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Abstract: (1) Multiple sclerosis (MS) is identified by a complex interaction between central inflam-
mation and neurodegeneration. Genetic individual variability could play a significative role in
clinical presentation. The interleukin-5 (IL-5) rs2069812 single-nucleotide polymorphism (SNP)
seems to define the clinical course of Th2 autoimmune diseases, while its role in MS has never
been investigated. (2) In a group of 230 patients diagnosed with relapsing–remitting MS (RR-MS)
or progressive MS (P-MS) and controls (IC), rs2069812 polymorphism, cerebrospinal fluid (CSF)
levels of inflammatory mediators, and clinical and demographic characteristics were determined.
In RR-MS patients, No Evidence of Disease Activity (NEDA-3) at three years of follow-up was de-
tected. (3) We identified higher levels of proinflammatory cytokines, particularly IL-2 (median [IQR],
RR-MS = 0.2 [0–0.7]; P-MS = 0.1 [0–1.6]; IC = 0.1 [0.0–0.1]; p < 0.005), IL-6 (RR-MS = 0.9 [0.3–2.3];
P-MS = 0.8 [0.1–2.7]; IC = 0.1 [0.0–0.5]; p < 0.005), IL-12 (RR-MS = 0.5 [0–1.1]; P-MS = 0.5 [0–1.1];
IC = 0.0 [0.0–0.3]; p < 0.005), and GM-CSF (RR-MS = 15.6 [4.8–26.4]; P-MS = 14 [3.3–29.7];
IC = 8.9 [4.7–11.7]; p < 0.005) in MS patients compared with IC. Conversely, anti-inflammatory
cytokines, specifically IL-5 (RR-MS = 0.65 [0–2.4]; P-MS = 0.1 [0–0.8]; IC = 1.7 [0.6–2.8]; p < 0.005)
and IL-1ra (RR-MS = 14.7 [4.9–26.4]; P-MS = 13.1 [4.7–22.2]; IC = 27.8 [17.7–37.6]; p < 0.005) were
higher in controls. According to rs2069812, in MS patients, the T-allele was associated with higher
concentrations of proinflammatory mediators (IL-2, CT/TT = 0.2 [0.0–2.0]; CC = 0.1 [0.0–0.4],
p = 0.015; IL-6, CT/TT = 1.2 [0.4–3.2] vs. CC = 0.7 [0.1–1.7], p = 0.007; IL-15, CT/TT = 0.1 [0.0–9.5]
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vs. CC = 0.0 [0.0–0.1], p = 0.019; and GM-CSF, CT/TT = 0.1 [0.0–0.6] vs. CC = 0.05 [0.0–0.1],
p < 0.001), and CC was associated with anti-inflammatory mediators (IL-5, CT/TT = 0.03 [0.0–1.9]
vs. CC = 1.28 [0.0–2.7], p = 0.001; IL-1ra, CT/TT = 12.1 [4.1–25.9] vs. CC = 18.1 [12.1–26.9], p = 0.006).
We found the same differences in RR-MS patients (IL-2, T-allele median [IQR] = 0.3 [0.0–2.0] vs.
C-allele, median [IQR] = 0.04 [0.0–0.3]; p = 0.005; IL-6, T-allele, median [IQR] = 1.3 [0.4–3.3] vs. C-
allele, median [IQR] = 0.6 [0.03–1.5]; p = 0.001; IL-15, T-allele, median [IQR] = 0.1 [0.0–9.5] vs.
C-allele, median [IQR] = 0.0 [0.0–0.1]; p = 0.008; GM-CSF, T-allele, median [IQR] = 0.1 [0.0–97.9] vs.
C-allele, median [IQR] = 0.0 [0.0–0.001]; p < 0.001; IL-5, T-allele, median [IQR] = 0.02 [0.0–2.2] vs.
C-allele, median [IQR] = 1.5 [0.0–2.9]; p = 0.016; and IL-1ra, T-allele, median [IQR] = 12.1 [4.3–26.4]
vs. C-allele, median [IQR] = 18.5 [12.7–28.3]; p = 0.006) but not in P-MS, except for IL-5 (T-allele,
median [IQR] = 0.1 [0–0.23] vs. C-allele, median [IQR] = 0.6 [0.0–2.5]; p = 0.022). Finally, we iden-
tified an association between CC in RR-MS patients and NEDA-3 after three years of follow-up
(p = 0.007). (4) We describe, for the first time, the role of an SNP of the IL-5 gene in regulating central
neuroinflammation and influencing clinical course in MS patients.

Keywords: IL-5; rs2069812; single-nucleotide polymorphism; multiple sclerosis; neuroinflammation

1. Introduction

Multiple sclerosis (MS), a chronic autoimmune disease of the central nervous system
(CNS) characterized by inflammation, demyelination, and neurodegeneration, occurs with
a wide variety of symptoms and clinical presentations [1]. Immune system dysregulation in
MS results from a complex interaction between genetic predisposition and environmental
influences [2].

Individual variability in genes for cytokines and their receptors may play a role in MS
clinical course [3,4]. The balance between pro- and anti-inflammatory mediators regulates
immune system activation, critically influencing prospective disease activity and disability
in MS [5,6]. It has been shown that single-nucleotide polymorphisms (SNPs) of genes
encoding for some major proinflammatory cytokines, such as interleukin (IL)-6 and IL-8,
may influence disease activity and progression in MS [7,8]. SNPs influencing the expression
and activity of anti-inflammatory mediators could contribute to clinical variability in MS as
suggested for other inflammatory diseases [9,10]. However, the role of SNPs of genes for
anti-inflammatory cytokines in MS has been poorly explored.

The rs2069812 SNP of the IL-5 gene has gained particular interest in different neu-
roinflammatory disorders [11]. This SNP has been implicated in the variability of IL-5
expression and function, and thereby may also influence the CNS inflammatory environ-
ment in MS [12]. IL-5 is an anti-inflammatory cytokine traditionally known for its role in
the growth, differentiation, and activation of eosinophils, which are pivotal in allergic re-
sponses and asthma [13]. In MS, IL-5 has been associated with immunomodulatory effects,
promoting the production of anti-inflammatory cytokines and the expression of regulatory
T cells (Tregs), crucial for maintaining immune tolerance and preventing autoimmunity.
Furthermore, higher levels of this cytokine have been associated with a lower number of
relapses in patients with MS [14].

To explore the role of the rs2069812 SNP of the IL-5 gene in MS, we analyzed the
associations between rs2069812 SNP, neuroinflammation, and clinical characteristics, in a
group of newly diagnosed MS patients and in a group of control patients.

2. Results
2.1. Clinical and Demographic Characteristics of Study Population

Clinical and demographic characteristics of MS patients and inflammatory controls
(IC) are shown in Table 1.

No significant differences were found in sex distribution between RR-MS, P-MS and
IC groups. Age at the time of diagnosis was significantly higher in the P-MS group than in
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both the RR-MS group (age at LP, median [IQR]: RR-MS = 33.9 [25.7–44.0]; p < 0.001) and
control group (age at LP, median [IQR]: controls = 41.8 [32.3–49.7]; P-MS = 50.3 [45.6–56.8];
p < 0.001). In addition, significant differences were observed between RR- and P-MS patients in
disease duration (RR-MS, median [IQR] = 5 [1.1–24.3]; P-MS, median [IQR] = 24.6 [11.8–72.6];
p < 0.001), EDSS at the time of diagnosis (RR-MS, median [IQR] = 2 [1.0–2.5]; P-MS, median
[IQR] = 3.5 [2.5–5.5]; p < 0.001), EDSS at first year after diagnosis (RR-MS, median [IQR] = 1
[1.0–2.0]; P-MS, median [IQR] = 5 [3.5–6.0]; p < 0.001) and EDSS at second year after diagnosis
(RR-MS, median [IQR] = 1 [1.0–2.0]; P-MS, median [IQR] = 5.5 [3.5–6]; p < 0.001).

Table 1. Clinical and demographic characteristics of MS patients and controls.

N (230) RR-MS (157) P-MS (38) IC (35)

Age at LP (Median, IQR) 33.9 (25.7–44.0) 50.3 (45.6–56.8) 41.8 (32.3–49.7)
Sex, F/M (N, %) 108/49 (68.8) 19/38 (50) 23/12 (65.7)

Disease duration, months (Median, IQR) 5 (1.1–24.3) 24.6 (11.8–72.6) -
Radiological activity (yes = 1, no = 0) (N/tot, %) 66/153 (43.1) * 10/34 (29.4) * -

OCBs (yes = 1, no = 0) (N/tot, %) 120/154 (77.9) * 31/37 (83.8) * -
EDSS at LP (Median, IQR) 2 (1.0–2.5) 3.5 (2.5–5.5) -

EDSS at first year after LP (Median, IQR) 1 (1.0–2.0) * 5 (3.5–6.0) * -
EDSS at second year after LP (Median, IQR) 1 (1.0–2.0) * 5.5 (3.5–6.0) * -

NEDA-3 (yes = 1, no = 0) (N/tot, %) 54/142 (40.0) * - -

Legend: N (number); RR-MS (relapsing–remitting MS patients); P-MS (progressive MS patients); IC (inflam-
matory controls); LP (lumbar puncture); IQR (interquartile range); F (female); M (male); OCBs (oligoclonal
bands); EDSS (expanded disability status scale); NEDA (no evidence of disease activity). * missing data, see
Materials and Methods.

2.2. CSF Cytokine Levels Are Different in RR-MS, P-MS and Inflammatory Controls

We first compared the CSF cytokine profile at the time of diagnosis in RR- and P-MS
patients and inflammatory controls. The CSF levels of IL-2, IL-6, IL-12 and GM-CSF were
significantly higher in patients than controls in a non-parametric Kruskal–Wallis test (IL-2
(median [IQR], RR-MS = 0.2 [0–0.7]; P-MS = 0.1 [0–1.6]; IC = 0.1 [0.0–0.1]; p < 0.005), IL-6
(median [IQR], RR-MS = 0.9 [0.3–2.3]; P-MS = 0.8 [0.1–2.7]; IC = 0.1 [0.0–0.5]; p < 0.005), IL-12
(median [IQR], RR-MS = 0.5 [0–1.1]; P-MS = 0.5 [0–1.1]; IC = 0.0 [0.0–0.3]; p < 0.005), GM-CSF
(median [IQR], RR-MS = 15.6 [4.8–26.4]; P-MS = 14 [3.3–29.7]; IC = 8.9 [4.7–11.7]; p < 0.005)),
while higher levels of IL-5 and IL-1ra were observed in controls (IL-5 (median [IQR], RR-MS
= 0.65 [0–2.4]; P-MS = 0.1 [0–0.8]; IC = 1.7 [0.6–2.8]; p < 0.005), IL-1ra levels (median [IQR],
RR-MS = 14.7 [4.9–26.4]; P-MS = 13.1 [4.7–22.2]; IC = 27.8 [17.7–37.6]; p < 0.005)) (Figure 1).
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2.3. rs2069812IL-5 SNP Is Associated with Prospective Disease Activity in MS

To explore the effects of SNP rs2069812 on clinical characteristics, patients were divided
in two groups according to the presence of the T-allele (CT/TT vs. CC) (Table 2). Inflamma-
tory controls, divided according to rs2069812, present similar demographic characteristics
in the two groups.

Table 2. Clinical characteristics of MS patients according to rs2069812 polymorphism.

N (195) CT/TT Allele (115) CC Allele (80) p

Age at LP (Median, IQR) 38.8 (28.7–48.3) 36.2 (25.4–51.6) 0.604
Sex, F/M (N, %) 77/38 (67.0) 50/30 (62.5) 0.312

OCBs (yes = 1, no = 0) (N/tot, %) 93/115 (83) * 58/79 (73.4) 0.077
Disease duration, months (Median, IQR) 11.6 (1.3–33.8) 6.0 (1.7–36.0) 0.661

Radiological activity (yes = 1, no = 0) (N/tot, %) 43/109 (39.4) * 33/78 (42.3) * 0.404
EDSS at LP (Median, IQR) 2 (1.0–3.0) 2 (1–2.5) 0.214

EDSS at first year after LP (Median, IQR) 2 (1.0–3.0) * 1.5 (1–2) * 0.149
EDSS at second year after LP (Median, IQR) 2 (1.0–3.5) * 1 (1–2.5) * 0.120

NEDA-3 (yes = 1, no = 0) (N/tot, %) 24/81 (29.6) * 30/61 (49.2) * 0.023

Legend: N (number); LP (lumbar puncture); IQR (interquartile range); OCBs (oligoclonal bands); EDSS (expanded
disability status scale); NEDA (no evidence of disease activity). Bold type denotes statistical significance. * missing
data, see Materials and Methods.

No significative associations were found between the presence of SNP rs2069812 and
demographical characteristics in inflammatory controls. In MS patients, no significant
differences were found in the two rs2069812 SNP groups in terms of clinical characteristics
at the time of diagnosis. Conversely, a significant association was found with NEDA-3
assessed after a median follow-up of 36 months. In particular, the number of patients
showing NEDA-3 status was significantly reduced in the T-carriers. Logistic regression
confirmed a significant association between SNP and NEDA-3 status whilst also controlling
for other characteristics including age, sex, disease duration, EDSS at diagnosis, presence of
OCB at diagnosis and disease-modifying treatment (DMT) efficacy (IL-5 rs2069812 CT/TT,
CC: S.E. 0.426, p = 0.007, 95% C.I. 1.364–7.248) (Table 3).

Table 3. Logistic regression corrected for confounding factors in RR-MS patients between NEDA-3
and presence of C-allele for rs2069812 IL-5 polymorphism.

B S.E. p 95% C.I. Exp (B)

IL-5 rs2069812 groups (CT/TT, CC) 1.146 0.426 0.007 1.364–7.248 3.144
Sex (F = 1, M = 0) 0.408 0.455 0.370 0.616–3.668 1.503
Age 0.016 0.018 0.376 0.981–1.052 1.016
EDSS at LP 0.034 0.206 0.869 0.691–1.549 1.035
OCBs (1 = yes, 0 = no) 1.480 0.690 0.053 1.148–16.673 4.375
DMTs (high efficacy = 1, low efficacy = 0) 0.598 0.519 0.249 0.658–5.029 1.234
(Constant) −3.463 1.093 0.002 0.031

Legend: LP (lumbar puncture); F (female); M (male); OCBs (oligoclonal bands); DMTs (disease-modifying
treatments); EDSS (expanded disability status scale). Bold type denotes statistical significance.

2.4. rs2069812 IL-5 SNP Influences Neuroinflammation in MS

We explored whether rs2069812 IL-5 polymorphism may affect CSF cytokine expres-
sion in our cohort of MS and control patients. In MS patients carrying the T-allele, higher
levels of specific proinflammatory cytokines were found, including IL-2 (median [IQR],
CT/TT = 0.2 [0.0–2.0]; CC = 0.1 [0.0–0.4]; Mann–Whitney test p = 0.015), IL-6 (median
[IQR], CT/TT = 1.2 [0.4–3.2] vs. CC = 0.7 [0.1–1.7]; p = 0.007), IL-15 (median [IQR],
CT/TT = 0.1 [0.0–9.5] vs. CC = 0.0 [0.0–0.1]; p = 0.019), and GM-CSF (median [IQR],
CT/TT = 0.1 [0.0–0.6] vs. CC = 0.05 [0.0–0.1]; p < 0.001). In addition, the presence of the T-
allele was associated with reduced expression of IL-5 (median [IQR], CT/TT = 0.03 [0.0–1.9]
vs. CC = 1.28 [0.0–2.7]; p = 0.001) and IL-1ra (median [IQR], CT/TT = 12.1 [4.1–25.9] vs.
CC = 18.1 [12.1–26.9]; p = 0.006) (Figure 2A). These differences were confirmed after con-
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trolling for multiple comparisons (corrected p: GM-CSF, p = 0.008; IL-6, p = 0.008; IL-2,
p = 0.024; IL-1ra, p = 0.024; IL-15, p = 0.026; IL-5, p = 0.042).
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MS patients (A) and inflammatory controls (B) (non-parametric Mann–Whitney test). Legend: CSF
(cerebrospinal fluid); GM-CSF (granulomonocyte colony stimulating factor); IL-1ra (IL-1 receptor
antagonist). Asterisks denote statistical significance (*, p <0.05; **, p < 0.01; ***, p < 0.005).

In inflammatory controls, no significant differences were found in CSF cytokine levels
between the CT/TT and CC groups (all p > 0.05) (Figure 2B).

Finally, we examined the association between rs2069812 SNP and CSF inflammatory
cytokines separately in RR-MS and P-MS patients. In patients with RR-MS, the presence of
the T-allele was associated with increased levels of IL-2 (Mann–Whitney test, T-allele, me-
dian [IQR] = 0.3 [0.0–2.0] vs. C-allele, median [IQR] = 0.04 [0.0–0.3]; p = 0.005), IL-6 (T-allele,
median [IQR] = 1.3 [0.4–3.3] vs. C-allele, median [IQR] = 0.6 [0.03–1.5]; p = 0.001), IL-15 (T-
allele, median [IQR] = 0.1 [0.0–9.5] vs. C-allele, median [IQR] = 0.0 [0.0–0.1]; p = 0.008), and
GM-CSF (T-allele, median [IQR] = 0.1 [0.0–97.9] vs. C-allele, median [IQR] = 0.0 [0.0–0.001];
p < 0.001), and with reduced levels of IL-5 (T-allele, median [IQR] = 0.02 [0.0–2.2] vs. C-
allele, median [IQR] = 1.5 [0.0–2.9]; p = 0.016) and IL-1ra (T-allele, median [IQR] = 12.1
[4.3–26.4] vs. C-allele, median [IQR] = 18.5 [12.7–28.3]; p = 0.006) (Figure 3A).
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In P-MS patients, a significant difference was found only for IL-5 CSF levels (T-allele,
median [IQR] = 0.1 [0–0.23] vs. C-allele, median [IQR] = 0.6 [0.0–2.5]; p = 0.022) (Figure 3B).

3. Discussion

Previous studies suggested that genetic variability influencing the expression and
function of specific inflammatory mediators may affect immune responses and clinical
manifestations in different pathological conditions, including MS [10,15].

Here, we assessed the possible role of the rs2069812 SNP of the anti-inflammatory
IL-5 in MS, exploring the associations with clinical characteristics and CSF inflammatory
profiles at the time of diagnosis, and with prospective disease activity. We found that in
RR-MS patients, the presence of the T-allele was associated with reduced expression of
IL-5 and of IL-1ra, and with higher levels of several proinflammatory cytokines, including
IL-2, IL-6, IL-15, and GM-CSF. Conversely in the P-MS group, a significant association was
only found with reduced IL-5 concentrations. The inflammatory control group showed
increased IL-5 and IL-1ra levels compared with MS patients. No significant associations
between the rs2069812 SNP and CSF cytokines were found in the IC group.

These findings suggest that the rs2069812 SNP may influence CSF inflammatory profile
in MS patients, modulating IL-5 expression and affecting the concentrations of various
proinflammatory mediators.

IL-5 is considered an anti-inflammatory cytokine associated with increased expression
of regulatory T-cells and reduced production of proinflammatory mediators [16]. Defective
IL-5 expression may therefore exacerbate CSF inflammation, leading to dysregulated
expression of various proinflammatory mediators. Notably, in experimental models of MS,
and specifically in knock-out mice for the gene of IL-5, antigen-specific T-cells promoted the
release of IFN-gamma and TNF-alfa, in the absence of anti-inflammatory cytokines such as
IL-4 or IL-10, indicating a predominant Th1 environment following immunization [17].

Previous studies have evidenced that the rs2069812SNPs of IL-5 may also influence
immune responses and clinical manifestations in other diseases. A study conducted by
Chen and colleagues demonstrated a role of the T-allele of rs2069812 in increasing the
risk of developing Non-Hodgkin lymphoma (NHL) [18], and another work showed the
influence of this specific SNP in causing a decrease in IL-5 serum concentration, modifying
Th1/Th2 response in terms of susceptibility for NHL [19]. It is noteworthy that rs2069812
seems to affect the immune systemic response in gastric [20] and hepatobiliary cancer [21]
and in the development of alloantibodies against factor VIII during replacement therapy
in hemophilia A [11]. Despite the lack of much evidence in this sense, some studies
investigated the role of rs2069812 in systemic autoimmune diseases. A striking association
between the onset and clinical presentation of Graves’ disease and the presence of C-allele
for this polymorphism was found [22], and at the same time, the T-allele seems to be a
risk factor for Hashimoto thyroiditis and a protective variant from the risk of developing
Graves’ disease [23]. Other authors found that rs2069812, in its T-allele variant, could
negatively influence clinical activity in seronegative spondylarthritis, as well as predicting
pharmacological responses in ankylosing spondylitis [24].

In line with these data, we found that rs2069812 was associated with a lower probabil-
ity of reaching the NEDA status in RR-MS patients carrying the T-allele. NEDA is a useful
parameter that is largely used in clinical trials, and in clinical practice [25], it is defined as
the absence of clinical relapses, EDSS disability progression sustained for 12 weeks, and
new gadolinium-enhancing or new or enlarging T2 lesions in MRI scans [26].

Previous studies have shown that neuroinflammation represents one of the most
relevant drivers in MS progression, associated with early neurodegeneration and axonal
damage [27]. Increased CSF levels of proinflammatory cytokines have been associated
with disease activity and disability [28,29]. Moreover, higher CSF concentrations of anti-
inflammatory cytokines such as IL-10 have been associated with increased probability of
reaching NEDA-3 status one year after the diagnosis [30].
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Overall, our data suggest that the rs2069812 SNP can modulate IL-5 expression, in-
fluencing the CSF inflammatory milieu in MS. In line with a negative role of exacerbated
neuroinflammation in the course of MS, we found that the same polymorphism was also
associated with prospective disease activity.

This is the first study exploring the effect of SNPs of IL-5 in MS. However, some
limitations of our study must be considered. Our data suggest that, even if the effect of
SNPs on IL-5 levels is also evident in progressive MS patients, it seems to be clearer in
RR-MS patients. This evidence could be explained at least in part by the fact that in our
study, the number of patients diagnosed with P-MS was lower than those with RR-MS,
reflecting the natural distribution of the progressive phenotype in MS patients. In this
sense, results on the effects of neuroinflammatory mediators should be considered more
cautiously. Moreover, the size of control group is smaller than the others and consists of
patients affected by inflammatory diseases. Therefore, further studies are needed to better
define differences between MS patients and non-inflammatory controls.

Understanding the role of IL-5 and the specific impact of the rs2069812 polymorphism
in MS provides valuable insights into the disease pathogenesis and potential therapeutic
targets. Modulating IL-5 activity could represent a novel approach to managing MS, either
by dampening harmful inflammatory responses or by enhancing protective regulatory
mechanisms. Further research is necessary to elucidate the precise mechanisms by which
IL-5 and its genetic variants contribute to MS and to explore their potential in clinical
applications [31].

Analyzing the interactions between IL-5, its genetic variants, and the broader immune
system will enhance our understanding of MS and may lead to novel therapeutic strategies
aimed at modulating immune responses to improve patient outcomes.

4. Materials and Methods
4.1. Patients

A group of 230 patients admitted at the Neurology Unit of Neuromed Hospital
(Pozzilli, Italy) between 2016 and 2019 was included in the present study; 157 patients
were diagnosed with relapsing–remitting MS (RR-MS) and 38 patients had progressive
MS (P-MS), based on clinical, radiological and laboratory criteria [32]. The control group
included 35 patients with MRI findings suggestive of inflammatory lesions that did not
fulfill the diagnostic criteria for MS. The Ethics Committee of the Neuromed Research
Institute approved the study (cod. 06-17) according to the Declaration of Helsinki, and
all the participants provided written informed consent. For all the participants, at the
time of diagnosis, a clinical examination and MRI brain and spinal cord assessments were
performed. The following clinical characteristics were assessed in all MS patients: age, sex,
expanded disability status score (EDSS), the presence of radiological disease activity and
disease duration. Clinical and radiological follow-up data (EDSS, presence of clinical and
radiological relapses) were available for 170 patients after 1 year and for 158 patients after
2 years.

No Evidence of Disease Activity-3 (NEDA-3) status, defined as a composite parameter
of three related measures, which consist of an absence of clinical and radiological relapses
and sustained disability progression at EDSS [33], was calculated for all RR-MS patients at
the time of the last follow-up visit, with a median of three years.

4.2. SNP IL-5 rs2069812 Analysis

Patients were genotyped for IL-5 SNP rs2069812. A blood sample (200 µL) was
collected at the time of diagnosis. The IL-5 gene region containing the rs2069812 polymor-
phism was amplified by a polymerase chain reaction with the TaqMan method performed
using the ABI-Prism 7900HT Sequence Detection System (Applied Biosystems, Foster City,
CA, USA) from 150 ng of genomic DNA in a final volume of 25 µL containing polymerase
buffer, 1.5 mM MgCl2, 0.2 mM of each dNTP, 5 pmoles of each primer (sense: 5′–AACCTT-
GACCCTGCAGAATG–3′; antisense: 5′–ATGGGATTGCACTTGGTCTC-3′) and 1 U of
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Taq DNA polymerase. Amplification reactions consisted of a first denaturation step of
95 ◦C for 5 min, followed by 35 cycles consisting of a denaturation step of 45 s at 95 ◦C, an
annealing step of 45 s at 58 ◦C and an elongation step at 72 ◦C for 1 min, and by a final
elongation step of 72 ◦C for 7 min. Sequencing analyses were performed with 10 ng of
PCR products, purified with an Agenocourt AMPure PCR Purification kit (Agenocourt
Bioscience Corporation, Beverly, MA, USA) in accordance with the manufacturer’s instruc-
tions, using 0.5 pmoles of the sequence primer (5′–AAACATCCGAGGACAAGGTG–3′)
and the ABI PRISM BigDye Terminator v3.1 Ready Reaction Cycle Sequencing Kit (Applied
Biosystem, Foster City, CA, USA). The sequencing reaction was performed according to the
manufacturer’s instruction, and the sequencing product was purified using a CleanSEQ
dye terminal removal kit (Agenocourt Bioscience Corporation Beverly, MA, USA) and run
on the Applied Biosystems 3730 DNA Analyzer Instrument (Applied Biosystem, Foster
City, CA, USA).

4.3. CSF Collection and Analysis

In a group of 216 patients (154 RR-MS, 37 P-MS, 25 inflammatory controls), a set
17 of proinflammatory and anti-inflammatory cytokines was dosed. CSF samples were
withdrawn during hospitalization, at the time of diagnosis, by lumbar puncture (LP). No
corticosteroids, immunomodulants or disease-modifying therapies were administered
before LP. CSF samples were stored at −80 ◦C and later analyzed using a Bio-Plex multiplex
cytokine assay (Bio-Rad Laboratories, Hercules, CA, USA). CSF cytokine levels were
established according to a standard curve generated for the specific target and expressed
as picograms/milliliter (pg/mL). Samples were analyzed in triplicate. The CSF cytokines
analyzed included interleukin (IL)-1β, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12,
IL-13, IL-15, tumor necrosis factor alpha (TNF-alfa), interferon-gamma (IFN-gamma),
granulomonocyte colony stimulating factor (GM-CSF) and interleukin-1 receptor antagonist
(IL-1ra).

4.4. MRI

All the patients underwent a 1.5T MRI scan, including the standard following sequences:
dual-echo proton density, fluid-attenuated inversion recovery (FLAIR), T1-weighted spin-
echo (SE), T2-weighted fast SE, and contrast-enhanced T1-weighted SE before and after
intravenous gadolinium (Gd) infusion (0.2 mL/kg). Radiological activity at the diagnosis was
characterized by the presence of Gd-enhancing (Gd+) lesions detected during hospitalization.
All the sequences acquired were performed using a General Electric Signa HDXT MRI (GE
Health Care, Chicago, IL, USA) equipped with an 8-channel head coil.

4.5. Statistical Analysis

A Shapiro–Wilk test was used to evaluate the normality distribution of continuous
variables. Data were shown as the mean (standard deviation, SD) or median (interquartile
range, IQR). Categorical variables were presented as absolute (n) and relative frequency
(%). A Chi-square or, when necessary, Fisher exact test was employed to explore the
association between categorical variables. Difference in continuous variables between the
IL-5 rs2069812 groups was evaluated using a non-parametric Mann–Whitney test for a
comparison between two samples and a Kruskal–Wallis test for three or more samples.
A p value ≤ 0.05 was considered statistically significant. Box plots were employed to
highlight statistically significant differences between groups. All the comparisons were
performed using IBM SPSS Statistics version 13.0 for Windows/Mac (IBM Corp., Armonk,
NY, USA).

Logistic regression was used to evaluate the association between the proportion of T-
and C-alleles on the IL-5 rs2069812 polymorphism and other variables indicative of disease
progression (EDSS at second and third year, NEDA-3 status) controlling for the effects of
other clinical variables (age, sex, disease duration, OCB presence and radiological activity).
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