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Abstract

The time course of the neuronal activity in the brain network, the neurodynamics, reflects the structure and functionality
of the generating neuronal pools. Here, using the intracranial stereo-electroencephalographic (sEEG) recordings of the public
Montreal Neurological Institute (MNI) atlas, we investigated the neurodynamics of primary motor (M1), somatosensory (S1)
and auditory (A1) cortices measuring power spectral densities (PSD) and Higuchi fractal dimension (HFD) in the same
subject (M1 vs. S1 in 16 subjects, M1 vs. A1 in 9, S1 vs. A1 in 6). We observed specific spectral features in M1, which prevailed
above beta band, S1 in the alpha band, and A1 in the delta band. M1 HFD was higher than S1, both higher than A1. A clear
distinction of neurodynamics properties of specific primary cortices supports the efforts in cortical parceling based on this
expression of the local cytoarchitecture and connectivity. In this perspective, we selected within the MNI intracortical
database a first set of primary motor, somatosensory and auditory cortices’ representatives to query in recognizing ongoing
patterns of neuronal communication. Potential clinical impact stands primarily in exploiting such exchange patterns to
enhance the efficacy of neuromodulation intervention to cure symptoms secondary to neuronal activity unbalances.
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Introduction
The discovery by Nobel laureates Camillo Golgi (Golgi 1873)
and Santiago Ramón y Cajal (Cajal 1888) of the existence of
the neuron, the minimal constitutive unit of the brain, marked
the birth of a plethora of neuroscientific disciplines. In the
course of just over a century, largely enabled by an increasingly

strong technological availability and computational capacity,
the neuroscientific community has been able to access the
complexity of the nervous system by shedding light on the
mechanisms that determine both its structure and its functional
organizational principles. It is nowadays shared that the human
brain is a dynamic complex system made up of interacting
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subcomponents shaped over multiple space–time scales (Bull-
more et al. 2009; Bassett and Sporns 2017). Accordingly, brain
functioning can be conceived in terms of a system of neuronal
networks made of connected nodes, where the node can be a
single neuron, a group of the same neurons, a region of local
neurons or wide brain areas (Tecchio et al. 2020).

The scalp electroencephalography (EEG) results from the
ongoing continuous fluctuation of the activity of thousands
of neurons in response to excitatory and inhibitory projections
(Lopes Da Silva 2011; Buzsáki and Watson 2012), detectable at
scalp level as brain rhythmic activities distributed in several
frequency ranges and associated with specific brain functions
(Thut et al. 2012; Buzsáki et al. 2013). Analyzing local neuronal
activity derived by EEG scalp data, previous results (Cottone
et al. 2017) supported the hypothesis that each cortical area
generates an electrical activity resulting in a specific time
course, the local neurodynamics, that represents a signature of
that area. The authors collected first indications that different
and distinctive neuronal resting-state neurodynamics could
represent a new coding for cortex parceling, prospectively
complementing Brodmann’s classification of the brain cortical
areas based on cytological and topological evidence (Brodmann
1909).

EEG is the elective investigation tool for the noninvasive
assessment of the local neurodynamics, as it directly senses
the electrical activity of the brain, with the same proper
temporal resolution of the neuronal electric exchanges. Since
the seminal work by Hans Berger (Berger 1929), noninvasive EEG
has provided access to a deep understanding of physiological
and pathological features of brain activity and their behavioral
correlates. In addition, intracranial stereo-encephalographic
(sEEG) recordings, widely used in neuroscience investigations
in animal models, enabed investigations in humans recording
the brain electrical activity in patients with drug-resistant
epilepsy. Notably, in accessing the regions of interest, the
electrodes cross brain regions spared from the epileptogenic
dysfunction, allowing us to access an extraordinarily wealth of
information from relatively healthy brain zones (Frauscher et al.
2018).

Capitalizing on the multicentre data collection of sEEG
dense coverage recordings in normal cortical regions, dur-
ing open eyes wakefulness, made available by the world-
renowned Montreal Neurological Institute (MNI) (Frauscher
et al. 2018), the purpose of our study is to deepen knowl-
edge of the brain neurodynamics as cortical area signature.
Moving on from the noninvasive EEG-derived successful
attempt to differentiate the neurodynamics of the primary
somatosensory (S1) and motor (M1) hand representations
(Cottone et al. 2017a), here we aim to strengthen the results
by running a similar analysis on MNI sEEG assessments,
extending the investigation to further primary cortical areas.
Since primary visual areas were not available in the MNI
database, we extended the study to primary auditory (A1)
cortices.

Methods
Study Design

After selecting the available sEEG recordings within S1, M1,
and A1, we investigated their local neurodynamics in terms
of power spectrum and HFD (Higuchi 1988). Whenever diverse
cortical areas expressed specific power spectra and/or HFD

signatures, we evaluated whether a relationship existed
between the two neurodynamics features by a correlation
analysis (Fig. 1).

Data Selection
Intracranial Stereo-EEG Recordings

The intracranial EEG recordings were accessed through the open
database (Fig. 2), published by MNI, available at https://mni-o
pen-ieegatlas.research.mcgill.ca/main.php and presented in
(Frauscher et al. 2018). The MNI dataset consists of 1785
intracranial EEG recordings, 1 min each, sampled at 200 Hz,
and artifact free, detected at rest with closed eyes, from 106
patients diagnosed with refractory focal epilepsy (13–68 years
old, 48 females) investigated by means of either cortical surface
strip/grid or sEEG electrodes.

Our investigation focused selectively on primary cortices
since they display the most repeatable behavior and are the
most simple to label. In particular, (Cottone et al. 2017a) have
shown that the neurodynamics indices displayed a clear and
different pattern for diverse cortical parcels, specifically S1 and
M1 areas, with no distinction between left and right sides, in
all subjects. However, the distribution of the neurodynamics
index in the entire population overlapped widely across cortical
regions, S1 and M1 in the case of (Cottone et al. 2017b), with S1
ranging between 1.42 and 1.81 and M1 between 1.43 and 1.82.
This means that by randomly sampling the available population,
our observations would lose the regularity of the relationship
that exists at the individual level between the fractal dimensions
of S1 and M1. In order to be sensitive to the true relationship
of the neurodynamics of the different cortical areas, in the
present article we adopted the most conservative approach by
selecting only recordings from subjects who were studied in
at least two of the areas of interest: A1 & M1, A1 & S1, S1 &
M1. The available sEEG recordings within primary cortical areas
(Fig. 3) are constituted by: 50 channels for S1, 99 for M1 and 18
for A1.

Homogenous Weighting of the Subjects by Selecting an
Individual Representative Channel

Although for some subjects, only a single channel in a region
of interest was available, in some cases multiple channels were
available for the same region (Table 1). To weight all subjects
homogenously, we identified a criterion for selecting a single
representative channel for each region for every subject. Note-
worthy, the present work grounds our future perspective of
studying the temporal structures typical of local neuronal pools
and their exchanges across brain regions. For such an aim, we
need the identification of a representative of each cortical area
of interest, with its ongoing neurodynamics. In fact, averages can
be obtained for indices, as we did to enhance the confidence
in the selection of the representative, but cannot be used for
obtaining a more reliable description of the local ongoing time
course.

The criterion we used was mainly based on the electrode’s
location along the three regions of our interest, through
the spatial coordinates provided in MNI data. Given the M1
and S1 anatomical proximity, we first select the M1 and S1
representatives as belonging to counterparts to the same
body part representation. To do this, we selected the S1 and
M1 representatives detected in locations with the minimum
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Figure 1. Study flowchart. Flowchart is divided into three sections separated with different shades. Arrows indicate a direct one-sided connection of two blocks. The

case where the two arrows are surjected into a single block (i.e., Spectral Coherence) signifies that the estimation needs of an involvement of more than one ROI.

Figure 2. Recording electrode. Representation of a portion of a Dixi electrode
adopted in the majority of the MNI channels investigated, with the typical
dimensions: length of contact (lc) ∼ 2 mm, distance between consecutive con-

tacts (ls) ∼ 1.5 mm, resulting distance between the centres of two contacts
(li) ∼ 3.5 mm. The total exploration length depends on the number of contacts
of an electrode varying from 5 to 18 in the studied recordings.

difference in z coordinate (points at fixed z define the axial
plane) and x coordinate (fixed x defines the coronal plane);
and we selected the most frontal position available (greater
y values) for M1 than S1 (smaller y values, moving along
sagittal plane). If, for a subject, none of the multiple channels
fulfilled this criterion, we arbitrarily selected as representative
the channel which showed the most typical behavior in the
power spectra (Fig. 4). For A1, we selected as representative
channel the one in the most central position among those
available.

Neurodynamics Analysis
In the MNI, each sEEG channel is provided subdivided into
segments, with a time length of at least 5 s, and we gave
care to assess quantitative indices in windows excluding the
discontinuities.

In order to identify the neurodynamics features, character-
istic of the 3 investigated regions, we considered 2 approaches:
the estimate of the spectral analysis and the fractal dimension
of the studied signals.

To support the suitability of representative selection, we also
included the description of the avarage across all channels in
each individual.

Spectral Features

To extract the spectral properties of the signal, we calculated
the PSD of each representative channel. We applied a Hamming
tapering to the time series and evaluated the Fast Fourier
Transform on sequences of 256 samples each (about 1.28 s,
obtaining a frequency resolution of ∼0.78 Hz) with a sliding
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Figure 3. Exploring spatial distribution of MNI channels of the regions of interest. Representation of channels position in the orthogonal projections for the 21 subjects
having data collected in at least two regions of interest, among A1 (crosses), S1 (empty diamonds), and M1 (filled circles). The x axis is oriented from left to right, y

axis from back to front and z from bottom to top. As schematized on top of the figure, on the left panel the axial plane direction of the head is presented with the
projection of channel positions in the represented volume, in the middle panel the coronal plane direction and on the right one the sagittal plane direction. Rightmost,
the representation of the same channels position in 3D space.

window overlap of 50% according to the Welch method. PSD
values are normalized so that the area under each curve is equal
to 1.

According to the bandpass filter of the MNI database proper
for the used sampling frequency, the maximum frequency avail-
able was 80 Hz. We categorize the spectrum from 0.5 Hz to
80 Hz into 7 frequency bands: delta [≤3 Hz], theta [4-7 Hz],
alpha [8-12 Hz], low beta [13-25 Hz], high beta [26-32 Hz], low
gamma [33-48 Hz] and high gamma [49-80 Hz]. For each sub-
ject, the PSD in a single band is calculated as the integral of
normalized power within the band divided by the number of
frequency bins.

Higuchi’s Fractal Dimension

In continuity with (Cottone et al. 2017a), we estimated the
fractal dimension of the sEEG signals as defined by Higuchi,
who developed an algorithm working in the time domain,
without the need of using the frequency representation
(Higuchi, 1988).

According to the concept of quantifying the emergence of
similar features at different time scales, Higuchi’s algorithm
uses many time series built by down-sampling the original
signal X(i) (with i = 1, . . . , N) every k samples:
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If L(k) ≈ k−HFD, then the curve is fractal with dimension equal
to HFD.

Although HFD is a property of the signal independent of the
amplitude of the signal and the estimating window’s length, the
HFD estimate depends on the single parameter Kmax. In this
framework, we estimated the HFD at the value of Kmax where
its value starts stabilizing, namely Kmax = 35, fixed across all
subjects and the three areas (Fig. 5).

Statistical Analysis

In each fixed frequency band, the values of PSD on the
population displayed non-normal distribution as quantified by
the Shapiro–Wilk test. Similarly, the distribution of HFD values
between subjects was not Gaussian. Thus, to compare HFDs and
PSDs of pairs of cortical sources of all subjects, we deployed the
nonparametric Wilcoxon test (hereafter Wtest values), which
uses the ranking method of differences. The test was applicable
for comparing S1 and M1 functional sources, as their match
had enough subjects. In the case of A1 versus S1 and M1, we
provided a descriptive evaluation, without applying statistical
comparisons, due to the low number of subjects.
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Table 1 Summary of selected channels

ID Age Sex S1 M1 A1

#Chs Channel name Scaler (V) #Chs Channel name Scaler (V) #Chs Channel name Scaler (V)

5 27 M 1 GD005Lw_5W 1.42E-4 2 GD005Lx_5W 2.32E-4 - - -
7 40 F 4 GD007Rz14W 5.83E-4 11 GD007Rf9W 4.94E-4 3 GD007Rt5W 1.62E-4
9 28 M 1 GD009Rj12W 3.93E-4 10 GD009Rj08W 2.22E-4 - - -
13 23 F - - - 3 GD013Lr_13W 3.52E-4 1 GD013Lu_8W 7.08E-4
16 19 F 2 GD016Rj11W 3.38E-4 4 GD016Rb10W 6.20E-4 - - -
18 41 M - - - 8 GD018Ln_03W 5.05E-4 3 GD018Lt_05W 2.06E-4
23 19 M 1 GD023Rz12W 2.34E-4 2 GD023Rh13W 6.61E-4 - - -
26 17 M 13 GD026Li_14W 8.36E-4 11 GD026Lm_2W 2.69E-4 - - -
29 35 M 2 GD029Ri12W 4.62E-4 13 GD029Rh11W 2.33E-4 1 GD029Rd10W 2.19E-4
34 41 M - - - 3 GD034Lr_6W 2.83E-4 3 GD034Lu_5W 1.73E-4
37 23 F 1 GD037Lr_5W 1.55E-4 - - - 1 GD037Ls_5W 1.19E-4
44 24 F 3 GD044Lh_11W 1.61E-4 2 GD044Lq_6W 1.90E-4 - - -
45 51 M 3 GD045Rf7W 5.06E-4 2 GD045Rf5W 2.20E-4 - - -
47 23 F 6 GD047Ln_11W 1.11E-3 8 GD047Lm_11W 5.25E-4 - - -
93 25 M 3 NG093RF143W 3.62E-5 2 NG093RF144W 2.57E-5 1 NG093RF121W 4.45E-5
94 18 F 2 NG094RF42W 3.61E-4 3 NG094RF43W 3.13E-4 - - -
98 13 F 3 NA098RP81W 2.70E-4 5 NA098RP42W 3.06E-4 2 NG098RG26W 3.87E-4
99 41 M 1 NG099RG230W 3.19E-4 3 NG099RG228W 3.05E-4 - - -
100 24 M 1 NG100RG31W 2.60E-4 4 NG100RG29W 3.72E-4 1 NG100RT68W 2.06E-4
103 24 F - - - 1 NG103LG145W 2.24E-4 2 NG103LT14W 3.84E-4
110 27 F 3 NG110RG614W 3.84E-4 2 NG110RG613W 3.21E-4 - - -

For each of the 21 subjects included in the study (having recordings in at least two regions of interest S1, M1 and A1) the table reports: MNI ID, age, sex, total number
of available channels in each region, name of the representative channel selected for this study and the scaling factor needed to normalize the channel amplitude to
[−1,1]. In total we have: 99 channels for M1, 50 for S1 and 18 for A1. Channel name coding: second letter indicates the type of electrode (D for Dixi, A for AdTech and
G for grid), the three digits before the L/R hemisphere label represent the patient ID whereas the next alphanumerical string denotes the contact identification and
the last letter (W) indicates the state, as all data are collected in wake condition. In agreement with Frauscher et al. (2018a), it is possible to compare signals collected
with different type of electrodes.

Figure 4. Local neurodynamics: Power Spectra Density (PSD). Example of power spectra density as a function of frequency in subject 29, who had one channel in A1
(left, dashed line), 2 channels in S1 (middle, dotted line) and 13 channels in M1 (right, continuous line). PSD values are normalized so that the area under each curve

is equal to 1.

To investigate the possible relationship between HFD and
PSD in different areas and frequency bands, we assessed their
Pearsons’ correlation coefficient and its statistical significance.

Cortico-Cortical Functional Connectivity

Even though our work is focused on the local neurodynamics,
which mirrors cytoarchitecture of the involved cortical parcel

and its projections to and from the whole brain, we also
exploited the availability of synchronous recordings in the
regions of interest to have an idea about their functional
connectivity. We measured it via spectral coherence, by using
the same estimate parameters as PSD, in 5 people among the
3 regions, as they have the recordings in the 3 areas, and in
couples of regions (16 subjects for the couple S1-M1, 9 for A1-M1
and 6 for A1-S1).
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Figure 5. Local neurodynamics: Higuchi fractal dimension as a function of Kmax. Example of HFD as a function of Kmax for subject 29. Multiple curves refer to different

channels available for this subject for the studied regions.

Results
By applying the constraint of having one recording of at
least 2 cortical regions in each subject—independently of the
hemisphere—we have 21 subjects (11 males and 10 females,
Table 1). The mean age was 27.8 ± 9.9 years, similarly distributed
across sex. Among them, 20 subjects had M1 recordings, 17 had
S1 and 10 had A1. The neurodynamics comparison was possible
in 16 subjects for the couple S1-M1, 9 for A1-M1 and 6 for A1-S1
(5 subjects had recordings for all 3 areas).

Power Spectrum

Local neurodynamics appeared specific for cortical parcels in
terms of PSD band values (Fig. 6A and 7 Left): S1 consistently
showed greater power than M1 in alpha band [Wtest = 26, P = 0.03]
and smaller in high beta [Wtest = 25, P = 0.03], low gamma
[Wtest = 15, P = 0.01] and high gamma [Wtest = 28, P = 0.04]. A1
had power in delta frequency band greater than M1 (9 out of
9 subjects) whereas smaller in low beta (7/9), high beta (7/9) and
low gamma (7/9) bands. A1 steadily showed greater power than
S1 in the delta band (6/6) and smaller in low (5/6) and high beta
(4/6) bands.

In order to support our findings obtained by using repre-
sentative channels, we evaluated the differences among the
three primary cortices (A1, S1, and M1) also by using the PSD
value averaged across all channels of each subject (Fig. 6C). In
complete agreement with the results obtained on represen-
tatives, PSD of M1 was greater than that of S1 in high beta
[Wtest = 19, P = 0.01], low gamma [Wtest = 19, P = 0.01], and high
gamma [Wtest = 27, P = 0.03] bands. Whereas PSD of A1 is greater
than S1 and M1 in delta band in all subjects, PSD of A1 is lower
than that of S1 in low beta 6(6) and high beta 6(6) as well as that
of M1 in low beta 8(9), high beta 8(9), and low gamma 8(9) bands.

Fractal Dimension

By using a representative for each subject, the HFD of M1 was
consistently greater than S1 for each subject [Wtest = 12, P = 0.01]

(Fig. 6B and 7 Right), and A1 HFD was smaller than HFD for S1
and M1 regions.

Moreover, by using HFD (evaluated at Kmax = 35) averaged
across all channels in each subject (Fig. 6D), we obtained the
same results as for representative channels, namely HFD of M1
is higher than in S1 [Wtest = 28, P = 0.04] and HFD of A1 is lower
than in S1 and M1 with 5(6) and 8(9), respectively.

Correlation between Fractal Dimension and Power
Spectrum Density

By using the representative approach, we have investigated the
correlation between HFD and PSD over the whole population,
as depicted in Table 2. HFD negatively correlated (P < 0.001) with
PSD of low-frequency bands delta (A1), theta (S1 and M1), and
alpha (S1), whereas HFD typically correlated positively with the
PSD of beta in A1 and PSD of high-frequency bands beta and
gamma for S1 and M1.

We also studied the correlation between HFD and PSD in all
7 bands, evaluated starting from the interchannel averages in
each subject. Consistently with the results for representative
channels, we observe that low-frequency bands such as delta
negatively correlate with HFD of A1, and theta with HFD of S1
and M1 (Table 2). Moreover, positive correlations with HFD were
noticed in the beta band for all three regions and for S1 as well
as M1 in low gamma bands. The high gamma band positively
correlated only with HFD of S1.

Cortico-Cortical Functional Connectivity

We observed that, as expected from brain structure and
function, the coherence between S1 and M1 is higher than
the coherence of these two regions with A1 across the whole
spectrum (see Fig. 8).

Discussion
The core result of this study is to have highlighted, within
a large variability across subjects (Fig. 9), the existence of
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Figure 6. Mean of the spectral and fractal neurodynamics indices of the A1, S1 and M1 areas. Panels A and B show the mean (and standard deviation) of PSD and HFD,
respectively, estimated across population, as a function of frequency. For each subject we considered a representative of all available channels within the A1, S1, and

M1 regions. The Higuchi fractal dimension was evaluated at Kmax = 35. Plots of panels C and D show the same, but using for each subject the average of all applicable
channels.

Table 2 Correlation across population of HFD and PSD

Delta Theta Alpha Low beta High beta Low gamma High gamma

Representative
channel

A1 (10 subjects) r −0.86 0.57 0.40 0.79 0.61 0.47 0.23
P 0.00 0.09 0.25 0.01 0.06 0.17 0.51

S1 (17 subjects) r −0.21 −0.82 −0.51 0.82 0.82 0.71 0.61
P 0.43 0.00 0.04 0.00 0.00 0.00 0.01

M1 (20 subjects) r −0.23 −0.84 −0.19 0.53 0.60 0.65 0.52
P 0.34 0.00 0.43 0.02 0.00 0.00 0.02

Mean over channels A1 (10 subjects) r −0.80 0.51 0.24 0.86 0.67 0.53 0.27
P 0.01 0.13 0.50 0.00 0.04 0.11 0.44

S1 (17 subjects) r −0.32 −0.90 −0.17 0.78 0.76 0.70 0.64
P 0.21 0.00 0.52 0.00 0.00 0.00 0.01

M1 (20 subjects) r −0.47 −0.79 −0.27 0.74 0.60 0.58 0.39
P 0.04 0.00 0.24 0.00 0.01 0.01 0.09

Pearson’s coefficient (r) and significance (P) of the correlation across population between the HFD value and the PSD in different bands. HFD and PSD have been
evaluated from representative channel in each subject (above) and by averaging over all channels in each subject (below). Significant results are bolded.

typical features of the time course of the electrical activity
of diverse cortical parcels. The second relevant result is to
have derived from the MNI database a set of primary cortices’
representatives to be interrogated with appropriate artificial
intelligence tools or other algorithmic approches to develop
new models for cortex parceling based on the neuronal pools’
neurodynamics.

Local Neurodynamics

Local PSD
One of the main results achieved by the present investigation
concerns the identification of a compact index of local neurody-
namics peculiar for different cortical regions as a candidate for

a novel cortical parceling method enriching the well-established
cytoarchitecture of cortical brain areas.

Our investigation of the primary motor, somatosensory, and
auditory cortex cortices revealed spectral behaviors in good
agreement with the differentiation described at whole-brain
lobes level in (Frauscher et al. 2018). In fact, we observed M1,
S1, and A1 spectral features with the PSD beta and gamma
prevalence in the frontal lobe, alpha in the parietal lobe, and
delta in the temporal lobe (see horizontal segments in Fig. 4A
of Frauscher et al. 2018, Supplementary Material).

Local Fractal Dimension
The neuroscientific community—by investigating at multiscale
the dynamical structure of local and global neural networks,
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Figure 7. Local neurodynamics comparison. Left rectangle: for comparing the neurodynamics of the studied brain areas couples, the scatterplots (between subjects)
of the PSD band values are shown for the frequency bands where the two sources differ such as: S1 versus M1 [16 subjects] in 4 bands; A1 versus M1 [9 subjects] in 4
bands; A1 versus S1 [6 subjects] in 3 bands. Right rectangle: scatterplots of HFD between subjects for each couple of brain areas. In each plot, a point above (below) the

diagonal has a PSD band value of the source represented on x axis lower (higher) than that of the source shown on y axis. Similarly, for the HFD scatterplots.

and connecting those dynamics to biophysical mechanisms and
cognitively important computations—clearly agrees that, even
in resting-state, the neuronal activity time course is nonsta-
tionary and nonlinear (Kopell et al. 2014). This means that the
EEG signal can display patterns of organization that recur at
different magnitudes generating fractal properties (Di Ieva et al.
2014). Investigating the neurodynamics, the time course of neu-
ronal electrical activity, we selected the fractal dimension index,
aware of the existence at different scales of self-similar regu-
larities in the signal, that are distributed according to a scale-
free behavior, thus following a power-law distribution (Buzsáki
and Mizuseki 2014). Accordingly, grounding on existing knowl-
edge, we proposed a unique functional organizing principle—
the feedback-synchrony-plasticity triad—which, governing the
neuronal networks at multiple scales, emerges as a potential
explanatory framework for the fractal properties exhibited by
neurodynamics (Tecchio et al. 2020). The fractal dimension of
EEG signals has proven to be a reliable marker of underlying
neuronal electrical activity, sensitive to alterations in clinical
scenarios such as stroke (Zappasodi et al. 2014), Alzheimer’s
disease (Smits et al. 2016), and fatigue in multiple sclerosis (MS)
(Porcaro et al. 2019).

Higher Motor than Sensory Cortex Complexity

Here, in agreement with previous results from noninvasive EEG
investigation (Cottone et al. 2017a), we corroborated the evi-
dence that the fractal dimension of M1 activity is larger than
S1. The analysis, extended to the primary auditory area, also
indicated a smaller fractal dimension of A1 compared with both
S1 and M1.

It is therefore possible to interpret this newly strengthened
finding in the evolutionary perspective, where cortical areas
have developed their structure and functionality in accordance
with the requirements posed by the environment, developing a
functional hierarchy within primary motor cortices’ activities.
As the ideation, execution and monitoring of whatever behav-
ioral outcome emerges from M1 directed to muscular effectors,
this cortical area undertakes the more sophisticated functional
role (Wolpert et al. 2011) with respect to the single processes’
steps that regulate sensory perception, mirroring its higher
dexterity into higher signal fluctuation richness quantified by
higher fractal dimension. In this same direction, we can inter-
pret the higher fractal dimension of S1 than A1 activity. In fact,
although auditory information is crucial for the interaction with
the environment, somatosensory and proprioceptive feedback
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Figure 8. Cortico-cortical functional connectivity. Spectral coherence between couples of cortical parcels averaged across population plot as a function of frequency.

We show the mean and the standard deviation across corresponding frequency bands.

constitutes a building block of motor control itself. On the same
line, given the predictive function of gaze with respect to the
motor realization (Johansson et al. 2001), there are indications
that the fractal dimension of the activity of primary visual cor-
tical areas shows values even higher than those of primary sen-
sorimotor (Marino et al. 2019). It could be the aim of future work,
to verify, as suggested by our model and observed by (Marino
et al. 2019), whether in the MNI intracortical EEG database the
neuronal activities of the secondary and associative cortices
have lower fractal dimension than those of primary ones.

Spectral Versus Fractal Dimension Relationship
Noteworthy, the correlative analysis between power spectra and
HFD revealed that HFD is suitable in summarizing in a sin-
gle index the different spectral features of the probed cortical
areas activities. This relationship between fractal dimension
and power spectra emerged stably from multiple scalp EEG data
studies (Zappasodi et al. 2014, 2015; Smits et al. 2016; Cottone
et al. 2017a) is strengthened by the present intracortical sEEG
investigation.

Resting-State Neurodynamics

We observed, as the Gotmans’ group did, that even in resting-
state with closed eyes, different brain regions exhibit specific
neuronal electrical activity characteristics (Frauscher et al.
2018). To date, brain activity at rest is not considered as the
result of random fluctuations (Fox and Raichle 2007) but rather
as reflecting, in its organization, the behavioral potential of
the generating structures (Deco et al. 2011; Lin et al. 2020).
In the context of error prediction models that look at the
enactment of complex behaviors as the result of prediction and
feedback mechanisms (Friston 2010; Clark 2016), the opportunity
to qualify and describe the characteristics of resting-state
brain activity provides a fundamental tool for understanding
the mechanisms that underpin the brain state in healthy or
pathological conditions (Spetsieris et al. 2015; Damborská et al.
2019).

This is especially true in the context of chronic diseases or
symptoms that are primarily driven by a pathological alteration
of neuronal electrical activity (Gianni et al. 2021; Razza et al.
2021). In this regard, promising indications of the exploitation
of resting-state neurodynamics in disease come from the suc-
cessful example of treatment of the symptom of fatigue in the
context of MS. In fatigued MS patients, the resting-state neuro-
dynamics displayed alterations (Porcaro et al. 2019) supporting
the suitability of an ad hoc developed compensatory personal-
ized neuromodulation treatment (Tecchio et al. 2014; Cancelli
et al. 2018), which, consistently, induced a normalization of
such alterations together with a significant reduction in fatigue
levels.

Cortical Neuronal Pools Assessment by Noninvasive
EEG

The consistency of the current results with those of the
noninvasive study (Cottone et al. 2017a) where M1 and S1
were obtained by the Functional Source Separation (FSS)
(Barbati et al. 2006; Tecchio et al. 2007) underlines the abil-
ity of this identification algorithm to correctly separate
2 contiguous cortical parcels. Leveraging on the best of
noninvasive electrophysiological investigation tools of brain
activity (EEG, magnetoencephalography—MEG), FSS assesses
intracerebral neuronal activity based on the temporal behavior
of the source. Interestingly, FSS exploits specific event-related
functional characteristics typical of the cortical region to be
identified, providing a tool to assess its local neurodynamics
under other behavioral conditions, including the resting-
state.

Limitations of the Study

The nonuniform distribution of available channels across
subjects, secondary to the epileptogenic region locations,
together with the requirement to assess diverse cortical regions
in the same subject determined the relatively small dataset
selected here.
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Figure 9. Local neurodynamics in individual subjects. Representation of sEEG time course, power spectral density (PSD) and Higuchi fractal dimension (HFD) in each
of the 21 subjects included in the study for the S1 (dotted line), M1 (continuous line), and A1 (dashed line) brain regions. In the panel of each subject, the plot on the
left shows a sample (1 s long) of the time series of the cortical area channels (amplitude is normalized to [−1, 1] with the scaler factor given in Table 2) together with

the relative estimated HFD value. On the right plot of each panel, normalized PSD versus frequency is presented, where vertical lines separate distinct spectral bands:
δ [≤3 Hz], θ [4–7 Hz], α [8–12 Hz], lβ [13–25 Hz], hβ [26–32 Hz], and lγ [33–48 Hz].

About the neuronal activity assessment, it should be consid-
ered that the advantage in terms of physiological state investiga-
tion via sEEG recordings outside the operating room, is strongly
limited by the patient being literally tethered to bed for the days
of recordings, due to the large number of wires connecting the

implanted electrodes to the recording rig (Parvizi and Kastner
2018).

A further limitation concerns the nature of sEEG signals ana-
lyzed in the present study, coming from subjects diagnosed with
severe epilepsy. In fact, nowadays the view of epilepsy as a focal
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pathology is being overcome, in favor of the understanding of
its nature as a network pathology given the core characteristics
of altered connectivity patterns between epileptogenic areas
and the structures linked to them (Kramer et al. 2011; Proix
et al. 2014; Bartolomei et al. 2017; Besson et al. 2017; Devinsky
et al. 2018; Lagarde et al. 2018). In terms of the present data,
it is plausible to expect that the alterations in neurodynamics
related to the epileptogenic cluster would also variably involve
other connected—here investigated—areas.

Furthermore, the sample herein analyzed presented nonho-
mogeneous characteristics in relation to age (from 13 to 68 years
old). This feature is expected to generate part of the variability
in the local neurodynamics. In fact, in the life span of healthy
subjects, the brain complexity hugely modifies both structurally
(Marzi et al. 2020) and functionally (Zappasodi et al. 2015; Smits
et al. 2016).
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