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Introduction
A growing body of evidence highlighted the link 
between metabolic pressure, autoimmunity, and neu-
rodegeneration in different chronic inflammatory 
conditions.1,2 Obesity represents a proinflammatory 
condition characterized by increased expression of 
inflammatory mediators, including interleukin (IL)-6 
and leptin.3,4 Leptin, the prototypic adipocytokine, 
supports proinflammatory immune responses against 
central nervous system (CNS).5,6

Obesity during childhood and adolescence represents 
a risk factor for multiple sclerosis (MS).7,8 Altered 

lipid metabolism has been associated with worse dis-
ease course in MS patients.9,10 In particular, higher 
levels of adiposity and altered serum lipid profile 
negatively influence disability progression,11,12 and 
higher body mass index (BMI) has been associated 
with reduced response to interferon-β (IFN-β) ther-
apy in MS patients.10 However, how BMI and serum 
lipid–related variables may influence MS disability 
and risk of relapse is not yet established.

Neuroinflammation represents a key factor influencing 
MS progression and neurodegeneration. Experimental 
studies showed that specific inflammatory molecules 
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promote excitotoxic neuronal damage in vitro13 and are 
associated with disease exacerbations in MS patients.14 
Both in animal models (i.e. experimental autoimmune 
encephalomyelitis (EAE)) and in MS, elevated central 
levels of proinflammatory cytokines have been associ-
ated with worse disease course and increased measures 
of neuronal damage.13–15 Conversely, anti-inflamma-
tory cytokines and neurotrophic factors showed neuro-
protective effects16 and beneficially influenced the 
disease course of MS.17

It is important to clarify the relationship between 
altered lipid metabolism and disease course in MS, 
because interventions aimed at lowering abnormal 
serum lipid levels could reduce the accumulation of 
disability. We therefore explored in a group of relaps-
ing-remitting (RR)-MS patients whether elevated 
BMI and altered serum lipid profile at the time of 
diagnosis can influence inflammatory molecule con-
centration in the cerebrospinal fluid (CSF) and clini-
cal disability.

Methods

MS patients
A group of 140 consecutive patients admitted to the 
neurological clinic of the IRCCS Neuromed, Pozzilli 
(IS), between 2017 and 2018 and diagnosed as RR-MS 
participated in the study. According to the published 
criteria, the diagnosis of RR-MS was established 
based on clinical, laboratory, and magnetic resonance 
imaging (MRI) parameters.18 The study was approved 
by the Ethics Committee of the IRCCS Neuromed. All 
patients gave a written informed consent.

Blood and CSF withdrawal, clinical examination, and 
MRI scan were performed during hospitalization. All 
patients were untreated before hospitalization, and 
corticosteroids or immunoactive therapies were initi-
ated after lumbar puncture (LP).

Clinical evaluation
Disease duration was calculated as the time interval 
between disease onset, defined as the first episode of 
focal neurological dysfunction suggestive of MS, and 
the time of diagnosis. The number of clinical relapses 
that occurred before hospitalization was recorded. A 
relapse was defined as the appearance of new or 
recurrent neurological symptoms not associated with 
fever or infection, lasting at least 24 hours. Clinical 
activity at LP was defined as the presence of an ongo-
ing relapse at the time of hospitalization. The 
Expanded Disability Status Scale (EDSS) was used to 

assess clinical disability, and single functional system 
involvement (vision, brainstem, pyramidal, cerebel-
lar, sensory, bowel/bladder, cerebral, and ambulation) 
was also recorded.19 Body height and weight were 
measured during hospitalization. BMI was calculated 
as weight (kg)/height (m2). Information on smoking 
habit was collected from all patients, asking about 
current and previous smoking.

MRI
A 1.5- or 3.0-tesla MRI scan was performed, includ-
ing dual-echo proton density sequences, fluid-attenu-
ated inversion recovery, T1-weighted spin-echo (SE), 
T2-weighted fast SE, and contrast-enhanced 
T1-weighted SE after intravenous gadolinium (Gd) 
infusion (0.2 mL/kg). A Gd-enhancing (Gd+) lesion 
was defined as an area of hyperintense signaling on 
contrast-enhanced T1-weighted images. Radiological 
activity at LP was defined as the presence of a Gd+ 
lesion at brain, and spine MRI scan was performed 
during hospitalization.

Biochemical serum lipids
Blood sample of patients were collected after a 
12-hour period of fasting using recommended proce-
dures for collection of blood specimens by veni-
puncture. Samples were centrifuged at 3500g for 
10 minutes at 4°C. In vitro enzymatic diagnostic tests 
on the DimensionR clinical chemistry system 
(Siemens) were used for total cholesterol (TC), high-
density lipoprotein cholesterol (HDL-C), and triglyc-
eride serum determinations.

CSF collection and analysis
We assessed the CSF concentrations of a group of pro-
inflammatory and anti-inflammatory molecules, 
including specific adipocytokines, which are known to 
be involved in MS pathogenesis and metabolic inflam-
mation.6,14,16 CSF was centrifuged and then stored at 
–80°C immediately after LP. The CSF levels of the 
following molecules were measured: interleukin (IL)-
6, IL-13, granulocyte macrophage colony-stimulating 
factor (GM-CSF), leptin, ghrelin, osteoprotegerin 
(OPG), osteopontin, plasminogen activator inhibitor-1 
(PAI-1), resistin, and Annexin A1 (ANXA1).

The ProcartaPlex Mix&Match Human 8-plex 
(Invitrogen by Thermo Fisher Scientific) was used for 
the quantitative detection of ghrelin, GM-CSF, IL-6, 
leptin, OPG, osteopontin, PAI-1, and resistin in CSF 
in accordance with manufacturer’s instructions. 
Fluorescence intensity was measured using Luminex® 
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200™ system (Luminex, Austin, TX), and data were 
analyzed with xPONENT Software Version 3.1 
(Luminex). ANXA1 and IL-13 levels were deter-
mined by enzyme-linked immunosorbent assay 
(ELISA). Briefly, samples were diluted 1:2 and used 
on a pre-coated ELISA plate per manufacturer’s 
instructions. Absorbance was measured using a 
microplate reader (Model 500; Bio-Rad, Hercules, 
CA), and sample readings were extrapolated against a 
concurrently run standard curve.

Statistical analysis
Kolmogorov–Smirnov test was applied to verify the 
normality distribution of continuous variables.

Continuous data were presented as mean (standard 
deviation, SD) or, if they were not assumed as nor-
mally distributed, as median (interquartile range, 
IQR = 25th–75th percentile). Categorical or dichoto-
mous variables were presented in terms of frequency 
(percentage, %). Logarithmic transformation was 
applied to reduce the variability of data distribution 
and to obtain a better approximation to the normal dis-
tribution. Correlations between continuous variables 
(cytokines, adipocytokines, disease duration, etc.) 
were evaluated by the Spearman’s rho correlation 
coefficients. Partial correlation was also calculated 
while controlling for the effect of age. The relationship 
between two continuous variables was depicted by a 
scatter plot and, when specified, was described by the 
Passing–Bablok regression model; this regression 
model is a nonparametric procedure not sensitive to 
outliers and distribution of errors.20 Differences in 
continuous variables among two groups were evalu-
ated by parametric t-test or, if necessary, nonparamet-
ric Mann–Whitney test. Differences in continuous 
variables among more than two groups were evaluated 
by analysis of variance (ANOVA) or Kruskal–Wallis 
test. Analysis of covariance (ANCOVA) models were 

applied to evaluate differences in BMI classes in IL-6, 
leptin, and IL-13 (on logarithmic scale) adjusting for 
sex, age, disease duration, smoking, and the presence 
of radiological activity. Benjamini–Hochberg (B-H) 
procedure at an α of 0.05 was applied to control the 
false discovery rate both in post-ANCOVA and 
Kruskal–Wallis multiple comparisons between the 
three BMI groups (a total of three comparisons were 
performed: normal vs overweight, normal vs obese, 
obese vs overweight) and in multiple correlations. A 
value of p < 0.05 was regarded statistically signifi-
cant. Cytokine or adipocytokine distribution in the 
three BMI groups was presented by boxplot; the box 
was drawn from the 25th percentile to the 75th per-
centile; the horizontal line in the box represents the 
median values. All statistical analyses were performed 
by SPSS 15 (IBM Corp., Armonk, NY).

Results

A high BMI associates with an increased EDSS in 
RR-MS patients
The clinical and demographic characteristics of MS 
patients are shown in Table 1. No significant correla-
tions emerged between serum lipid profile (TC, tri-
glycerides, TC/HDL-C) and clinical characteristics at 
the time of diagnosis. Significant correlations were 
observed between BMI and both EDSS and age at LP 
(Spearman’s rho = 0.242, p = 0.008 and Spearman’s 
rho = 0.309, p < 0.001, respectively). In particular, the 
positive correlation with EDSS remained significant 
after controlling for sex, age, disease duration, smok-
ing, and the presence of radiological activity (partial 
Spearman’s rho = 0.248, p = 0.014). No significant 
correlations emerged between BMI and other clinical 
or demographic parameters (all p > 0.2).

To better explain the impact of BMI values on clinical 
parameters, patients were divided according to BMI 

Table 1.  Demographic and clinical characteristics of MS patients.

MS patients N 140

Sex, F n (%) 95 (68)

Age, years Median (IQR) 36.97 (28.67–47.68)

Disease duration, months Median (IQR) 12 (1.71–36.65)

Clinical activity at LP n (%) 42 (30)

Radiological activity at LP n (%) 56 (40)

EDSS at LP Median (IQR) 2 (1–3)
BMI Median (IQR) 23.9 (21.48–27.75)

MS: multiple sclerosis; IQR: interquartile range; LP: lumbar puncture; EDSS: expanded disability status scale; BMI: body mass 
index.
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score into three groups: “normal” (BMI 18.5–24.9), 
“overweight” (BMI 25–29.9), and “obese” (BMI 
>30).21 The BMI median was 24.1 (IQR = 21.8–28.6); 
the percentage of patients who belonged to the “nor-
mal” category was 58% (n = 83); “overweight,” 24% 
(n = 33); and “obese,” 18% (n = 24). The clinical and 
demographic characteristics of MS patients according 
to the BMI group are shown in Table 2. Results con-
firmed a significant association with EDSS (Kruskal–
Wallis test p = 0.013); in particular, EDSS was 
significantly higher in the “obese” MS group 
(median = 3, IQR = 2–3.4) than in the “normal” group 
(median = 1.5, IQR = 1–2.75; B-H adjusted p = 0.015; 
Figure 1). Higher EDSS in obese MS patients was 
driven by increased likelihood of pyramidal system 
involvement in these patients (normal weight = 29%; 
overweight = 42%; obese = 54%; p = 0.02). No signifi-
cant associations emerged between other functional 
systems and BMI (all p > 0.2).

Finally, although BMI showed some correlation with 
serum lipids (triglycerides: Spearman’s rho = 0.299, 
p < 0.001, B-H adjusted p = 0.001; HDL-C: Spearman’s 
rho = –0.231, p = 0.007, B-H adjusted p = 0.014; TC/
HDL-C: Spearman’s rho = 0.322, p < 0.001, B-H 
adjusted p = 0.0008), these correlations were not sig-
nificant after controlling for all other clinical variables 
(age, sex, disease duration, smoking, and the presence 
of radiological activity; all p > 0.05).

A high BMI associates with increased 
proinflammatory leptin and IL-6 and reduced 
anti-inflammatory IL-13 in CSF
We first examined whether disease activity at the time 
of LP influences the CSF levels of the cytokines and 
adipocytokines analyzed. Radiological activity at the 
time of LP was associated with increased leptin CSF 
levels (Gd+ patients: median = 461 pg/mL, IQR =  
284.75–682.48 pg/mL; median = 310.42, IQR = 192–
532 pg/mL; p = 0.030). Conversely, no statistically sig-
nificant differences emerged in all CSF molecules 
examined according to the presence of clinical disease 
activity at the time of LP (all p > 0.2).

To explore the impact of BMI on CSF cytokine levels, 
BMI groups were considered (Table 3). A significant 
association emerged between BMI group and leptin 
CSF levels (on logarithmic scale) adjusting for sex, 
age, disease duration, smoking, and the presence of 
radiological activity (ANCOVA main effect: F(2, 
132) = 9.69; p < 0.001). Post hoc comparisons showed 
that the “obese” MS groups presented higher leptin 
CSF concentrations than normal-weight MS patients 
(B-H adjusted p < 0.001; Figure 2(a)). Figure 2(b) 
depicts the association between BMI and leptin in 

Table 2.  Demographic and clinical characteristics according to BMI group.

MS patients  Normal weight Overweight Obese p

  N 83 33 24  

Age, years Median (IQR) 33.3 (24.3–45.4) 40.3 (31.4–50.4) 42.1 (35.5–47.9) 0.017

Sex, F n (%) 62 (75) 15 (46) 18 (75) 0.007

Disease duration, months Median (IQR) 9.1 (1.6–35.4) 17.9 (3.2–49.1) 12.1 (1.5–40.5) 0.772

Number of previous 
clinical relapses

Median (IQR) 1 (1–2) 1 (1–2) 1 (1–2) 0.496

Clinical activity at LP n (%) 29 (35) 7 (21) 6 (25) 0.373

Radiological activity at LP n (%) 36 (43) 10 (30) 10 (42) 0.376

Patients assuming lipid-
lowering medications

n (%) 1 (1) 2 (6) 2 (8) 0.2

Smokers n (%) 32 (39) 17 (52) 12 (50) 0.856

BMI: body mass index; MS: multiple sclerosis; IQR: interquartile range; LP: lumbar puncture.

Figure 1.  EDSS score according to BMI group.
*Mann–Whitney comparison: obese vs normal; B-H adjusted 
p < 0.05.
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each patient in the three BMI groups. Moreover, the 
CSF levels of IL-6 (on logarithmic scale) were signifi-
cantly different among the three BMI groups adjusting 
for sex, age, disease duration, smoking, and the pres-
ence of radiological activity (ANCOVA main effect: 
F(2, 132) = 3.84; p = 0.024). Post hoc comparisons 
showed that the “obese” MS groups presented higher 
IL-6 CSF concentrations than normal-weight MS 
patients (B-H adjusted p = 0.029; Figure 3(a)). Finally, 
the CSF levels of IL-13 (on logarithmic scale) were 
significantly different among the three BMI groups 
adjusting for sex, age, disease duration, smoking, and 
the presence of radiological activity (ANCOVA main 
effect: F(2, 132) = 5.21; p = 0.007). Post hoc compari-
sons showed that the “obese” MS groups presented 
lower IL-13 CSF concentrations than normal-weight 
MS patients (B-H adjusted p = 0.021; Figure 3(c)). The 
associations between IL-6 and BMI, and between 
IL-13 and BMI in each patient in the three BMI groups 
are shown in Figure 3(b) and (d).

Sensitivity analyses were performed excluding the 
outliers shown in Figures 2 and 3. The ANCOVA 
model adjusting for sex, age, disease duration, smok-
ing, and the presence of radiological activity showed 
a significant difference between the BMI groups for 
leptin (ANCOVA main effect: F(2,130) = 11.19; 

p = 0.001), IL-13 (ANCOVA main effect: F(2, 
129) = 8.68; p < 0.001), and IL-6 (ANCOVA main 
effect: F(2, 130) = 3.47; p = 0.034).

No statistically significant associations emerged 
between BMI groups and the other CSF molecules 
examined (Table 3).

Serum lipids show a direct correlation with 
increased IL-6 in CSF of MS patients
We explored the correlation between serum lipid pro-
file parameters (triglycerides, TC, TC/HDL-C) and 
CSF cytokine composition. A significant positive cor-
relation emerged between serum triglyceride levels 
and the CSF levels of IL-6 (Spearman’s rho = 0.273, 
p = 0.003; B-H adjusted p = 0.017). Moreover, also the 
TC/HDL-C ratio was positively correlated with IL-6 
CSF levels (Spearman’s rho = 0.258, p = 0.005; B-H 
adjusted p = 0.017). After controlling for all other 
clinical variables (sex, age, disease duration, smok-
ing, and the presence of radiological activity), these 
correlations remained significant (p = 0.013 and 
p = 0.030, respectively) (Figure 4). No significant cor-
relations emerged between serum lipids and the other 
CSF molecules examined.

Table 3.  CSF molecules in the three BMI groups.

MS patients  Normal weight Overweight Obese ANOVA p

  N 83 33 24  

Leptin Median (IQR) 311 (187.4–465) 337.9 (206–495) 662 (434.5–812.5) <0.001

IL-6 Median (IQR) 4 (0.92–7.48) 6.5 (2.94–21) 10 (6–22.95) 0.007

IL-13 Median (IQR) 1.46 (1.05 - 2.87) 1.04 (0.63–1.83) 1.14 (0.78–1.41) 0.004

Ghrelin Median (IQR) 0 (0–0) 0 (0–0) 0 (0–0) 0.898

  Min–max 0–1340.55 0–569.09 0–1276  

GM-CSF median (IQR) 17 (15–22) 17.5 (13.23–23) 24 (18.26–30) 0.124

OPG Median (IQR) 61.7 (52–73.9) 62.2 (49–67.38) 57 (47.5–70.83) 0.53

Osteopontin Median (IQR) 43,956 (23,463–
62,456)

32,439 (6100–
55,237.44)

36,389 (12,993.49–
58,525.77)

0.143a

PAI-1 Median (IQR) 363 (288.09–483.84) 413 (299.90–549.69) 384 (235–452) 0.895

Resistin Median (IQR) 0 (0–13.16) 0 (0–16.05) 10 (0–14.95) 0.448

ANXA1 Median (IQR) 0 (0–0) 0 (0–0) 0 (0–1) 0.461
  Min–max 0–12 0–5 0–6  

Data are presented as median (IQR = 25th–75th percentile). All analyses were performed on logarithmic transformation of data. 
CSF cytokine concentrations are expressed in picogram per milliliter; ANXA1 CSF concentration is expressed in nanogram per 
milliliter.
CSF: cerebrospinal fluid; BMI: body mass index; ANOVA: analysis of variance; MS: multiple sclerosis; IQR: interquartile 
range; IL: interleukin; GM-CSF: granulocyte macrophage colony-stimulating factor; OPG: osteoprotegerin, PAI-1: plasminogen 
activator inhibitor-1; ANXA1: Annexin A1.
aNonparametric Kruskal–Wallis test
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Discussion
Emerging evidence suggests that metabolism con-
trols immune responses in different chronic auto-
inflammatory conditions. Indeed, adipocytes release 
a number of molecules with pleiotropic functions, 
able to influence the immune response.1,2 Obesity 
represents a chronic low-grade inflammatory condi-
tion and is characterized by increased release of pro-
inflammatory cytokines, including leptin, tumor 
necrosis factor (TNF), and IL-6, while anti-inflam-
matory molecules are downregulated.22 A relation-
ship between disrupted metabolic balance and 
increased neuroinflammation and neurodegeneration 

has been proposed in different neurological condi-
tions.1 Obesity has been associated with increased 
risk of mild cognitive impairment and Alzheimer’s 
disease.23 In MS, dyslipidemia and altered serum lipid 
profile (low HDL-C/high low-density lipoprotein) 
have been associated with increased disability pro-
gression9 and enhanced disease activity.24,25 High 
BMI during childhood and adolescence has been 
associated with increased risk of developing MS.7,26 
Moreover, although with some difference among 
studies, some correlations between BMI and meas-
ures of clinical progression have been previously 
reported in MS patients.9–12,27

Figure 2.  Leptin CSF concentration and BMI: (a) boxplot of leptin CSF median concentration according to BMI group. 
The circles represent outlier patients. ##Post-ANOVA comparison: obese vs overweight; B-H adjusted p ⩽ 0.01. ###Post-
ANOVA comparison: obese vs normal; B-H adjusted p < 0.001. (b) Correlation between leptin CSF concentration and BMI.

Figure 3.  CSF levels of IL-6 and IL-13 and BMI: (a) boxplot of CSF concentration of IL-6 in the three BMI groups. (b) 
Correlation between IL-6 CSF concentration and BMI. (c) IL-13 CSF median concentration in the three BMI groups. (d) 
Correlation between IL-13 CSF concentration and BMI.
The circles represent outlier patients. The star marks the extreme values. #Post-ANOVA comparison: overweight vs normal; B-H 
adjusted p < 0.05. ##Post-ANOVA comparison: obese vs normal; B-H adjusted p ⩽ 0.01.
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In our study, we confirmed that obesity is associated 
with worse disability and demonstrated that this asso-
ciation is likely mediated by exacerbated central 
inflammatory reaction. In particular, in the CSF of 
obese MS patients, we found higher levels of the pro-
inflammatory molecules IL-6 and leptin and reduced 
levels of the anti-inflammatory cytokine IL-13. In 
addition, altered serum lipid profiles were associated 
with enhanced CSF inflammation, as both increased 
serum triglyceride levels, and TC/HDL-C ratio posi-
tively correlated with the CSF levels of IL-6.

IL-6 is a major proinflammatory cytokine released by 
a number of immune cells and is involved in the patho-
genesis of different neurological diseases.28 It has been 
previously reported that IL-6 concentrations are ele-
vated in the CSF of MS patients and may negatively 
impact the disease course.14,28,29 It has been shown that 
monocytes from RR-MS patients produce more IL-6 
compared to normal subjects,30 and elevated IL-6 
expression and glial cell activation have been described 
in ongoing human demyelinating lesions.31

Enhanced CSF levels of proinflammatory molecules 
could promote disease reactivations and neurodegen-
eration in MS and may represent the pathophysiologi-
cal mechanism underlying the worse disease course 
observed in obese MS patients. In addition, we found 
reduced expression of the anti-inflammatory mole-
cule IL-13 in the “obese” MS group. It has been previ-
ously shown that IL-13 may exert neuroprotective 
effects in MS, reducing glutamate-mediated excito-
toxicity.16 These results suggest that increased neu-
ronal damage and reduced neuroprotection may 
exacerbate disease severity in obese MS patients. A 
recent study evidenced that in MS higher BMI was 
associated with increased measures of gray matter 
atrophy,32 and some correlation has been evidenced 
between obesity and the risk of developing secondary 
progressive MS phenotype.33

In our MS cohort, increased levels of leptin have 
been detected in the CSF of obese MS patients, sug-
gesting that this molecule may represent the link 
between altered lipid metabolism and central inflam-
mation in MS. Leptin is released by the adipose tis-
sue according to the body fat mass and mediates a 
wide range of physiological functions.34 Preclinical 
studies evidenced that in the CNS leptin interacts 
with specific hypothalamic and brainstem neurons,35 
regulating food intake, autonomic nervous system 
function, and the hypothalamic–pituitary–adrenal 
axis.34 Importantly, in animal models it has been 
extensively demonstrated that leptin modulates both 
the innate and adaptive immune responses,36 regulat-
ing the production of proinflammatory cytokines, 
including TNF and IL-6, by different immune cells.37 
Our findings are in line with previous data showing 
that leptin is critically involved in the pathogenesis 
of EAE and MS. Accordingly, leptin neutralization in 
EAE mice reduced disease manifestations.38 Leptin-
deficient mice are resistant to the induction of EAE 
showing reduced CNS inflammation, and leptin 
replacement is able to restore EAE susceptibility.5,39 
Notably, leptin concentrations are increased in the 
CSF of treatment-naïve RR-MS patients and are 
associated with increased central inflammation.6 In 
our study, increased CSF leptin concentrations in 
patients with radiological disease activity are in line 
with previous findings. In particular, elevated serum 
leptin levels have been reported in MS patients 
treated with IFN-β before disease reactivations,40 
and increased leptin has been detected in active MS 
lesions.41 It has been reported that higher blood lev-
els of both leptin and IL-6 could be associated with 
enhanced prospective disease activity.42 The positive 
correlation that emerged between BMI score and 
clinical disability at the time of diagnosis suggests 
that obesity and the ensuing enhanced central inflam-
mation could negatively influence the disease char-
acteristics already in the early phases of MS. This 

Figure 4.  Serum lipids and IL-6: (a) correlation between IL-6 CSF levels (logarithmic scale) and serum triglycerides; (b) 
correlation between IL-6 CSF levels (logarithmic scale) and TC/HDL-C ratio. The relation between the two variables is 
depicted by a scatter plot and is described by the Passing–Bablok regression model.
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finding is in line with previous studies showing that 
higher BMI and adverse lipid profile are associated 
with increased disability in MS patients.9 In addition, 
caloric restriction in EAE was associated with 
increased survival, reduced IL-6 levels, and increased 
neuroprotection through reduced leptin concentra-
tions.5,43 Limitations of this study include the lack of 
prospective measures of clinical disability and neu-
ronal damage. Moreover, this was a single-center 
cross-sectional study, and further confirmation is 
required.

The relationship between altered lipid metabolism 
and inflammation highlights the key role of adipocy-
tokines in the cross talk between metabolism, immu-
nity, and neurodegeneration.44 Overall, these findings 
could provide new therapeutic opportunities aimed at 
limiting the negative impact of altered lipid metabo-
lism on inflammatory response in MS, representing 
useful adjunctive strategies to modify the course of 
this potentially devastating disease.
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