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Abstract: This paper focuses on establishing new criteria to guarantee the oscillation of solutions for
second-order differential equations with a superlinear and a damping term. New sufficient conditions
are presented, aimed at analysing the oscillatory properties of the solutions to the equation under
study. To prove these results, we employed various analysis methods, establishing new relationships
to address certain problems that have hindered previous research. Consequently, by applying the
principles of comparison and the Riccati transformation, we obtained findings that develop and
complement those reported in earlier literature. The significance of our results is illustrated with
several examples.
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1. Introduction

In this work, we establish the new results of the asymptotic and oscillatory behavior of
the solutions of the following differential equations with distributed deviating arguments:

(
rg′
)′
(⊤) + η(⊤)g′(⊤) +

∫ b

a
q(⊤, s)κλ(σ(⊤, s))ds = 0, ⊤ ≥ ⊤0 > 0, (1)

where λ is quotient of odd positive integers,

g(⊤) = κ(⊤) + ν(⊤)κγ(ζ(⊤)),

γ ∈ Q+
odd := {a1/a2 : a1, a2 ∈ Z+ are odd}, 0 ≤ a < b and

γ ≥ 1. (2)

Throughout this paper, we assume the following:

(C1) r ∈ C
(

I+0 , (0, ∞)
)
, η ∈ C

(
I+0 , (0, ∞)

)
, where I+i = [⊤i, ∞), and

A(⊤) :=
∫ ⊤

⊤0

r−1(u)
(

e−
∫ u
⊤0

η(s)
r(s) ds

)
du < ∞; (3)
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(C2) ζ ∈ C
(

I+0 ,R
)
, σ ∈ C

(
I+0 × (a, b),R

)
, q(⊤, s) ∈ C

(
I+0 × (a, b),R

)
, ν ∈ C

(
I+0 , (0, ∞)

)
,

ζ(⊤) ≥ ⊤, σ(⊤, s) ≤ ⊤, q(⊤, s) ≥ 0, lim⊤→∞ σ(⊤, s) = ∞ and

ν(⊤) < 1. (4)

Definition 1 ([1]). By a solution of (1), we mean a function κ ∈ C(I+κ ,R) for some ⊤κ ≥ ⊤0,
which has the property rg′ ∈ C1(I+κ ,R). We consider only those solutions of (1) that will exist on
some half-line I+κ and satisfy

sup
{
|κ(⊤)| : T ≤ ⊤ < ∞

}
> 0

for any T ≥ ⊤κ .

Definition 2 ([2]). If the set of zeros of solution κ of (1) is unbounded above, then we call the
solution κ an oscillatory solution. Otherwise, we call it a nonoscillatory solution.

Since Sturm [3] began studying the term oscillation, the researchers have shown
remarkable interest in searching for different ways and methods to develop the qualitative
theory of functional differential equations as an intermediate tool for transforming real-
world phenomena into purely mathematical models that can be dealt with, solved, and
studied easily. It is known that the qualitative approach does not seek explicit solutions
but is concerned with the behaviour of solutions to differential equations. Since then, the
asymptotic and oscillatory properties have attracted the attention of many researchers;
see [4–13].

Delayed differential equations are among the most important equations closely related
to modern sciences such as biology and mathematical biology. They are used in studying
models of population growth and disease spread. These equations describe the time delay
between contracting a disease and the appearance of symptoms, or between the birth of
an individual and their ability to reproduce. In engineering and control systems, where
there might be a time delay between issuing a command and achieving the desired result,
their significance is evident. An example of this is the vehicle motion control system, which
takes into account the time delay required for the driver’s reaction. Their importance also
extends to computer science, where delayed differential equations are used to analyse the
performance of networks [14–16].

The study of the oscillations of solutions for second-order delay equations is funda-
mental across various disciplines to predict system behaviors, improve stability, enhance
performance, and develop more accurate models reflecting real-world scenarios. Second-
order delay equations can describe systems where the current state depends not only on
current and past states but also on their rates of change. These include control systems,
signal processing, and mechanical systems where inertia and damping are considered.
By studying oscillations, engineers can design more stable and efficient systems, predict
system responses under different conditions, and improve the performance of control
algorithms. Notably, delay terms can represent incubation times, reaction delays, or other
biological processes that are not instantaneous. Analysing the solutions and their ocillations
can lead to better models for biological systems and improve our understanding of disease
spread, drug kinetics, and physiological processes. On the other hand, understanding the
behavior of these equations’ solutions is crucial for developing stable digital methods and
algorithms. This is important for accurately simulating real-world phenomena and solving
practical problems where analytical solutions are not possible.

Neutral delay differential equations are defined as the equations in which the highest-
order derivative of the unknown function appears with and without a delay. The study of
the properties of the oscillation of solutions to this type of equation is currently receiving
great attention. These equations are used in many fields, such as problems related to
dealing with masses attached to a Shaky supple rod. They also occur in some electrical
network applications seen in high-speed computers, where they interconnect switching
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circuits using lossless transmission lines, and in solving problems with time delays. The
references [17–19] can be referred to for more applications in science and technology.

The study of the oscillatory behavior of solutions of various types of second-order
differential equations that do not contain the term with the first derivative is considered
one of the studies in which the most publications have appeared. We note that the fact
that the derivative of the coefficients is non-negative (due to the coefficients being positive
and the solution being on the semi-axis) is used in most studies of second-order delay
differential equations. Adding the first derivative in the equation explicitly—in other
words, including the damping term in the equation—makes the study of the oscillation
properties of its solutions more complicated as it is difficult for the solution to specify a
derivative sign, so this type of equation is much less studied compared to the equations
without the damping term.

Now, we briefly discuss some relevant findings that motivated our study. Bohner and
Saker in [8] derived some oscillatory results related to the equation(

rκ′)′(⊤) + η(⊤)κ′(⊤) + q(⊤)κλ(σ(⊤)) = 0.

Also, the authors studied similar equations in the references [7,20] and obtained results
close to those found in [8].

Tunc and Kaymaz, in [21,22], presented some criteria to guarantee the oscillation of
solutions to the two differential equations

g′′(⊤) + η(⊤)g′(⊤) + q(⊤) f (⊤,κ(σ(⊤))) = 0,

and ((
rg′
)λ
)′
(⊤) + η(⊤)

(
g′(⊤)

)λ
+ q(⊤) f (⊤,κ(σ(⊤))) = 0, (5)

respectively, in the presence of the conditions

ν(⊤) ≥ 1, (6)

and
γ = 1. (7)

Said et al. [23] provided some results about the oscillation criteria for solutions of the most
general equation(

r
(

g′
)λ
)′
(⊤) + η(⊤)

(
g′(⊤)

)λ
+
∫ b

a
f
(
⊤,κλ(σ(⊤, s))

)
q(⊤, s)ds = 0

where A(⊤) < ∞, (4) and (7) hold, and

σ′ < 0.

Tunç and Ozdemin [24] used integral criterion and Riccati transformation and revealed
some important results regarding the oscillation criteria of the equation

g′′(⊤) + η(⊤)g′(⊤) + q(t)κλ(σ(⊤)) = 0,

also, it is assumed that (2) and (6) hold, and

σ(⊤) ≤ ζ(⊤) ≤ ⊤. (8)

Motivation

Most of the previous studies that highlighted the study of second-order differen-
tial equations with the damping term are without the neutral term (i.e., ν(⊤) = 0);
see [7,8,20,25]. Some results are also available with both the damping term and the neutral
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term together, for instance, see [26–33], but these results are subject to the conditions (7)
and (6), or at least one of them. Therefore, all of these results cannot be applied when (2)
and (4) hold. On the other hand, we do not need more additional conditions, such as (8). By
utilising the results provided in the reference [34], we establish new oscillation criteria for
Equation (1). Based on the above, we aim in this paper to complete, simplify, and develop
previous results. Therefore, we believe that this paper will be a good contribution to the
study of the oscillatory behavior of the Equation (1) and its special cases.

We organize this paper as follows: In the first section (Introduction), we offer the
studied equation and the general conditions necessary to reach the main results of the
paper. We also provide an overview of related topics and the motivation behind this study.
In Section 2, we offer some relationships and results that will be used to reach the oscillation
results discussed in the subsection titled “Oscillation Results”. In Section 3, we provide
some examples to illustrate the significance of the obtained results. Finally, in Section 4, we
summarise the main results of the paper and highlight an open question that may be of
interest to researchers in this field.

2. Main Results
2.1. Auxiliary Lemmas

The study of the oscillation of first-order equations went through stages of develop-
ment over the years until it became clearer and more understandable from both a theoretical
and scientific perspective. The behavior of the solutions to delay first-order differential
equations differs entirely from that of the homogeneous ordinary differential equations of
the first-order, where we notice that the presence of deviating arguments can cause oscil-
lations in the solutions, whereas ordinary equations do not possess oscillatory solutions.
The study of the oscillation of this type of equation has been utilized to arrive at oscillation
criteria for equations of higher order. Consider the first order differential equation

g′(⊤) + F(⊤)g(σ(⊤)) = 0, (9)

where

F ∈ C[⊤0, ∞), F(⊤) > 0, σ ∈ C1[⊤0, ∞), σ(⊤) < ⊤, σ′(⊤) ≥ 0, lim
t→∞

h(⊤) = ∞. (10)

Now, we present some important relationships and conditions that we will employ to
obtain the main results.

Lemma 1 ([35]). Assume that (10) holds. If the first-order delay differential inequality

g′(⊤) + F(⊤)g(σ(⊤)) ≤ 0

has a positive solution, then the delay differential Equation (9) also has a positive solution.

Lemma 2 ([36]). Suppose that

∫ ⊤+σ

⊤
F(s)ds > 0 for ⊤ ≥ ⊤0

for some ⊤0 > 0 and ∫ ∞

⊤0

F(t) ln
(

e
∫ ⊤+σ

σ
F(s)ds

)
d⊤ = ∞. (11)

Then every solution of (9) oscillates.

Lemma 3. Suppose that κ > 0 is a solution of (1). Then, one of the following cases is valid:

(Y1) g(⊤) > 0 and g′(⊤) > 0
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or
(Y2) g(⊤) > 0 and g′(⊤) < 0

for ⊤ ≥ ⊤1 ≥ ⊤0 with sufficiently large ⊤1.

Proof. Assume that κ(⊤) > 0, that is, κ(ζ(⊤)) > 0 and κ(σ(⊤, s)) > 0 for all ⊤ ≥ ⊤1 ≥
⊤0. Then, g(⊤) is positive and either g′(⊤) is nonoscillatory or g′(⊤) is oscillatory. Assume
that g′(⊤) is oscillatory; then, from (1) we find that

(
rg′
)′
(⊤) + η(⊤)g′(⊤) = −

∫ b

a
q(⊤, s)κλ(σ(⊤, s))ds.

Set

U(⊤) = exp
(∫ ⊤

⊤0

η(⊤)

r(⊤)
ds
)

.

This yields (
U(⊤)r(⊤)g′(⊤)

)′
= −U(⊤)

∫ b

a
q(⊤, s)κλ(σ(⊤, s))ds. (12)

Thus, U(⊤)r(⊤)g′(⊤) has one sign eventually, that is, g′(⊤) has a fixed sign.

Lemma 4. Suppose that κ > 0 is a solution of (1) and (Y1) satisfies. Then,

g(⊤)

g′(⊤)
> A(⊤)U(⊤)r(⊤), ⊤ ≥ ⊤1 (13)

and ( g
A

)′
(⊤) < 0.

Proof. Assume that (Y1) holds. That is, g(⊤) > 0, g′(⊤) > 0 and (rg′)′(⊤) ≤ 0 for ⊤ ≥ ⊤1.
From (1), we see that

(
rg′
)′
(⊤) + η(⊤)g′(⊤) = −

∫ b

a
q(⊤, s)κλ(σ(⊤, s))ds.

which leads to

(
U(⊤)r(⊤)g′(⊤)

)′
= −U(⊤)

∫ b

a
q(⊤, s)κλ(σ(⊤, s))ds ≤ 0.

That is, (
U(⊤)r(⊤)g′(⊤)

)′ ≤ 0.

Since U(⊤)r(⊤)g′(⊤) is decreasing, we have

g(⊤) = g(⊤1) +
∫ ⊤

⊤1

U(s)r(s)g′(s)
U(s)r(s)

ds

> A(⊤)U(⊤)r(⊤)g′(⊤),

thus,
g(⊤) > A(⊤)U(⊤)r(⊤)g′(⊤),

which yields
A(⊤)U(⊤)r(⊤)g′(⊤)− g(⊤) < 0. (14)
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Since

g(⊤)A′(⊤)

A2(⊤)
=

r(⊤)U(⊤)g(⊤)A′(⊤)

r(⊤)U(⊤)A2(⊤)

>
g(⊤)

r(⊤)U(⊤)A2(⊤)
.

It followes that ,
g(⊤)A′(⊤)

A2(⊤)
>

g(⊤)

r(⊤)U(⊤)A2(⊤)
. (15)

From (14) and (15), we obtain( g
A

)′
(⊤) =

(
g′(⊤)A(⊤)− g(⊤)A′(⊤)

) 1
A2(⊤)

=
(

g′(⊤)A(⊤)r(⊤)U(⊤)− g(⊤)
) 1

r(⊤)U(⊤)A2(⊤)

< 0.

Thus, it proves that (g/A)′ < 0 is decreasing on [⊤1, ∞). The proof is complete.

Lemma 5. Suppose that κ > 0 is a solution of (1), and

lim
⊤→∞

ν(⊤)Ã(⊤) = 0, where Ã(⊤) =
Aγ(ζ(⊤))

A(⊤)
. (16)

If ∫ ∞

⊤0

U(s)
(∫ b

a
q(⊤, u)du

)
ds = ∞, (17)

then (Y2) holds.

Proof. Assume that κ(⊤) > 0,, that is, κ(ζ(⊤)) > 0 and κ(σ(⊤, s)) > 0 for all ⊤ ≥ ⊤1 ≥
⊤0. From Lemma 3, we note that g satisfies one of the two cases (Y1) or (Y2). Let us assume
that (Y1) holds. Then, from Lemma 4, we find (g(⊤)/A(⊤))′ < 0 for ⊤ ≥ ⊤2 ≥ ⊤1. Since
(g/A)′ < 0 and g′ > 0, we obtain

g(⊤) ≥ M1 and g(⊤) ≤ M2 A(⊤) , for ⊤ > ⊤3,

where M1, M2 > 0, and ⊤3 > ⊤2. Let ε ∈ (0, 1). By (16), we note that ⊤4 ≥ ⊤3 exists
such that

ν(⊤)Aγ(ζ(⊤)) ≤ A(⊤)M1−γ
2 (1 − ε) for ⊤ ≥ ⊤4.

With κ < g, it follows that

κ(⊤) = g(⊤)− ν(⊤)κγ(ζ(⊤))

≥ g(⊤)− ν(⊤)gγ(ζ(⊤))

= g(⊤)− ν(⊤)

(
g(ζ(⊤))

A(ζ(⊤))

)γ

Aγ(ζ(⊤))

≥ g(⊤)− ν(⊤)

(
g(⊤)

A(⊤)

)γ

Aγ(ζ(⊤))

= g(⊤)

(
1 −

(
ν(⊤)

Aγ(ζ(⊤))

A(⊤)

)(
g(⊤)

A(⊤)

)γ−1
)

,
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which implies

κ(⊤) ≥ M1

(
1 − M1−γ

2 (1 − ε)Mγ−1
2

)
= M1ε

= : M, for ⊤ ≥ ⊤4

or
κ(⊤, s) ≥ M.

That is, M is positive. Using this in (12), we obtain

(
U(⊤)r(⊤)g′(⊤)

)′
+ U(⊤)Mλ

∫ b

a
q(⊤, s)ds ≤ 0.

Integrating the above inequality, (17) leads to

0 < U(⊤)r(⊤)g′(⊤)

≤ U(⊤4)r(⊤4)g′(⊤4)− Mλ
∫ ⊤

⊤4

U(s)
(∫ b

a
q(⊤, u)du

)
ds → −∞.

The proof is complete.

Lemma 6. Suppose that κ > 0 is a solution of (1) such that (Y2) holds and (16) satisfies. If an
increasing function ρ ∈ C1(I+0 ,R+

)
exists such that

∫ ∞

⊤0

1
r(⊤)U(⊤)ρ(⊤)

(∫ ⊤

⊤0

ρ(s)U(s)
∫ b

a
q(⊤, u)duds

)
d⊤ = ∞, (18)

then
lim
⊤→∞

κ(⊤) = lim
⊤→∞

g(⊤) = 0. (19)

Proof. Let κ(⊤) > 0, that is, κ(ζ(⊤)) > 0 and κ(σ(⊤, s)) > 0 for all ⊤ ≥ ⊤1 ≥ ⊤0. Since
g′(⊤) < 0, then

g(⊤) ≤ M3,

where M3 > 0 is constant and ⊤2 ≥ ⊤1. In view of (16) and by increasing and bounded
property of the function A(⊤), we see that

lim
⊤→∞

ν(⊤) = 0,

⊤3 ≥ ⊤2 exists such that

ν(⊤)
1

(1 − ε2)
≤ M1−γ

3 , ε2 ∈ (0, 1) for ⊤ ≥ ⊤3.

Since κ < g, we obtain

κ(⊤) = g(⊤)− ν(⊤)κγ(ζ(⊤))

≥ g(⊤)− ν(⊤)gγ(ζ(⊤))

≥ g(⊤)− ν(⊤)gγ(⊤)

= g(⊤)
(

1 − ν(⊤)gγ−1(⊤)
)

≥ g(⊤)
(

1 − M1−γ
3 (1 − ε2)Mγ−1

3 (⊤)
)

= ε2g(⊤).

This implies that
κ(⊤) ≥ ε2g(⊤).
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In (12), we have

(
U(⊤)r(⊤)g′(⊤)

)′
+ εU(⊤)gλ(σ(⊤, s))

∫ b

a
q(⊤, u)du ≤ 0, (20)

for ⊤ ≥ ⊤3 and ε := ελ
2 . Since g′ < 0, we find that

lim
⊤→∞

g(⊤) =: ϱ, ϱ is nonnegative.

Let ϱ > 0. Then, there is ⊤4 ≥ ⊤3 such that g(σ(⊤, s)) ≥ ϱ for ⊤ ≥ ⊤4, and

(
U(⊤)r(⊤)g′(⊤)

)′
+ ϱ1U(⊤)

∫ b

a
q(⊤, s)ds ≤ 0, ϱ1 := εϱλ > 0 (21)

for ⊤ ≥ ⊤4. Set
w(⊤) := ρ(⊤)U(⊤)r(⊤)g′(⊤).

By using (21), we obtain

w′(⊤) = ρ(⊤)
(
Urg′

)′
(⊤) + ρ′(⊤)U(⊤)r(⊤)g′(⊤)

≤ −ϱ1ρ(⊤)U(⊤)
∫ b

a
q(⊤, s)ds + ρ′(⊤)U(⊤)r(⊤)g′(⊤)

≤ −ϱ1ρ(⊤)U(⊤)
∫ b

a
q(⊤, s)ds, ⊤ ≥ ⊤4. (22)

Integrating (22), we see that

w(⊤) ≤ w(⊤4)− ϱ1

∫ ⊤

⊤4

U(s)ρ(s)
∫ b

a
q(⊤, u)duds

≤ −ϱ1

∫ ⊤

⊤4

U(s)ρ(s)
∫ b

a
q(⊤, u)duds.

That is,

g′(⊤) ≤ −ϱ1
1

ρ(⊤)U(⊤)r(⊤)

∫ ⊤

⊤4

U(s)ρ(s)
∫ b

a
q(⊤, u)duds.

Now, integrating from ⊤4 to ⊤, we obtain

g(⊤) ≤ g(⊤4)− ϱ1

∫ ⊤

⊤4

1
r(s)U(s)ρ(s)

(∫ s

⊤4

ρ(u)U(u)
∫ b

a
q(⊤, u)duds

)
ds → −∞

as t → ∞, we find

g(⊤) ≤ g(⊤4)− ϱ1

∫ ∞

⊤0

1
r(s)U(s)ρ(s)

(∫ s

⊤0

ρ(u)U(u)
∫ b

a
q(⊤, u)duds

)
ds → −∞.

Thus, ϱ = 0. Therefore, (19) holds. The proof is complete.

2.2. Oscillation Results

Theorem 1. Let (17) hold. If there exists increasing function ρ ∈ C1(I+0 ,R+
)

and (18) holds, then
any solution of (1) is either oscillatory or lim⊤→∞ κ(⊤) = 0.

Proof. Let κ(⊤) > 0, that is, κ(ζ(⊤)) and κ(σ(⊤, s)) are positive on [⊤1, ∞) for ⊤1 ≥ ⊤0.
From Lemma 3, either Case (Y1) or Case (Y2) holds. By Lemma 5, it is easy to see that (Y2)
holds. From Lemma 6, it follows that any solution of (1) is either oscillatory or satisfies (19).
This completes the proof.
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Theorem 2. Assume that (16) and (17) are satisfied. If

∫ ∞

⊤0

(∫ ⊤
⊤0

(∫ b
a q(⊤, u)du

)
U(v)Aλ(σ(v, s))dv

)
r(⊤)U(⊤)

d⊤ = ∞, (23)

then all solutions of (1) are oscillatory.

Proof. Let κ(⊤) > 0, that is, κ(ζ(⊤)) and κ(σ(⊤, s)) are positive on [⊤1, ∞) for ⊤1 ≥ ⊤0.
By (17), from Lemma 5, we see that g satisfies (Y2) for all ⊤ ≥ ⊤2 ≥ ⊤1. Similarly to the
proof of the Lemma 6, we obtain (20) and since (Urg′)′ ≤ 0, we have

g(⊤) ≥ −
∫ ∞

⊤

1
r(s)U(s)

U(s)r(s)g′(s)ds

≥ −A(⊤)U(⊤)r(⊤)g′(⊤),

hence ( g
A

)
is nondecreasing

and
g(⊤)

A(⊤)
≥ M for ⊤ ≥ Tx, M > 0.

(20) yields

(
Urg′

)′
(⊤) + M4U(⊤)

(∫ b

a
q(⊤, u)du

)
Aλ(σ(⊤, s)) ≤ 0, M4 := εMλ for ⊤ ≥ Tx. (24)

From (24), we obtain

U(⊤)r(⊤)g′(⊤) ≤ U(Tx)r(Tx)g′(Tx)− M4

∫ ⊤

Tx
U(s)

(∫ b

a
q(⊤, u)du

)
Aλ(σ(⊤, s))ds

≤ −M4

∫ ⊤

Tx
U(s)q(⊤, s)Aλ(σ(⊤, s))ds.

Integrating from Tx to ⊤, and according to (1), we find

g(⊤) ≤ g(Tx)− M4

∫ ⊤

Tx

(∫ s
Tx

U(u)
(∫ b

a q(⊤, v)dv
)

Aλ(σ(⊤, u))du
)

U(s)r(s)
ds → −∞

as ⊤ → ∞, we see that

g(⊤) ≤ g(Tx)− M4

∫ ∞

⊤0

(∫ ⊤
⊤0

U(u)
(∫ b

a q(⊤, v)dv
)

Aλ(σ(⊤, u))du
)

U(⊤)r(⊤)
d⊤ → −∞,

this contradicts (23). The proof is complete.

Theorem 3. Let (16) and (17) be held. If λ = 1 and

lim sup
⊤→∞

(
A(⊤)×

∫ ⊤

⊤0

U(s)
∫ b

a
q(⊤, u)duds

)
> 1, (25)

then all solutions of (1) are oscillatory.
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Proof. Let κ(⊤) > 0, that is, κ(ζ(⊤)) > 0 and κ(σ(⊤, s)) > 0 on [⊤1, ∞) for some
⊤1 ≥ ⊤0. From (4) and Lemma 5, it is easy to see that g satisfies (Y2) for all ⊤ ≥ ⊤2 ≥ ⊤1.
Also, by Lemma 6, g satisfies (20). Integrating (20) from ⊤ to ⊤3, we have

−U(⊤)r(⊤)g′(⊤) ≥ ε
∫ ⊤

⊤3

U(s)
(∫ b

a
q(⊤, u)du

)
gλ(σ(⊤, s))ds

≥ εgλ(σ(⊤, s))
∫ ⊤

⊤3

U(s)
∫ b

a
q(⊤, u)duds, (26)

where ε ∈ (0, 1) and ⊤ ≥ ⊤3 for some ⊤3 ∈ [⊤2, ∞). Using (20) in the latter inequality,
we have

−U(⊤)r(⊤)g′(⊤) ≥ εgλ(⊤)
∫ ⊤

⊤3

U(s)
∫ b

a
q(⊤, u)duds

≥ εAλ(⊤)
(
−U(⊤)r(⊤)g′(⊤)

)λ
∫ ⊤

⊤3

U(s)
∫ b

a
q(⊤, u)duds.

This implies that

(
−U(⊤)r(⊤)g′(⊤)

)1−λ ≥ εAλ(⊤)
∫ ⊤

⊤3

U(s)
∫ b

a
q(⊤, u)duds, (27)

for any 0 < ε < 1 and ⊤ ≥ ⊤3. If λ = 1, then (27) implies

εA(⊤)
∫ ⊤

⊤3

U(s)
∫ b

a
q(⊤, u)duds ≤ 1.

The proof is complete.

Theorem 4. Let (16) be satisfied and (17) hold. Assume that σ(⊤, s) has nonnegative partial
derivatives and σ(⊤, s) < ⊤. Then, (1) exhibits oscillatory behavior if any one of the following
conditions is true:

lim inf
⊤→∞

∫ ⊤

σ(⊤,s)

1
r(s)U(s)

(∫ s

⊤0

U(u)
(∫ b

a
q(⊤, v)dv

)
du
)

ds >
1
e

when λ = 1 (28)

or ∫ ∞

⊤0

1
r(⊤)U(⊤)

(∫ ⊤

⊤0

U(s)
∫ b

a
q(⊤, u)duds

)
d⊤ = ∞ when λ < 1. (29)

Proof. Let κ(⊤) > 0, that is, κ(ζ(⊤)) > 0 and κ(σ(⊤, s)) > 0 on [⊤1, ∞) for some
⊤1 ≥ ⊤0. By (17) and Lemma 5, g satisfies (Y2) for all ⊤ ≥ ⊤2 ≥ ⊤1. By virtue of
Theorem 3, we see that (26) holds; thus, g > 0 is considered a solution to inequality

g′(⊤) +

ε

∫ ⊤
⊤3

U(s)
∫ b

a q(⊤, u)duds

r(⊤)U(⊤)

gλ(σ(⊤, s)) ≤ 0, for all ε ∈ (0, 1),

for ⊤ ≥ ⊤3. By ([6] Theorem 5.1.1), we note that the associated delay differential equation

g′(⊤) +

ε

∫ ⊤
⊤3

U(s)
∫ b

a q(⊤, u)duds

r(⊤)U(⊤)

gλ(σ(⊤, s)) = 0 (30)

also possesses a positive solution. Consequently, by Lemma 2, the conditions (28) or (29)
confirm the oscillation of (30) if λ = 1 or λ < 1, respectively. Therefore, (1) cannot have an
eventually positive solution; this inconsistency concludes the proof.
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Corollary 1. Let (16) and (4) be satisfied. Assume that λ = 1, σ′(⊤, s) ≥ 0 and σ(⊤, s) < ⊤. If

∫ ⊤+ζ

⊤

(
ε

r(⊤)U(⊤)

∫ ⊤

⊤3

U(s)
∫ b

a
q(⊤, u)duds

)
d⊤ > 0 (31)

and ∫ ∞

⊤0

(
ε

r(⊤)U(⊤)

∫ ⊤

⊤3

U(s)
∫ b

a
q(⊤, u)duds

)
ln
(

e
∫ ⊤+ζ

⊤
p(s)ds

)
d⊤ = ∞, (32)

then all of the solutions of (1) are oscillatory.

Proof. In view of Lemma (2), we find that conditions (31) and (32) imply the oscillation
of equation

g′(⊤) + F(⊤)

ε

∫ ⊤
⊤3

U(s)
∫ b

a q(⊤, u)duds

r(⊤)U(⊤)

g(σ(⊤, s)) = 0,

where

F(⊤) =

ε

∫ ⊤
⊤3

U(s)
∫ b

a q(⊤, u)duds

r(⊤)U(⊤)

.

The proof is complete.

3. Applications

Example 1. Consider the following equation(
⊤2
(
κ(⊤) +

1
⊤2κ

3(2⊤)

)′
)′

+⊤g′(⊤) +
∫ 1

0
s6κ3

( s
3

)
ds = 0, ⊤ ∈ [1, ∞). (33)

From (33), we note that γ = λ = 3, r(⊤) = ⊤2, ν(⊤) = 1
⊤2 , q(⊤, s) = ⊤6, ζ(⊤) = 2⊤,

σ(⊤, s) = ⊤
3 , which satisfy conditions (C1) and (C2). Furthermore, (17) holds and

lim
⊤→∞

Aγ(ζ(⊤))

A(⊤)
ν(⊤) = 0.

Hence, (16) satisfies. Also,

∫ ∞

⊤0

(∫ ⊤
⊤0

q(⊤, s)U(s)Aλ(σ(⊤, s))ds
)

r(⊤)U(⊤)
d⊤

=
∫ ∞

1
⊤−3

∫ ⊤

1

729
8

sds

= 729(16)−1
∫ ∞

1

(
⊤−1 −⊤−3

)
d⊤ = ∞.

Note that (23) holds. By Theorem 2, Equation (33) is oscillatory.

Example 2. Consider the following equation:(
⊤3/2

(
κ(⊤) +

1
⊤κ3(2⊤)

)′
)′

+⊤1/2g′(⊤) +
∫ 1

0
bs−1/2κ(s/2)ds = 0, (34)
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⊤ ∈ [1, ∞), λ = 1, γ = 3, and b > 0. By (34), we note that r(⊤) = ⊤3/2, ν(⊤) = 1
⊤ ,

η(⊤) = ⊤1/2, q(⊤, s) = b⊤−1/2, ζ(⊤) = 2⊤, σ(⊤, s) = ⊤
2 , which satisfy conditions (C1) and

(C2). Furthermore, (17) holds,
A(⊤) = 2

(
1 −⊤− 1

2

)
and

lim
⊤→∞

1
A(⊤)

ν(⊤)Aγ(ζ(⊤)) = lim
⊤→∞

4(
⊤−⊤ 1

2

)(1 − (2⊤)−
1
2
)3

= 0

which yields (16) satisfies. Moreover,

lim sup
⊤→∞

{
2

3⊤3/2

∫ ⊤

1
U(s)q(⊤, s)ds

}
= lim

⊤→∞

2
3
⊤−3/2

∫ ⊤

1
bs1/2ds

= lim
⊤→∞

4
9

(
b − b⊤−3/2

)3

=
4
9

b.

It’s clear that (25) holds if b > 9/4. By Theorem 3, we see that Equation (34) is oscillatory if

b >
9
4

.

Example 3. Consider Equation (34). As in Example 2, it satisfies conditions (C1) and (C2). Since
(17) holds and

lim inf
⊤→∞

∫ ⊤

σ(⊤,s)

1
r(s)U(s)

(∫ s

⊤0

U(u)q(⊤, u)du
)

ds >
1
e

it follows that

lim inf
⊤→∞

∫ ⊤

⊤
2

1
s5/2

(
b(s)3/2 − b

)
ds >

1
e

Thus, by Theorem 4, we see that all of the solutions of (34) are oscillatory if

b >
1

e ln 2
.

4. Conclusions

Through this work, the oscillatory properties of a class of second-order differential
equations with distributed deviating arguments were studied. We present some properties
related to non-oscillatory solutions of the types (Y1) and (Y2), and then we employ these
properties to reach the oscillation criteria of the Equation (1). The oscillation criteria
mentioned in this paper do not require additional conditions. We find that most of the
previous literature has addressed results that cannot be applied to our more general
equation, which is in case of a U neutral term. Additionally, there is a scarcity of results
that study second-order differential equations with the damping term and a U neutral term;
see, for example, see [7,8,20,25–33]. Based on the above, the results of this paper are an
improvement, extension, and completion of the previous results.
Studying the following equation:

(
rg′(⊤)

)′
(⊤) + d(⊤)g′(⊤) +

m

∑
i=1

qi(⊤, s)κλ(σi(⊤, s)) = 0

is expected to significantly contribute to the enhancement and development of oscillation
theory in future scientific fields. In addition, discussing the results of Equation (1) when
σ(⊤, s) > ⊤ or if the damping function d ∈ C(I+0 ,R) will be an interesting research point
for researchers.
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