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The High-Energy Particle Detector (HEPD) onboard the China Seismo-Electromagnetic Satellite
(CSES-01) - launched in February 2018 - is a light and compact payload suitable for measuring
electrons (3-100 MeV), protons (30-300 MeV), and light nuclei (up to a few hundreds of MeV)
with a high energy resolution and a wide angular acceptance. The very good capabilities in particle
detection and separation, together with the Sun-synchronous orbit, make HEPD well suited for
galactic particles and solar modulation studies. We report here some insights on the data-analysis
techniques employed for this kind of study; as a result, semiannual galactic hydrogen differential
energy spectra between 40 and 250 MeV for the period between the end of the 24th and the start
of the 25th solar activity cycle, are presented . Moreover, a brief discussion on the comparison
with theoretical spectra obtained from the HelMod 2D Monte Carlo model is also presented.
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1. Introduction

Hydrogen nuclei are the most abundant component of charged galactic cosmic rays (GCRs),
representing ∼90% of the total CR budget. Together with helium nuclei, they account for almost
99% of the entire cosmic radiation. The majority of CRs are believed to be accelerated in supernova
remnants (SNRs) in the Galaxy, but all evidence in support of this mechanism is still inferred in
an indirect way[1–6]. CRs propagate from their site of production and acceleration through the
Milky Way, interacting with the interstellar medium and diffusing on the magnetic field - which
permeates space - before reaching the Earth’s solar system [7]. These processes modify the CR
spectral shape with respect to the acceleration site and in the last 10 years many experiments have
found particular features in CR proton and helium nuclei spectra at energies >200 GeV [8, 9];
meanwhile, at much lower energies (below a few GeV), the spectrum is bent downward because
of the modulation effect exerted by the turbulent magnetized wind originated from the Sun. Such
phenomenon, called solar modulation, is the sum of a series of effects like convection, diffusion,
adiabatic deceleration, and drift motions, all driven by the Heliospheric Magnetic Field (HMF) and
with a strong time-dependent nature[10, 11]. The portion of the spectrum below a few hundreds
MeV is particularly interesting because the modulation effects are stronger and also because this
range hase been studiedmostly by balloons [12–14] and, more recently, by the PAMELA experiment
in both the 23A3[15] and 24Cℎ solar cycles [16].
In this work - published in 2020[17] - we present three semi-annual cosmic ray hydrogen spectra
measured by the High-Energy Particle Detector in the ∼40 MeV-250 MeV range, during the period
between the very end of the 24Cℎ solar cycle and the beginning of the 25Cℎ - from August 2018 to
January 2020.

2. The HEPD detector and CSES Mission

The High-Energy Particle Detector (HEPD) is a light and compact (40.36 cm × 53.00 cm ×
38.15 cm, total mass ∼45 kg) payload designed and built by the Limadou Collaboration, the Italian
branch of the CSES mission. From top to bottom, the apparatus consists of a tracking system,
including two 213.2 mm × 214.8 mm × 0.3 mm double-sided silicon microstrip planes, followed
by a trigger system consisting of one EJ-200 plastic scintillator layer segmented into six paddles
(20 cm × 3 cm × 0.5 cm each) and readout by two Photomultiplier Tubes (PMTs). The central
portion of the instrument is occupied by a range calorimeter composed of two sections. The upper
part, called TOWER, is a stack of 16 EJ-200 plastic scintillator planes (15 cm × 15 cm × 1 cm),
each one read out by two PMTs. The lower part is a 3 × 3 matrix of LYSO (Lutetium-Yttrium
Oxyorthosilicate) inorganic scintillator crystals, 5 cm × 5 cm × 4 cm each; each crystal is read out
by a single PMT. Finally, an anti-coincidence (VETO) system embeds the entire instrument and is
composed of five EJ-200 plastic scintillator planes (0.5-cm thick), each one read out by two PMTs;
four planes out of five surround the detector laterally, and one is placed below the LYSO matrix.
The payload has a ±60◦ Field-of-View and a Geometrical Acceptance of more than 400 cm2sr @90
MeV for protons. A more detailed description of the instrument can be found in [18, 19].
HEPDwas launched on board the China Seismo-Electromagnetic Satellite (CSES)[20] on February
2, 2018 in the framework of a mission designed to investigate the top side of the ionosphere and to
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Figure 1: The P1 signal distribution as a function of the total energy lost in the detector; the blue curves
represent the 15% and 95% quantile threshold used to select the hydrogen band.

gather data on the near-Earth electromagnetic and particle environment with special focus on the
lithosphere-atmosphere-ionosphere coupling. The satellite was put into a Sun-synchronous orbit,
at ∼507 km altitude, 97◦ inclination and with a revisit time of ∼5 days. Due to attitude adjustments
and other programmed maneuvers, HEPD (together with the other payloads on board CSES-01) is
switched off below −65◦ and above +65◦, but thanks to the large detector aperture, HEPD is able to
collect galactic particles, even if for a small amount of time per day.

3. Data Analysis

In order to give a valid trigger to start data acquisition and to avoid multi-particle events and
reduce secondaries generated in the upper portion of the payload (TOWER), a particle must cross a
single paddle of the trigger plane and at least the first two planes of the TOWER, P1 and P2. After
that, only particles fully contained (i.e. those that stop inside the TOWER+LYSO sub-detector)
are included in the final flux sample, therefore discarding particles generating signal in one of the
VETO planes. This is mandatory to guarantee that the entire energy of the primary particle is
deposited inside the detector. To discriminate between hydrogen nuclei and electrons/positrons
populations, a double-curve selection on the signal deposited on the first scintillator plane (P1) as a
function of the total deposited energy, is required. The P1 signal distribution as a function of the
energy lost in the TOWER+LYSO sub-detector, is shown in Figure 1; the blue curves represent the
15% and 95% quantile threshold used to select the hydrogen band.

The highly inclined orbit of the CSES-01 satellite allows particles of various origin to be
detected. To separate the primary (solar or galactic) component from the re-entrant albedo com-
ponent, it is necessary to evaluate the local rigidity cutoff (') in each point of the orbit. Due to
the large acceptance of HEPD, the Störmer approximation of vertical approaching particles is no
longer valid; for this reason, a simulation on all possible arrival directions of protons has been
carried out, considering the instrument Field-of-View (FoV). A combination of the International
Geomagnetic Field Reference (IGRF) model [21] and Tsyganenko89 model [22] is adopted to take
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into consideration both internal and external magnetic field sources. As a result, a latitude/longitude
static cutoff map is obtained and employed as a template for the analysis.
For consistency with the aforementioned geographical selection criteria, the live time g;8E4 calcula-
tion of the apparatus - performed and managed via the trigger board - is accumulated only in polar
regions, where the rigidity cutoff is 0.26 GV < ' < 0.35 GV.
The geometrical factor of HEPD is defined by the requirement of containment within the volume
of the instrument: an incoming particle entering the upmost section of the payload, must be fully
contained inside the calorimeter (TOWER+LYSO). It is evaluated using a Monte Carlo simulation
of isotropically generated (0◦ < \ < 90◦ and 0◦ < q < 180◦) protons with primary energy ranging
from 1 MeV to 10 GeV. A careful digitization procedure, aimed to introduce instrumental ADC
signal response in the simulation itself, is designed to reproduce and match the in-flight conditions.
Selection efficiencies include both particle selection and instrumental efficiency. The former refers
to the double-curve selection as a function of deposited energy, depicted in Figure 1. The resulting
efficiency is ∼78%, almost constant between 40 and 250 MeV, and it is estimated using the dig-
itized Monte Carlo simulation already described. On the other hand, the latter comprises all the
instrumental inefficiencies that cannot be estimated by only using simulations, such as the variation
in the response of sensitive components, aging processes and so on.
The major source of contamination for the low-energy hydrogen sample is given by >40 MeV elec-
trons. Usually these MIP-like particles deposit a small amount of energy in the scintillators, being
consequently rejected by the double-curve selection displayed in Figure 1; however, if they impinge
the detector with an inclined trajectory, their energy release could be greater, thus contaminating
the sample. To remove this effect, a dedicated simulation is carried out.
Finally, the proton energy spectrum measured in the entire calorimeter is corrected to account
for particle slow-down and energy loss in the trigger paddles, tracker planes and various passive
structures. The correction is applied by means of an unfolding procedure, following the classical
Bayesian approach of [23]. A complete description of the analysis can be found in [17].

4. Results

Three semi-annual galactic hydrogen spectra as a function of energy between 40 and 250 MeV
have been obtained in three different consecutive time periods (from August 6, 2018 to January 5,
2020) very much inside the heliosphere (1 AU); the energy profiles are shown as black circles in
Figure 2, compared to the theoretical prediction from the HelMod model [24] in the same period.
As a further comparison, data from the SOHO/EPHIN spacecraft (red square marker) between 40
MeV and 53MeV are also presented [25]. The agreement seems to be good in all the three examined
periods, considering both statistical and systematic uncertainties. A more detailed discussion on
these results can be found in [17] and during the presentation, together with some new results on
solar modulation.
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Figure 2: Large panel: galactic proton spectra as a function of energymeasured byHEPD in the three intervals
described in the text - from August 6, 2018 to January 15, 2019 (a), from January 16, 2019 to June 28, 2019
(b) and from June 29, 2019 to January 5, 2020 (c), respectively. Systematic uncertainties are also present
as a green shaded area. The continuous curves represent, respectively, the HelMod theoretical spectrum
averaged over the period under study (blue solid line), the maximum (dashed line) and minimum (dotted
line) expected deviation from the model itself. The red square represents data obtained from SOHO/EPHIN
spacecraft. Narrow panel: ratio between HEPD data and HelMod model, as a function of energy; errors on
HEPD data are a sum of statistical and systematic uncertainties.
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