point, we apply
L−1 = Iα,ρ

0+ , the inverse operator, to obtain

um(x, t) = (λm + ℏ)um−1 + ℏIα,ρ
0+ Rm

[→
u m−1(x, t)

]

+(um(x, 0)− (1 + λm)um−1(x, 0)),

for m = 1, 2, 3, · · · So, the M−th order of series solutions is

u(x, t) = u0(x, t) + ∑M
i=1 ui(x, t). (14)

As M → ∞ , the series solutions converge to the exact solution.

4. Numerical Experiment

In this section, we apply the HAM to examine fractional Phi-4 Equation (2) under the
specified initial conditions. The equation is considered with m = 1 and λ = −1, and the
initial conditions are imposed as follows:

u(x, 0) = tanh
( x

4
)
, ut(x, 0) = − 3

4 sec h2( x
4
)
. (15)

By applying the HAM algorithm as outlined in Section 3, we obtain the first terms of the
approximations as follows:

u0(x, t) = tanh
( x

4
)
− 3t

4 sec h2( x
4
)
,

u1(x, t) =
27ℏρ−αΓ

(
ρ+3

ρ

)
sec h6( x

4 )tαρ+3

64Γ
(

α+ 3
ρ +1

) − 3ℏρ−α−1Γ
(

1
ρ

)
sec h4( x

4 )tαρ+1

32Γ
(

α+ 1
ρ +1

) − 3ℏρ−α−1Γ
(

1
ρ

)
sec h2( x

4 )tαρ+1

4Γ
(

α+ 1
ρ +1

) +

hρ−α tanh( x
4 )tαρ−ℏρ−α tanh3( x

4 )tαρ

αΓ(α) +
39hρ−α−1Γ

(
1
ρ

)
tanh2( x

4 )sec h2( x
4 )tαρ+1

16Γ
(

α+ 1
ρ +1

) +

hρ−α tanh( x
4 )sec h2( x

4 )tαρ

8αΓ(α) − 27ℏρ−αΓ
(

ρ+2
ρ

)
tanh( x

4 )sec h4( x
4 )tαρ+2

16Γ
(

α+ 2
ρ +1

) ,

u2(x, t) = − 3ℏρ−α−1Γ
(

1
ρ

)
sec h2( x

4 )tαρ+1

4Γ
(

α+ 1
ρ +1

) − 3ℏ2ρ−α−1Γ
(

1
ρ

)
sec h2( x

4 )tαρ+1

4Γ
(

α+ 1
ρ +1

) − ℏ2ρ−α tanh3( x
4 )tαρ

αΓ(α)

ℏ2ρ−2α tanh( x
4 )sec h2( x

4 )Γ
(

αρ+ρ
ρ

)
t2αρ

4αΓ(α)Γ(2α+1) +
ℏ2ρ−α tanh( x

4 )sec h2( x
4 )tαρ

8αΓ(α) + · · ·

In this way, we can find the approximate solution with M terms in Equation (14). To
determine the value of the convergent parameter, h̄, we plot the h̄-curve in Figures 1 and 2
with α = 2, ρ = 1, m = 1, and λ = −1. It is clear that in the region −1.2 ≤ ℏ ≤ −0.8,
the derivatives do not depend on h̄. For simplicity, we choose ℏ = −1. So, the HAM
solution gives

u(x, t) = − t9sec h2( x
4
)

483, 840
+

t7sec h2( x
4
)

6720
− 1

160
t5sec h2

( x
4

)
+

1
8

t3sec h2
( x

4

)
− 3

4
tsec h2

( x
4

)
+ · · · (16)
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The exact solution is

u(x, t) = tanh
(

x − 3t
4

)
.Fractal Fract. 2024, 1, 0 6 of 11

Figure 1. h̄−Curve using D(0, 0.01) for (2) with α = 2 and ρ = 1.

Figure 2. h̄−Curve using D2(0, 0.01) for (2) with m = 1, λ = −1, α = 2, and ρ = 1.

At this point, we present a comprehensive analysis of the 10th-order homotopy analy-
sis method (HAM) solutions for the time-fractional Phi-4 equation. Our findings, illustrated
in Figure 3, highlight the convergence of the approximate solution towards the exact solu-
tion, as depicted in Figure 4. It is clear that the solution satisfies the boundary conditions
limx→∞ u(x, t) = 1 and limx→−∞ u(x, t) = −1. Furthermore, Figure 5 provides the abso-
lute error between the exact solution and the 10th-order HAM solution. The convergence
and the stability of the solution are experimentally presented in Table 1, which gives the
absolute error for t = 0.25, different values of x, and a number of series terms M. It is clear
that as M increases, the absolute error becomes closer to zero. Similarly, as x increases, the
error can fit as a linearly increase, which indicates a little about stability.
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At this point, we present a comprehensive analysis of the 10th-order homotopy analy-
sis method (HAM) solutions for the time-fractional Phi-4 equation. Our findings, illustrated
in Figure 3, highlight the convergence of the approximate solution towards the exact solu-
tion, as depicted in Figure 4. It is clear that the solution satisfies the boundary conditions
limx→∞ u(x, t) = 1 and limx→−∞ u(x, t) = −1. Furthermore, Figure 5 provides the abso-
lute error between the exact solution and the 10th-order HAM solution. The convergence
and the stability of the solution are experimentally presented in Table 1, which gives the
absolute error for t = 0.25, different values of x, and a number of series terms M. It is clear
that as M increases, the absolute error becomes closer to zero. Similarly, as x increases, the
error can fit as a linearly increase, which indicates a little about stability.

Table 1. The approach using 2, 4, and 6 terms of the series solution at t = 0.25 and varying x with
α = 2, ρ = 1.

x M = 2 M = 4 M = 6

−5 1.2694 × 10−5 1.8080 × 10−8 2.2880 × 10−11

−3 1.6010 × 10−5 1.6540 × 10−8 1.3700 × 10−11

−1 8.0970 × 10−6 5.8930 × 10−9 3.0910 × 10−12

1 4.2140 × 10−6 2.0120 × 10−9 3.4200 × 10−12

3 1.4235 × 10−5 1.2540 × 10−8 8.2550 × 10−12

5 1.3608 × 10−5 1.7770 × 10−8 42.0550 × 10−11
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Table 1. The approach using 2, 4, and 6 terms of the series solution at t = 0.25 and varying x with
α = 2, ρ = 1.

x M = 2 M = 4 M = 6

−5 1.2694 × 10−5 1.8080 × 10−8 2.2880 × 10−11

−3 1.6010 × 10−5 1.6540 × 10−8 1.3700 × 10−11

−1 8.0970 × 10−6 5.8930 × 10−9 3.0910 × 10−12

1 4.2140 × 10−6 2.0120 × 10−9 3.4200 × 10−12

3 1.4235 × 10−5 1.2540 × 10−8 8.2550 × 10−12

5 1.3608 × 10−5 1.7770 × 10−8 42.0550 × 10−11

To investigate the effect of the two-parameter fractional derivative on the time-
fractional Phi-4 equation, initially, we optimize the choice of h̄ as

Res = CDα,ρ
a+ ,tu(x, t)− (uxx(x, t)− m2u(x, t)− λu3(x, t)),

Figure 5. The absolute error of (2) with α = 2, ρ = 1, m = 1, and λ = −1.
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To investigate the effect of the two-parameter fractional derivative on the time-
fractional Phi-4 equation, initially, we optimize the choice of h̄ as

Res = CDα,ρ
a+ ,tu(x, t)−

(
uxx(x, t)− m2u(x, t)− λu3(x, t)

)
,

where u(x, t) represents the HAM solutions. Now, h̄ is determined by minimizing ∆(ℏ)
(the least square error):

∆(ℏ) = 1
(m + 1)(n + 1)

m

∑
i=0

n

∑
j=0

(
Res

(
i
m

,
j
n

))2
. (17)

Exploring the 10th-order HAM solutions for the time-fractional Phi-4 equation needs op-
timal values of h̄; to find them, we plot the square residual error for different values of
ρ and α. Next, Figure 6 delves into the characterization of ∆(ℏ) for ρ = 1 and varying
α, shedding light on the optimal values that can be obtained by minimizing the ∆(ℏ)
function, which gives the optimal values of h̄ of −0.963186,−0.960893, and −0.854131
for α = 1.95, 1.9, and 1.5, respectively. Similarly, by fixing α = 1.95 and varying ρ,
we obtain −0.772763,−0.963187, and −0.240798 as optimal values for ρ = 0.75, 1, and
1.2, respectively.
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Based on the optimal values of h̄, the detailed analysis contributes valuable insights
into the behavior and sensitivity of the solutions under different parameter settings, which
can be seen in Figure 7. It presents the HAM solution with fixed α = 1 and x = 1 and
varying ρ. Moreover, Figure 8 shows the effect of α with fixed = 1 and x = 1. Both
parameters affect the solution behavior of the equation.
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(c) α = 1.5.

Based on the optimal values of h̄, the detailed analysis contributes valuable insights
into the behavior and sensitivity of the solutions under different parameter settings, which
can be seen in Figure 7. It presents the HAM solution with fixed α = 1 and x = 1 and
varying ρ. Moreover, Figure 8 shows the effect of α with fixed = 1 and x = 1. Both
parameters affect the solution behavior of the equation.
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Figure 7. The HAM solution for (2) with α = 1.95 and several values of ρ at x = 1.

Figure 8. The HAM solution for (2) with ρ = 1 and several values of α at x = 1.

To demonstrate the effect of the fractional parameters numerically, Table 2 illustrates
the HAM approximate solution for different values of α and ρ, and varying x and t, which
gives the effect of the fractional parameters of the solution approaches. Finally, Table 3
compares the absolute error of the HAM with those of q-HAM and YTDM using three
terms of the series solution. Clearly, the HAM gives a lower absolute error than the other
used methods.

Table 2. HAM solutions to (3) with different values of α and ρ.

x t Exact α = 2 α = 1.95 α = 1.95 α = 1.95 α = 1.9
Solution ρ = 1 ρ = 1 ρ = 0.75 ρ = 1.2 ρ = 0.75

0.5
0.1 0.049958 0.049958 0.049864 0.120031 0.080269 0.119504
0.2 −0.024994 −0.024994 −0.025195 0.112612 0.025977 0.111543
0.3 −0.099667 −0.099667 −0.099869 0.103485 −0.033128 0.101977

1
0.1 0.173235 0.173235 0.173032 0.236786 0.202643 0.235793
0.2 0.099667 0.099667 0.099119 0.222787 0.150031 0.220764
0.3 0.024994 0.024994 0.024136 0.205509 0.092041 0.202636

1.5
0.1 0.291312 0.291312 0.291022 0.347309 0.318994 0.345957
0.2 0.221278 0.221278 0.220445 0.328219 0.269515 0.325444
0.3 0.148885 0.148885 0.147466 0.304531 0.214313 0.300555

2
0.1 0.401134 0.401134 0.400787 0.449239 0.426461 0.447658
0.2 0.336375 0.336375 0.335344 0.426881 0.381221 0.447658
0.3 0.268271 0.268271 0.266441 0.398952 0.330165 0.394209

2.5
0.1 0.500520 0.500520 0.500146 0.540966 0.523097 0.539286
0.2 0.442230 0.442230 0.441094 0.517169 0.482787 0.513659
0.3 0.379948 0.379948 0.377876 0.487222 0.436813 0.482069

Figure 7. The HAM solution for (2) with α = 1.95 and several values of ρ at x = 1.
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To demonstrate the effect of the fractional parameters numerically, Table 2 illustrates
the HAM approximate solution for different values of α and ρ, and varying x and t, which
gives the effect of the fractional parameters of the solution approaches. Finally, Table 3
compares the absolute error of the HAM with those of q-HAM and YTDM using three
terms of the series solution. Clearly, the HAM gives a lower absolute error than the other
used methods.

Table 2. HAM solutions to (3) with different values of α and ρ.
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Exact α = 2 α = 1.95 α = 1.95 α = 1.95 α = 1.9

Solution ρ = 1 ρ = 1 ρ = 0.75 ρ = 1.2 ρ = 0.75
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0.1 0.049958 0.049958 0.049864 0.120031 0.080269 0.119504
0.2 −0.024994 −0.024994 −0.025195 0.112612 0.025977 0.111543
0.3 −0.099667 −0.099667 −0.099869 0.103485 −0.033128 0.101977

1
0.1 0.173235 0.173235 0.173032 0.236786 0.202643 0.235793
0.2 0.099667 0.099667 0.099119 0.222787 0.150031 0.220764
0.3 0.024994 0.024994 0.024136 0.205509 0.092041 0.202636

1.5
0.1 0.291312 0.291312 0.291022 0.347309 0.318994 0.345957
0.2 0.221278 0.221278 0.220445 0.328219 0.269515 0.325444
0.3 0.148885 0.148885 0.147466 0.304531 0.214313 0.300555
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0.2 0.336375 0.336375 0.335344 0.426881 0.381221 0.447658
0.3 0.268271 0.268271 0.266441 0.398952 0.330165 0.394209
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0.1 0.500520 0.500520 0.500146 0.540966 0.523097 0.539286
0.2 0.442230 0.442230 0.441094 0.517169 0.482787 0.513659
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Table 3. Comparison of the absolute error for α = 2 and ρ = 1 with the present, q-HAM, and YTDM
methods using three terms of the series solution.

HAM Error q-HATM Error YTDM Error HAM Error q-HATM Error YTDM Error

x|t 0.01 0.01 0.01 0.05 0.05 0.05

−5 5.4852 × 10−10 1.96030 × 10−5 2.47795 × 10−6 1.3806 × 10−8 3.99056 × 10−2 2.47883 × 10−3

−3 8.7531 × 10−10 3.17168 × 10−4 2.40477 × 10−5 2.1824 × 10−8 3.84183 × 10−2 2.77402 × 10−3

−1 5.3623 × 10−10 4.33502 × 10−3 2.28902 × 10−4 1.3557 × 10−8 1.83324 × 10−2 2.97842 × 10−3

1 5.2732 × 10−10 1.65573 × 10−3 2.14103 × 10−3 1.2443 × 10−8 4.27869 × 10−2 2.56482 × 10−3

3 8.7674 × 10−10 1.97624 × 10−2 1.96890 × 10−3 2.1962 × 10−8 5.88089 × 10−2 1.96730 × 10−3

5 5.5227 × 10−10 1.99868 × 10−2 1.96890 × 10−3 1.4265 × 10−8 5.99307 × 10−2 1.75689 × 10−3

5. Conclusions

In this study, we have successfully developed the homotopy analysis method (HAM)
for solving the fractional Phi-4 equation with two parameters. Our results underscore
the effectiveness and versatility of this method when applied to the realm of generalized
fractional differential equations. Through meticulous comparisons with the exact solution,
we have validated the precision inherent in our proposed approach. Furthermore, the
determination of residual error, achieved by optimizing the convergent control parameter,
h̄, adds an extra layer of scrutiny, affirming the accuracy of our algorithm. Upon comparing
the results obtained using this method with those previously published, it becomes evident
that the approach offers enhanced accuracy and faster convergence. The integration of
two fractional parameters with the Phi-4 equation can give researchers a wide range of
utilized materials that align seamlessly with this broad spectrum of solutions and enable the
expansion of experiments. The robustness and efficacy demonstrated by this methodology
underscore its aptitude for addressing equations of similar complexity and nature.
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