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Abstract: In the sense of a conformable fractional operator, we consider a generalized fractional–stochastic
nonlinear wave equation (GFSNWE). This equation may be used to depict several nonlinear physical
phenomena occurring in a liquid containing gas bubbles. The analytical solutions of the GFSNWE are
obtained by using the F-expansion and the Jacobi elliptic function methods with the Riccati equation.
Due to the presence of noise and the conformable derivative, some solutions that were achieved are
shown together with their physical interpretations.
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1. Introduction

In the fields of finance, engineering, biology, physics, control theory, systems identifi-
cation, and signal processing, fractional differential equations (FDEs) have received much
interest [1–5]. They are also used in social sciences as well as in dietary supplements, fi-
nance, climate, and economics. In contrast, stochastic partial differential equations (SPDEs)
are employed in the analysis chemical, biological, and physical systems that are affected
by random factors. It has been emphasized how important it is to take random impacts
into account when modeling complex systems. SPDEs are being increasingly used in
information systems, condensed matter physics, finance, biophysics, mechanical and elec-
trical engineering, materials sciences, and climate system modeling to create mathematical
models of complicated processes [6,7].

As a result, finding exact solutions to fractional or stochastic differential equations
is crucial. For the purpose of solving these equations, several analytical and numerical
techniques, such as the modified F-expansion method [8], extended tanh–coth method [9],
Riccati–Bernoulli sub-ODE [10], mapping method [11], (G′/G)-expansion method [12], etc.,
have been developed.

Rayleigh [13] provided the initial study of the bubble dynamics problem. Since
liquids containing gas bubbles are widespread in many areas, including medical science
and engineering, researchers have studied bubbly liquids. According to some research,
the linear partial differential equation of the fourth order may be used to describe the
propagation of linear acoustic waves in isothermal bubbly liquids with bubbles that are
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uniform in radius. The following generalized (3 + 1)-dimensional nonlinear wave equation
is one such model, and it is used to describe a liquid containing gas bubbles:

(Ut+γ1Ux + γ2Uxxx + γ3UU x)x + γ4Uzz + γ5Uyy = 0, (1)

where U (x, y, z, t) is the wave amplitude, γ1 is the bubble–liquid viscosity, γ2 is the bubble–
liquid dispersion, γ3 is the bubble–liquid nonlinearity, γ4 is the z-transverse perturbation,
and γ5 is the y-transverse perturbation.

Equation (1) may be used to explain various nonlinear physical phenomena in a
liquid containing gas bubbles. Therefore, many researchers have studied Equation (1);
for instance, Shen et al. [14] used the idea of linear superposition to obtain solutions for
N-soliton waves, Wang et al. [15] created both lump-stripe solitons and rogue wave-stripe,
Guo and Chen [16] found the lump, periodic solutions, and multi-soliton, Tu et al. [17]
constructed the bilinear equation, the Bäcklund transformation, and the N-soliton solution
with specific formula for the provided model, Wang et al. [18] used the Hirota bilinear
approach to achieve soliton solutions, representing a new generalized exponential rational
function [19], Akbulut et al. [20] used the modified Kudryashov and the Nnucci’s reduction
to acquire information about solitary waves, while the fractional derivative and stochastic
term were not earlier considered in (1).

In this study, we look at the generalized fractional–stochastic nonlinear wave equation
(GFSNWE) as follows:

Dα
x(Ut+γ1Dα

xU + γ2Dα
xxxU + γ3UDα

xU ) + γ4Dα
zzU + γ5Dα

yy = ρ(Dα
xU )Wt, (2)

where Dα
x is the conformable derivative (CD) for α ∈ (0, 1] [21], which will be defined in

the next section,W is the standard Wiener process (SWP), and ρ is the noise intensity.
Our contribution in this paper is to analytically determining the fractional–stochastic

solutions of GFSNWE (2). The solutions presented in this paper are the first of their kind.
These solutions are found using F-expansion and Jacobi elliptical functions methods. Since
(2) contains a stochastic term and fractional derivative, physics researchers would find
the solution very useful for defining several major physical phenomena. The solutions of
GFSNWE (2) are additionally investigated using MATLAB by introducing many graphs to
illustrate the effect of noise and fractional derivatives.

This article is summarized as follows: In Section 2, we define the conformable deriva-
tive (CD) and the standard Wiener process (SWP), and we explore some of its features. In
Section 3, We obtain the wave equation of GFSNWE (2). In Section 4, the Jacobi elliptic
functions and F-expansion methods are employed to obtain the exact solutions of the
GFSNWE. The impact of noise and the fractional derivative on the acquired solutions of
GFSNWE is analyzed in Section 5. Finally, the conclusions of this paper are presented.

2. CD and SWP

Different forms of fractional derivatives have been presented by several mathemati-
cians. The best-known are the ones proposed by Riesz, Marchaud, Kober, Riemann–
Liouville, Erdelyi, Hadamard, Grunwald–Letnikov, and Caputo [2,22–24]. The majority of
the various fractional derivatives do not adhere to the traditional derivative formulae, such
as the product rule, quotient rule, and chain rule. Recently, Khalil et al. [21] developed a
novel fractional derivative identified as the conformable derivative, which is dependent on
a limit form similar to the standard derivative. In the following, we define the conformable
fractional derivative and discuss some of its key characteristics.

Definition 1 ([21]). For α ∈ (0, 1], the CD of U : R+ → R is defined as

Dα
yU (y) = lim

h→0

U (y + hy1−α)−U (y)
h

.
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Let U , Θ : R+ → R be differentiable, and α also a differentiable function; then, the
following characteristics of the CD are satisfied for any real constants c1, c2:

1. Dα
y [c1U (y) + c2Θ(y)] = c1Dα

yU (y) + c2Dα
y Θ(y),

2. Dα
y [c1] = 0,

3. Dα
y(U ◦Θ)(y) = y1−αΘ′(y)U (Θ(y)),

4. Dα
y [yn] = nyn−α,

5. Dα
yU (y) = y1−α dU

dy ,

Moreover, the SWPW is defined as follows [25]:

Definition 2. The SWP {W(τ)}τ≥0 is a stochastic process and fulfills:

1. W(t) is continuous for t ≥ 0,
2. W(t2)−W(t1) has a normal distribution N(0, t2 − t1).
3. W(0) = 0,
4. W(t2)−W(t1) is independent for t1 < t2,

The next lemma is required:

Lemma 1 ([25]). E(eρW(t)) = e
1
2 ρ2t for ρ ≥ 0.

3. Wave Equation for GFSNWE

Applying the following wave transformation:

U (x, y, z, t) = G(µ)e(ρW(t)− 1
2 ρ2t), (3)

where G is the function deterministic, and

µ =
µ1

α
xα +

µ2

α
yα +

µ3

α
zα + µ4t, (4)

with µ1, µ2, µ3 and µ4 are unknown constants. We note that

Ut = (µ4G ′ + ρGW t +
1
2

ρ2G−1
2

ρ2G)e(ρW(t)− 1
2 ρ2t)

= (µ4G ′ + ρGW t)e(ρW(t)− 1
2 ρ2t),

Dα
xU = µ1G ′e(ρW(t)− 1

2 ρ2t), Dα
xUt = (µ1µ4G ′′ + ρµ1G ′Wt)e(ρW(t)− 1

2 ρ2t),

Dα
xxU = µ2

1G(2)e(ρW(t)− 1
2 ρ2t), Dα

xxxxU = µ4
1G(4)e(ρW(t)− 1

2 ρ2t),

Dα
yyU = µ2

2G ′′e(ρW(t)− 1
2 ρ2t), Dα

zzU = µ2
3G(2)e(ρW(t)− 1

2 ρ2t). (5)

Inserting Equation (5) into Equation (2) yields

γ2µ4
1G(4) + (µ1µ4 + γ1µ2

1 + γ4µ2
3 + γ5µ2

2)G(2) + γ3µ2
1(GG ′)′e(ρW(t)− 1

2 ρ2t) = 0. (6)

Based on expectations from both sides, we achieve

γ2µ4
1G(4) + (µ1µ4 + γ3µ2

1 + γ4µ2
3 + γ5µ2

2)G(2) + γ3µ2
1(GG ′)′e(−

1
2 ρ2t)EeρW(t) = 0. (7)

Using Lemma 1, Equation (7) turns into

γ2µ4
1G(4) + (µ1µ4 + γ3µ2

1 + γ4µ2
2 + γ5µ2

3)G(2) + γ1µ2
1(GG ′)′ = 0. (8)
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If we integrate twice without considering the integral constant, we obtain

G(2) + h̄1G + h̄2G2 = 0, (9)

where

h̄1 =
µ1µ4 + γ3µ2

1 + γ4µ2
3 + γ5µ2

2

γ2µ4
1

and h̄2 =
γ1

2γ2µ2
1

.

4. Exact Solutions of GFSNWE

Using the F-expansion and Jacobi elliptical function (JEF) methods, the solutions to the
wave Equation (9) are discovered. After that, the solutions to GFSNWE (2) can be acquired.

4.1. F -Expansion Method

Let the solution G of Equation (9) be

G(µ) = a0 +
M

∑
k=1

(akF k +
bk

F k ), (10)

where F solves the Riccati equation:

F ′ = F 2 + Ω. (11)

Calculating M requires balancing G ′′ with G2 in Equation (9), as follows

M + 2 = 2M ⇒ M = 2.

Equation (10) becomes

G(µ) = a0 + a1F+a2F 2 +
b1

F +
b2

F 2 . (12)

Equation (11) has the following solutions:

F (µ) =
√

Ω tan(
√

Ωµ) or F (µ) = −
√

Ω cot(
√

Ωµ), (13)

If Ω > 0, or

F (µ) = −
√
−Ω tanh(

√
−Ωµ) or F (µ) = −

√
−Ω coth(

√
−Ωµ), (14)

If Ω < 0, or

F (µ) = −1
µ

, (15)

If Ω = 0.
Now, putting Equation (12) into Equation (9), we obtain

(6a2 + h̄2a2
2)F 4 + (2a1 + 2h̄2a1a2)F 3 + (8Ωa2 + 2a0a2h̄2 + a2

1h̄2 + h̄1a2)F 2

(2Ωa1 + h̄1a1 + 2h̄2a0a1 + 2a2b1)F + (2Ω2a2 + 2b2 + h̄1a0 + h̄2a2
0 + 2h̄2a1b1

+2h̄2a2b2) + (2Ωb1 + 2h̄2a0b1 + 2h̄2a1b2 + h̄1b1)F−1 + (8Ωb2 + 2a0b2h̄2

+b2
1 h̄2 + h̄1b2)F−2 + (2b1Ω2 + 2h̄2b1b2)F−3 + (6Ω2b2 + h̄2b2

2)F−4 = 0

Equating the coefficients of each power of F to zero:

6a2 + h̄2a2
2 = 0,

2a1 + 2h̄2a1a2 = 0,
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8Ωa2 + 2a0a2h̄2 + a2
1h̄2 + h̄1a2 = 0,

2Ωa1 + h̄1a1 + 2h̄2a0a1 + 2a2b1 = 0,

2Ω2a2 + 2b2 + h̄1a0 + h̄2a2
0 + 2h̄2a1b1 + 2h̄2a2b2 = 0,

2Ωb1 + 2h̄2a0b1 + 2h̄2a1b2 + h̄1b1 = 0,

8Ωb2 + 2a0b2h̄2 + b2
1 h̄2 + h̄1b2 = 0,

2b1Ω2 + 2h̄2b1b2 = 0

and
6Ω2b2 + h̄2b2

2 = 0.

We obtain the following four families of solutions by solving these equations:
First family:

a0 = −6Ω
h̄2

, a1 = 0, a2 = −6
h̄2

, b1 = b2 = 0,

µ4 = 1
µ1
(4Ωγ2µ4

1 − γ3µ2
1 − γ4µ2

3 − γ5µ2
2),

(16)

Second family:

a0 = −2Ω
h̄2

, a1 = 0, a2 = −6
h̄2

, b1 = b2 = 0,

µ4 = 1
µ1
(−4Ωγ2µ4

1 − γ3µ2
1 − γ4µ2

3 − γ5µ2
2),

(17)

Third family:

a0 = −12Ω
h̄2

, a1 = b1 = 0, a2 = −6
h̄2

, b2 = −6Ω2

h̄2
,

µ4 = 1
µ1
(16Ωγ2µ4

1 − γ3µ2
1 − γ4µ2

3 − γ5µ2
2),

(18)

Fourth family:

a0 = 8Ω
h̄2

, a1 = b1 = 0, a2 = −6
h̄2

, b2 = −6Ω2

h̄2
,

µ4 = −1
µ1
(14Ωγ2µ4

1 + γ3µ2
1 + γ4µ2

3 + γ5µ2
2).

(19)

First family: Equation (9) has the following solution:

G(µ) = −6Ω
h̄2
− 6

h̄2
F 2(µ).

For F (µ), there are three cases:
Case 1: If Ω > 0, then, with (13), we have

G(µ) = −6Ω
h̄2
− 6Ω

h̄2
tan2(

√
Ωµ) = −6Ω

h̄2
sec2(

√
Ωµ),

and
G(µ) = −6Ω

h̄2
− 6Ω

h̄2
cot2(

√
Ωµ) =

−6Ω
h̄2

csc2(
√

Ωµ).

Therefore, the solution of GFSNWE (2) is

U (x, y, z, t) = −6Ω
h̄2

sec2(
√

Ωµ)e(ρW(t)− 1
2 ρ2t), (20)
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and
U (x, y, z, t) =

−6Ω
h̄2

csc2(
√

Ωµ)e(ρW(t)− 1
2 ρ2t), (21)

where µ = 1
α (µ1xα + µ2yα + µ3zα) + 1

µ1
(4Ωγ2µ4

1 − γ3µ2
1 − γ4µ2

3 − γ5µ2
2)t.

Case 2: If Ω < 0, then, using (14), we obtain

G(µ) = −6Ω
h̄2

+
6Ω
h̄2

tanh2(
√
−Ωµ) =

−6Ω
h̄2

sech2(
√
−Ωµ),

and
G(µ) = −6Ω

h̄2
+

6Ω
h̄2

coth2(
√
−Ωµ) =

6Ω
h̄2

csch2(
√
−Ωµ).

Therefore, the solution of GFSNWE (2) is

U (x, y, z, t) =
−6Ω

h̄2
sech2(

√
−Ωµ)e(ρW(t)− 1

2 ρ2t), (22)

and
U (x, y, z, t) =

6Ω
h̄2

csch2(
√
−Ωµ)e(ρW(t)− 1

2 ρ2t). (23)

Case 3: If Ω = 0, then, we obtain, using (15)

G(µ) = 6
h̄2

1
µ2 .

Therefore, the solution of GFSNWE (2) is

U (x, y, z, t) = [− 6
h̄2

1
µ2 ]e

(ρW(t)− 1
2 ρ2t), (24)

where µ = 1
α (µ1xα + µ2yα + µ3zα) + 1

µ1
(4Ωγ2µ4

1 − γ3µ2
1 − γ4µ2

3 − γ5µ2
2)t.

Second family: Equation (9) has the solution

G(µ) = −2Ω
h̄2
− 6

h̄2
F 2(µ).

For F(µ), there are three cases:
Case 1: If Ω > 0, then, we obtain, using (13)

G(µ) = −2Ω
h̄2
− 6Ω

h̄2
tan2(

√
Ωµ),

and
G(µ) = −2Ω

h̄2
− 6Ω

h̄2
cot2(

√
Ωµ).

Therefore, the solution of GFSNWE (2) is

U (x, y, z, t) = [
−2Ω

h̄2
− 6Ω

h̄2
tan2(

√
Ωµ)]e(ρW(t)− 1

2 ρ2t), (25)

and
U (x, y, z, t) = [

−2Ω
h̄2
− 6Ω

h̄2
cot2(

√
Ωµ)]e(ρW(t)− 1

2 ρ2t), (26)

where µ = 1
α (µ1xα + µ2yα + µ3zα)− 1

µ1
(4Ωγ2µ4

1 + γ3µ2
1 + γ4µ2

3 + γ5µ2
2)t.

Case 2: If Ω < 0, then, we obtain, using (14)

G(µ) = −2Ω
h̄2

+
6Ω
h̄2

tanh2(
√
−Ωµ),
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and
G(µ) = −2Ω

h̄2
+

6Ω
h̄2

coth2(
√
−Ωµ).

Therefore, the solution of GFSNWE (2) is

U (x, y, z, t) = [
−2Ω

h̄2
+

6Ω
h̄2

tanh2(
√
−Ωµ)]e(ρW(t)− 1

2 ρ2t), (27)

and
U (x, y, z, t) = [

−2Ω
h̄2

+
6Ω
h̄2

coth2(
√
−Ωµ)]e(ρW(t)− 1

2 ρ2t). (28)

Case 3: If Ω = 0, then, we obtain, using (15)

G(µ) = 6
h̄2

1
µ2 .

Therefore, the solution of GFSNWE (2) is

U (x, y, z, t) =
6
h̄2

1
µ2 e(ρW(t)− 1

2 ρ2t), (29)

where µ = 1
α (µ1xα + µ2yα + µ3zα)− 1

µ1
(4Ωγ2µ4

1 + γ3µ2
1 + γ4µ2

3 + γ5µ2
2)t.

Third family: Equation (9) has the solution

G(µ) = −12Ω
h̄2

− 6
h̄2
F 2(µ)− 6Ω2

h̄2
F−2(µ).

For F (µ), there are three cases:
Case 1: If Ω > 0, then, using (13), we obtain

G(µ) =
−12Ω

h̄2
− 6Ω

h̄2
tan2(

√
Ωµ)− 6Ω

h̄2
cot2(

√
Ωµ)

= −6Ω
h̄2

[sec2(
√

Ωµ) + csc2(
√

Ωµ)].

Therefore, the solution of GFSNWE (2) is

U (x, y, z, t) = −6Ω
h̄2

[sec2(
√

Ωµ) + csc2(
√

Ωµ)]e(ρW(t)− 1
2 ρ2t), (30)

where µ = 1
α (µ1xα + µ2yα + µ3zα) + 1

µ1
(16Ωγ2µ4

1 − γ3µ2
1 − γ4µ2

3 − γ5µ2
2)t.

Case 2: If Ω < 0, then, using (14), we obtain

G(µ) =
−12Ω

h̄2
+

6Ω
h̄2

tanh2(
√
−Ωµ) +

6Ω
h̄2

coth2(
√
−Ωµ)

=
−6Ω

h̄2
[sech2(

√
−Ωµ)− csch2(

√
−Ωµ)].

Therefore, the solution of GFSNWE (2) is

U (x, y, z, t) =
−6Ω

h̄2
[sech2(

√
−Ωµ)− csch2(

√
−Ωµ)]e(ρW(t)− 1

2 ρ2t). (31)

Case 3: If Ω = 0, then, using (15), we obtain

G(µ) = 6
h̄2

1
µ2 +

6
h̄2

µ2.
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Therefore, the solution of GFSNWE (2) is

U (x, y, z, t) =
6
h̄2

[
1

µ2 + µ2]e(ρW(t)− 1
2 ρ2t), (32)

where µ = 1
α (µ1xα + µ2yα + µ3zα) + 1

µ1
(16Ωγ2µ4

1 − γ3µ2
1 − γ4µ2

3 − γ5µ2
2)t.

Fourth family: Equation (9) has the solution

G(µ) = 8Ω
h̄2
− 6

h̄2
F 2(µ)− 6Ω2

h̄2
F−2(µ).

For F(µ), there are three cases:
Case 1: If Ω > 0, then, using (13), we obtain

G(µ) = 8Ω
h̄2
− 6Ω

h̄2
tan2(

√
Ωµ)− 6Ω

h̄2
cot2(

√
Ωµ).

Therefore, the solution of GFSNWE (2) is

U (x, y, z, t) = [
8Ω
h̄2
− 6Ω

h̄2
tan2(

√
Ωµ)− 6Ω

h̄2
cot2(

√
Ωµ)]e(ρW(t)− 1

2 ρ2t), (33)

where µ = 1
α (µ1xα + µ2yα + µ3zα)− 1

µ1
(14Ωγ2µ4

1 + γ3µ2
1 + γ4µ2

3 + γ5µ2
2)t.

Case 2: If Ω < 0, then, using (14), we obtain

G(µ) = 8Ω
h̄2

+
6Ω
h̄2

tanh2(
√
−Ωµ) +

6Ω
h̄2

coth2(
√
−Ωµ).

Therefore, the solution of GFSNWE (2) is

U (x, y, z, t) = [
8Ω
h̄2

+
6Ω
h̄2

tanh2(
√
−Ωµ) +

6Ω
h̄2

coth2(
√
−Ωµ)]e(ρW(t)− 1

2 ρ2t). (34)

Case 3: If Ω = 0, then, using (15), we obtain

G(µ) = 6
h̄2

1
µ2 +

6
h̄2

µ2.

Thus, the GFSNWE (2) has the solution

U (x, y, z, t) =
6
h̄2

[
1

µ2 + µ2]e(ρW(t)− 1
2 ρ2t), (35)

where µ = 1
α (µ1xα + µ2yα + µ3zα)− 1

µ1
(14Ωγ2µ4

1 + γ3µ2
1 + γ4µ2

3 + γ5µ2
2)t.

Remark 1. Setting ρ = 0, and α = 1 in Equations (20)–(34), then we obtain the same solutions as
in [19].

Remark 2. Setting ρ = 0, and α = 1 in Equations (22) and (23), then we obtain the same solutions
(51) and (52) as in [20].

4.2. JEF Method

We employ here the JEF method defined in [26]. Assuming the solutions of Equation (9)
(with M = 2) as follows:

G(µ) = `0 + `1 ϕ(µ) + `2 ϕ2(µ), (36)
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where ϕ(µ) = cn(µ, m), for 0 < m < 1, is a Jacobi elliptic cosine function and `0, `1, and `2
are unknown constants. Differentiating Equation (36) twice

G ′′(µ) = 2`2(1−m2) + `1(2m2 − 1)ϕ + 4`2(2m2 − 1)ϕ2 − 2`1m2 ϕ3 − 6`2m2 ϕ4. (37)

Plugging Equations (36) and (37) into Equation (9), we have

(h̄2`
2
2 − 6`2m2)ϕ4 + (2h̄2`1`2 − 2`1m2)ϕ3 + (2h̄2`0`2 + h̄2`

2
1 + h̄1`2 + 4`2(2m2 − 1))ϕ2

+[`1(2m2 − 1) + 2h̄2`0`1 + h̄1`1]ϕ + (2`2(1−m2) + `0h̄1 + h̄2`
2
0) = 0.

Balancing the coefficient of ϕk(k = 4, 3, 2, 1, 0) to 0, we have

h̄2`
2
2 − 6`2m2 = 0,

2h̄2`1`2 − 2`1m2 = 0,

2h̄2`0`2 + h̄2`
2
1 + h̄1`2 + 4`2(2m2 − 1) = 0,

`1(2m2 − 1) + 2h̄2`0`1 + h̄1`1 = 0

and
2`2(1−m2) + `0h̄1 + h̄2`

2
0 = 0.

The following are the two cases we obtain from solving these equations.
First case:

`0 =
−2(2m2 − 1)−

√
6m4 − 6m2 + 4

h̄2
, `1 = 0, `2 =

6m2

h̄2
,

where µ = 1
α (µ1xα + µ2yα + µ3zα) + 1

µ1
(γ2µ4

1

√
6m4 − 6m2 + 4− γ3µ2

1 − γ4µ2
3 − γ5µ2

2)t.
Second case:

`0 =
−2(2m2 − 1) +

√
6m4 − 6m2 + 4

h̄2
, `1 = 0, `2 =

6m2

h̄2
,

where µ = 1
α (µ1xα + µ2yα + µ3zα) + 1

µ1
(γ2µ4

1

√
6m4 − 6m2 + 4− γ3µ2

1 − γ4µ2
3 − γ5µ2

2)t.
First case: The solution of Equation (9) is

G(µ) = −2(2m2 − 1)−
√

6m4 − 6m2 + 4
h̄2

+
6m2

h̄2
cn2(µ, m).

Therefore, the solution of GFSNWE (2) is

U (x, y, z, t) = [
−2(2m2 − 1)−

√
6m4 − 6m2 + 4

h̄2
+

6m2

h̄2
cn2(µ, m)]e[ρW(t)− 1

2 ρ2t] . (38)

If m→ 1, then Equation (38) is transferred:

U (x, y, z, t) = [
−4
h̄2

+
6
h̄2

sech2(µ)]e[ρW(t)− 1
2 ρ2t]. (39)

Second case: The solution of Equation (9) is

G(µ) = −2(2m2 − 1) +
√

6m4 − 6m2 + 4
h̄2

+
6m2

h̄2
cn2(µ, m).

Therefore, the solution of GFSNWE (2) is

U (x, y, z, t) = [
−2(2m2 − 1) +

√
6m4 − 6m2 + 4

h̄2
+

6m2

h̄2
cn2(µ, m)]e[ρW(t)− 1

2 ρ2t] . (40)
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If m→ 1, then Equation (38) is transferred:

U (x, y, z, t) = [
6
h̄2

sech2(µ)]e[ρW(t)− 1
2 ρ2t]. (41)

In a similar way, we can replace cn in (36) with the Jacobi elliptic sine function sn(µ, m)
or the Jacobi elliptic delta amplitude dn(µ, m) in order to obtain other different solutions
for GFSNWE (2).

5. Impacts of SWP and the Fractional Derivative

The next step is to look at how SWP and the fractional derivative affect the exact
solution of the GFSNWE (2). To explain the status of these solutions, we examine various
graphs. Let us set the parameters µ1 = 1, µ2 = µ3 = 1, γ1 = γ2 = γ4 = 1, γ3 = 2, γ5 = 3,
y = z = 0, x ∈ [0, 4], and t ∈ [0, 4], for the specific solutions that have been acquired, for
example, (22) with Ω = −1 and (38) with m = 0.5, so that we may simulate these graphs.

First, the noise impacts: In the following figures, we show the effect of noise:
Based on Figures 1 and 2, we may infer that there are different kind of solutions, such

as periodic, dark, bright, and others, when the noise is ignored (i.e., at ρ = 0). After a few
minor transits, the surface becomes much flatter when noise is introduced, and its strength
is raised. Thus, it appears that SWP stabilizes GFSNWE solutions.

(a) ρ = 0, α = 1 (b) ρ = 1, α = 1

(c) ρ = 2, α = 1 (d) α = 1, ρ = 0, 1, 2

Figure 1. The (a–c) 3D and (d) 2D shapes of the solution given in Equation (22) for various values of
ρ = 0, 1, 2.
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(a) ρ = 0, α = 1 (b) ρ = 1, α = 1

(c) ρ = 2, α = 1 (d) α = 1, ρ = 0, 1, 2

Figure 2. The (a–c) 3D and (d) 2D shapes of the solution given in Equation (38) for various values of
ρ = 0, 1, 2.

Second, the fractional derivative impacts: In Figures 3 and 4 if ρ = 0, we can see that the
graph’s shape is compressed as the value of α decreases:

(a) ρ = 0, α = 1 (b) ρ = 0, α = 0.7

Figure 3. Cont.
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(c) ρ = 0, α = 0.5 (d) ρ = 0, α = 1, 0.7, 0.5

Figure 3. The (a–c) 3D and (d) 2D profiles of Equation (22) with ρ = 0 and different values of
α = 1, 0.7, 0.5 .

(a) ρ = 0, α = 1 (b) ρ = 0, α = 0.7

(c) ρ = 0, α = 0.5 (d) ρ = 0, α = 1, 0.7, 0.5

Figure 4. The (a–c) 3D and (d) 2D profiles of Equation (38) with ρ = 0 and different values of
α = 1, 0.7, 0.5 .

From these two Figures 3 and 4, we were able to infer that as the order of the fractional
derivative goes down, the surface grows bigger.

6. Conclusions

In this paper, the generalized fractional–stochastic nonlinear wave equation (GFSNWE)
was considered in the Itô sense. This equation can characterize several nonlinear physical
phenomena in a liquid with gas bubbles. Using the Jacobi elliptic function and the F -
expansion methods, exact stochastic–fractional solutions for GFSNWE were discovered.
The methods we used are very efficient and strong in their ability to discover several
solutions of GFSNWE. In this study, we obtained new solutions using a strategy that
has never been explored before. These solutions are necessary to understand a range of
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fascinating and difficult physical phenomena. Using the MATLAB software, the impact of
the Wiener process and conformable derivative on the acquired solutions of GFSNWE (2) is
discussed. We deduced that the standard Wiener process stabilizes the solutions around 0.
Additionally, we deduced that the derivative order decreased and the surface is extended.
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