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Abstract: EUSO-Balloon is a pathfinder mission for the Extreme Universe Space Observatory
onboard the Japanese Experiment Module (JEM-EUSO). It was launched on the moonless night of
the 25th of August 2014 from Timmins, Canada. The flight ended successfully after maintaining
the target altitude of 38 km for five hours. One part of the mission was a 2.5 hour underflight using
a helicopter equipped with three UV light sources (LED, xenon flasher and laser) to perform an
inflight calibration and examine the detectors capability to measure tracks moving at the speed of
light. We describe the helicopter laser system and details of the underflight as well as how the laser
tracks were recorded and found in the data. These are the first recorded laser tracks measured from
a fluorescence detector looking down on the atmosphere. Finally, we present a first reconstruction
of the direction of the laser tracks relative to the detector.

Keywords: Detectors for UV, visible and IR photons; Lasers; Balloon instrumentation; Space
instrumentation

c© 2018 IOP Publishing Ltd and Sissa Medialab https://doi.org/10.1088/1748-0221/13/05/P05023

mailto:jeser@mines.edu
https://doi.org/10.1088/1748-0221/13/05/P05023


2
0
1
8
 
J
I
N
S
T
 
1
3
 
P
0
5
0
2
3

Contents

1 Introduction 1

2 Detector 2

3 Laser system and motivation 3

4 Flight summary 6

5 Data collection and example events 7

6 Analysis of laser events 8
6.1 Track identification 8
6.2 Algorithm for geometric reconstruction 9
6.3 Results of the direction reconstruction 10

7 Conclusion 12

The JEM-EUSO collaboration 15

1 Introduction

To measure extreme energy cosmic rays with high statistics a large observation area is needed. One
option is to go to space. JEM-EUSO (Extreme Universe Space Observatory on board the Japanese
Experiment Module) is a planned fluorescence detector on the International Space Station [1]. It
is designed to measure the light of extensive air showers developing in the Earth’s atmosphere
beneath the detector. Further space instruments in the design stage are KLYPVE-EUSO [2] and
POEMMA [3]. Various prototypes are being developed for the JEM-EUSO mission [4–6]. The
first one looking down onto the atmosphere, was EUSO-Balloon.

The EUSO-balloon mission had three main objectives:

1. Perform an end-to-end test of the JEM-EUSO design in a near-space environment

2. Measure the effective terrestrial UV background relevant for all space-based fluorescence
detectors (a discussion can be found in [7])

3. Detect UV light from above including laser tracks for the first time.

The third one is an important milestone for space-based fluorescence measurements. The detector
was flown as a stratospheric balloon payload during the moonless night of the 25th of August 2014.
It was launched from the Timmins (Canada) stratospheric balloon launch facility. An essential part
of the mission was a 2.5 hour underflight using a helicopter equipped with three UV light sources.
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Figure 1. Left: schematic of the flown EUSO-Balloon detector (reproduced with permission from [8]);
right: the actual detector.

The light sources were used to perform an inflight calibration and to test the instrument’s detection
capabilities. The EUSO-Balloon instrument and mission have been reported elsewhere [8]. We
will focus on the laser part of the underflight. First a brief description of the system and the idea
behind the underflight is presented. Then we show an example of the obtained data. Finally, we will
explain how the direction of these tracks can be reconstructed and discuss the results and impact of
this reconstruction.

2 Detector

An overview of the detector is shown in figure 1 and table 1 lists its key properties. The instrument is
a high speed UV camera designed to measure the fluorescence light of cosmic ray air showers. The
two main components are the optical bench and the instrument booth. The optical bench contains
two Fresnel lenses with an aperture of 1m2 to focus the light arriving at the instrument’s aperture
onto the Photo Detection Module (PDM) of EUSO-Balloon. The point spread function (PSF) of the
optics was defined as the FWHM of a two-dimensional Gaussian fit to the focal point. For EUSO-
Balloon this gives 9.0 ± 0.2 mm or 3×3 pixels corresponding to 0.7° × 0.7°. EUSO-Balloon had a
field of view of±5.5 ◦. A detailed description of the performance of the optical system is given in [9].

The PDM (see figure 2) is made of 36 Hamamatsu M64 Multi-Anode Photomultiplier Tubes
(MAPMT), each containing 64 anodes (2304 pixels in total) capable of single photoelectron count-
ing [10]. The Schott BG3 optical filter leads to a detection band of 290 to 430 nm with a tail up
to 500 nm. The time binning of the detector is 2.5 µs (equivalent to 1 Gate Time Unit, GTU). One
event trigger causes 128 GTUs of data to be collected from all pixels. The trigger rate during the
flight was 20 Hz, set by an internal clock. There was no synchronization between this trigger and
the laser system.
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Figure 2. Top view picture of the PDM with filters attached.

Table 1. Specifications of EUSO-Balloon and 2014 mission.

Specification Notes
Telescope Optics 2× 1 m2 Fresnel lenses PMMA
Field of View 11◦×11◦

Number of Pixels 2304 (48×48) 36 64 ch. MAPMTs
MAPMT R11265-113-M64-MOD2 Hamamatsu
UV Filter BG3, 2 mm thick 1 per MAPMT
Read Out DC coupled double pulse separation 30 ns [11]
Time Bin Duration 2.5 µs (GTU) event packet = 128 bins (320 µs)

2.3 µs integration + 0.2 µs dead time
Trigger forced by CPU 20Hz, non-synchronized
Flight CPU Atom N270 1.6 GHz processor Intel
Telemetry ≈ 1.3 Mbits/s NOSYCA CNES
Power Consumption 70 W
Detector Weight 467 kg
Balloon 4.0×105 m3 helium
Nominal Float Height 38300 m
Launch August 25 00:53 UTC 2017 48.57°N lat 81.38°W long
Flight Duration 8 hours

3 Laser system and motivation

To evaluate the detectors capability tomeasure light from an Extensive Air Shower (EAS) and to per-
form an in-flight calibration, three light sources were mounted to a helicopter that flew under the bal-
loon (see figure 3). An illustration of the underflight arrangement is shown in figure 4. The three light
sources were: a UV-LED, a xenon flashlamp, and a UV-laser. Light is scattered isotropically out of
a randomly polarized, pulsed laser beam when shot into the atmosphere. This light can be recorded
by a fluorescence telescope used to look for cosmic rays. Both air shower and laser, produce a track
movingwith the speed of light that is observed by the detector. Unlike showers it is possible to set the
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Figure 3. The light sources were mounted on a Bell 212 helicopter.
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Figure 4. Sketch of the helicopter underflight.
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Figure 5. The wavelength of the laser (355 nm) is indicated on the fluorescence spectrum of electrons in air
(reprinted from [13], copyright (2007), with permission from Elsevier).

laser energy and direction and repeat themeasurementwhenever needed. Thismakes a laser a perfect
test beam for fluorescence cosmic ray detectors. A more comprehensive study is presented in [12].
This paper will focus on the laser as a light source. Additional details of the LED and the Flashlamp
can be found in [14]. The laser usedwas aQuantel CFR-Ultra [15]YAG-laserwith frequency tripling
to a wavelength of 355 nm. This wavelength was chosen because it is in the middle of the atmo-
spheric fluorescence spectrum (see figure 5). Its maximum energy is 18 mJ with a 7 ns pulse width.
The optical setup is shown in figure 6. Harmonic separators are used to achieve a spectral purity of
more than 99.9%. A 3× beam expander reduces the divergence to less than 0.04°. The beam splitter
diverts 5% of the primary beam onto a pyroelectric probe [16] that measures the relative energy for
every discharge. The depolarizing optics is used to randomly polarize the laser beam. This way the
scattering out of the beam in air would be symmetric in the azimuth angle around the beam axis.
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Figure 6. Left: the UV-laser system that was flown in the helicopter. The thick blue line indicates the beam
path. Right: schematic of the UV-laser system.
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The beam characteristics are listed in table 2. The laser system was calibrated before and after
the flight by measuring the ratio between the monitor energy probe and a second energy probe
placed temporarily in the beam downstream of all optics. The calibration factor is independent
from the stability of the laser itself. The difference between this calibration factor measured before
and after the flight was 1.2 %. The laser system is controlled by a Single Board Computer (SBC).

Table 2. Laser beam characteristics.

wavelength 355 nm divergence < 0.04 ◦

relative energy calibration < 2% beam halo < 0.5%

absolute energy calibration < 4.5% spectral purity > 99.9%

overall stability 1.2%
beam pointing direction

zenith angle: < 3 ◦

depolarization < 4% azimuth angle: < 1 ◦

absolute timing accuracy ±20 ns repetition rate (GPS sync.) 19Hz

The key component of the SBC is the “GPSY2” module [17]. It contains an on-board GPS receiver,
two 5V outputs, and one analogue input which triggers the readout of all components. The timing
accuracy is 100 ns. The SBC was used to trigger the light sources in a specific order (1. LED, 2.
Laser, 3. Xe-Flasher). The sequence was timed so that light from the three sources could reach the
detector in the same 128 GTU readout window.

The system was mounted within a Bell 212 helicopter. The laser beam was fired through a
partially open door, perpendicular to the body of the helicopter and horizontally when the helicopter
was flying level. The pointing accuracy of the laser is better than 1° in azimuth and better than
3° for the zenith angle. The pointing direction was assessed using a self leveling laser while the
system was mounted in the helicopter.

4 Flight summary

The balloon was launched on the 25th of August 2014 at 00:53 UTC and reached a float altitude
of approximately 38 km after an ascent of 2h 50m. After 4h 40m at float altitude the payload was
released from the balloon (8:20 UTC) and landed 39 minutes later in a lake. The trajectories of the
balloon and the helicopter are shown in figure 7 and the timeline of the mission is shown in figure 8.
The flight path of the helicopter is plotted in red in figure 7.

For the underflight the helicopter arrived from Ottawa (helicopter base, 550 km from Timmins)
on the evening of the launch. After refueling in Timmins, it followed the balloon using a GPS
tracking system. The tracking system consisted of a GPS module and a beacon mounted on the
balloon and a receiver on board of the helicopter [14]. At 03:31 UTC the helicopter entered the
FoV of the detector and the light sources were turned on. At the height of the helicopter of 3 km the
FoV of the detector is 6.7 by 6.7 kilometers. To trigger pixels across the whole PDM, the pilots flew
circular loops with a radius smaller than 4 km centered on the position of the balloon while the laser
was pointing towards the center of the circles. The sources were fired ∼ 150000 times in 2.28 hours.

– 6 –



2
0
1
8
 
J
I
N
S
T
 
1
3
 
P
0
5
0
2
3

10 mi

Figure 7. The thick blue line shows the flight path of the balloon. The yellow dashed line is the approximate
FoV. The red line (loops) shows the flight pattern of the helicopter while the light sources were firing (created
with Google maps, Imagery Landsat/Compernicus, Map data Google).
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Figure 8. Timeline of the balloon and helicopter mission. The red line indicates the balloon.

5 Data collection and example events

The laser energy was switched every two minutes between ∼15 mJ and ∼10 mJ. The nominal laser
energy corresponds to an EAS energy of about 60 EeV for 15 mJ. A 19 Hz repetition rate was
chosen to obtain a chance overlap at regular intervals between the 20 Hz readout of the balloon and
the laser. This arrangement worked around a problem with the clock synchronization between the
two systems, possibly caused by a faulty GPS antenna on the balloon. The readout length is 320 µs.
Assuming a minimum track length of the laser in the detector of 4 GTUs a chance overlap yields a
number of potentially observable tracks of

N = (0.32ms − 0.01ms) · 20Hz · Nlaser pulses = 0.0062 · 105260 = 653
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This number has to be corrected for periods when we do not expect to identify any tracks due to
cloud obscuration. In a first oder approximation the possibility for clear atmospheric conditions is
33%. That gives an estimated number of 216 tracks. Out of these we were able to reconstruct 190.
One reason for the lower number could be obstruction by clouds between the laser and the detector
or positioning of the laser. The average energy of the shots, measured at the laser system, as a
function of time can be seen in figure 9. The energy is decreasing over time due to heating of the
laser. The laser shots that were recorded by EUSO-balloon are superimposed. Most of the events
were recorded when there were no clouds between the laser and the balloon.
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Figure 9. Red dots: energy of all fired laser shots averaged over 19 shots (1 s). Green Xs: shots recorded by
EUSO-balloon. Grey regions indicate the likely presence of clouds. The laser energy is decreasing due to
heating of the laser itself.

An example of a recorded laser track can be found in figure 10.

6 Analysis of laser events

6.1 Track identification

A track is a set of pixels from multiple GTUs. To identify tracks in the externally triggered data,
a two-level pseudo-trigger was implemented in the offline data analysis. The first level is a simple
threshold trigger. The average background per pixel over 128 GTUs is calculated. If at least 25
pixels have a value 5 sigmas above this average background the event is selected for further analysis.
The event will be processed by the second level trigger which is looking for tracks. To determine if
the set of pixels above background form a track two algorithms are available: one based on nearest
neighbors and one on a linear time fit. Both algorithms use clusters of triggered pixels. A pixel is
added to the cluster if its signal is 5 sigmas above its background and it is not further away than
three pixels. The first algorithm adds a cluster to the track selection if it is next to another cluster
in space and time. In case multiple tracks are found by this algorithm, the longest one is chosen.
This method finds 205 tracks in the data. The second algorithm is more complex. It performs a
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Figure 10. Laser track in the PDM at 05:29:25 UTC. Color represents the relative charge. The blue X is the
helicopter position at this time.

linear time fit on the clusters to identify tracks in the data. 205 tracks are found with this algorithm
as well. This latter algorithm is used for the work presented here.

6.2 Algorithm for geometric reconstruction

In this section, we explain the algorithm used to determine the geometry of the laser tracks. The
analysis follows two major steps. First, the pointing direction of the selected pixels is used to find
the Shower Detector Plane (SDP) (figure 11). In our case the shower is a laser track. The SDP is
given by the location of the detector and the line of the shower axis. The norm vector of the SDP,

ˆSDP is given by the pointing direction of the selected pixels and weighted by their count.

ˆSDP = 1√
(
∑

i;j>i CiCjni × nj)
2

∑
i;j>i

CiCjni × nj, (6.1)

where Ci, ni being, respectively, the charge and a unit vector along the pointing direction of the ith

pixel in the track. u, in the figure, is a unit vector lying in the SDP that is pointing in the horizontal
direction. To reconstruct the direction of the event in the SDP, a trial nominal direction is estimated.
Then the expected time for the signal to reach the detector is calculated for each pixel based on the
region of the event axis to which it points (see eq. 6.2). The difference between the expected and
the observed time is compared and the parameters are adjusted to minimize time differences across
the detector using the χ2 minimization method. The geometry with the minimum difference is used
to reconstruct the shower axis. The distance of closest approach, RP, and the angle from u to RP,
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Figure 11. Illustration of the reconstruction of the geometrical direction of the laser tracks fired from the
helicopter using the observables from the balloon. The parameters are explained in the text.

ψ0 are the two parameters describing the axis. The arrival time at the ith pixel is given by

ti,expected = T0 +
RP

c
tan

(
π

4
+
ψ0 − ψi

2

)
(6.2)

where ψi = acos(u ·ni) is the pointing direction of each participating pixel in the SDP. T0 is the time
when the shower front reaches RP. If the change in angular speed dψ/dt is small over the observed
track length (low curvature in time vs. angle), the uncertainties in the 3 parameter fit can be large.
A constrained fit can be performed using a known position along the track, for example the source
position. This reduces the number of parameters in eq. (6.2) from 3 to 2 (T0 and ψ0) given by

ti,ex = T0 +
Rknown

c
· cos(ψknown − ψ0) · tan

(
π

4
−
ψi − ψ0

2

)
(6.3)

where Rknown is the distance between the detector and the known source point (in our case, the heli-
copter position), and ψknown is the angle between the horizontal u and the known source point. This
angle as well as Rknown are calculated based on the GPS positions of the detector and the helicopter.

Finally, the laser reconstructed direction is given by

Ω = sin(ψ0)û + cos(ψ0)
(
û × ˆSDP

)
, (6.4)

where, the vector û is contained in the SDP. It is therefore, perpendicular to the ˆSDP, and can be
simply taken as u = ( ˆSDPy, − ˆSDPx, 0). The approach described here is also valid for the direction
reconstruction of extensive air showers.

6.3 Results of the direction reconstruction

The laser tracks from the underflight have been analyzed to reconstruct the laser direction relative to
the detector. An example track is shown in figure 12, with the corresponding two-parameter timing
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Figure 13. Zenith angle reconstruction of the helicopter laser shots with the 2-parameter fit method including
only tracks with 4 GTUs or more.

fit (see equation (6.3)). In this case, the fit was constrained using the position of the helicopter. The
instrument captured 205 laser track candidates. To ensure that the candidate is indeed a track and
not a false positive of the track finding algorithm, we required a track length of at least 4 GTUs
which corresponds to at least 2 degrees of freedom in our fit. Since the tracks were nominally
horizontal, the track length is directly related to the observation duration expressed as the number
of GTUs. This criterion reduces the number of tracks to 190. The reconstructed zenith angle is
histogrammed in figure 13. The distribution of the 190 reconstructible events has a mean zenith
angle of 92.2 ◦ with a standard deviation of 3.8 ◦. The two populations visible are related to the two
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Figure 14. Zenith angle reconstruction of the helicopter laser shots with the 2-parameter fit method split by
laser energy. The minimum track duration is 4 GTUs.

energy settings used for the laser. While the lower energy setting is contributing to both populations
the higher setting only contributes to the population centered around 90 ◦. A possible explanation
for this behavior is saturation of pixels inside the track, which shifts the weight of the timing fit.
The result of splitting the dataset into high and low energy setting is shown in figure 14.

The expectedmean value of the distribution should be slightly above 90 ◦. The reason is that the
laser was mounted to produce horizontal tracks (meaning a zenith angle of 90 ◦) when the helicopter
had a horizontal attitude. However, the helicopter was slightly turned sideways towards the ground
by approximately 1-2 ◦ to fly a circular pattern. The estimation of the bank angle uses the velocity
of the helicopter and the assumption of truly circular flight pattern (θ = arctan(v2/(R · g))). The
velocity and position of the helicopter were recorded using the on-board GPS at a 1 Hz rate. Using
the position information it is possible to fit circles to the flight pattern and obtain an approximate
radius for segments of the flight.

7 Conclusion

The 2014 EUSO-Balloon flight made the first measurements of optical tracks by a fluorescence
detector looking down on the atmosphere. The measurement required coordinating successfully
the logistics of a balloon launch, a nighttime helicopter flight, on board laser and light sources,
and GPS tracking. The laser tracks are simulating the signal of an EAS, proving the capability of
EUSO-Balloon to observe such a signal.

Although the laser was too bright to perform an energy reconstruction (pixels were saturated),
the beam direction was reconstructed relative to the detector. In the reconstruction it was assumed
that the track is moving with the speed of light. The fact that the reconstructed zenith angles are
reasonable insures that this assumption is true. The direction of the tracks could be reconstructed
with a precision of ±3.8°. The spread is less for the high energy setting of the laser than for the
lower one. We note that the offset of ∼2° below horizontal is consistent with the estimated average
tilt of the circling helicopter.

The obtained angular resolution is affected by various factors: EUSO-Balloon is a prototype
instrument designed mainly to demonstrate the JEM-EUSO proof of principle. The detector was
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equipped with only two of the three Fresnel lenses in the original design for the optics, leading to a
point spread function of around 9 pixels (w 0.7 ◦). In addition, the PDM had dead spots and only
30% of the PDM was properly calibrated. Details of this calibration are presented in [18]. The
accuracy of the efficiency measurement of the MAPMTs with the highest gain (this mean around
30% of the PDM) is better than 5%. The 2.5 µs resolution was too large for a reconstruction angular
resolution within a few degrees at the short distance between the helicopter and the balloon of
35 km. This resolution does not represent the final resolution of the JEM-EUSO instrument. The
distance between the detector and the shower will be around 10 times larger resolving the time
resolution issue. The issues discovered during the mission led to an upgrade in the electronics used
in the subsequent mission: EUSO-SPB1 [5]. Furthermore the experience will play an important
role for the planned mission of EUSO-SPB2 [19].
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