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Inflammatory signature 
in amyotrophic lateral sclerosis 
predicting disease progression
Cinzia Femiano 1,7, Antonio Bruno 1,7, Luana Gilio 1,2, Fabio Buttari 1,6, Ettore Dolcetti 1, 
Giovanni Galifi 1,6, Federica Azzolini 1, Angela Borrelli 1, Roberto Furlan 3, Annamaria Finardi 3, 
Alessandra Musella 4,5, Georgia Mandolesi 4,5, Marianna Storto 1, Diego Centonze 1,6* & 
Mario Stampanoni Bassi 1

Experimental studies identified a role of neuroinflammation in the pathogenesis of neurodegenerative 
diseases, including amyotrophic lateral sclerosis (ALS). However, the role of inflammatory molecules 
as diagnostic and prognostic biomarkers in patients with ALS is unclear. In this cross-sectional 
study, the cerebrospinal fluid (CSF) levels of a set of inflammatory cytokines and chemokines were 
analyzed in 56 newly diagnosed ALS patients and in 47 age- and sex-matched control patients without 
inflammatory or degenerative neurological disorders. The molecules analyzed included: interleukin 
(IL)-1β, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12, IL-13, IL-17, granulocyte colony stimulating 
factor (GCSF), macrophage inflammatory protein (MIP)-1a, MIP-1b, tumor necrosis factors (TNF), 
eotaxin. Principal component analysis (PCA) was used to explore possible associations between CSF 
molecules and ALS diagnosis. In addition, we analyzed the association between CSF cytokine profiles 
and clinical characteristics, including the disease progression rate score, and peripheral inflammation 
assessed using the Neutrophil-to-lymphocyte ratio (NLR). PCA identified six principal components 
(PCs) explaining 70.67% of the total variance in the CSF cytokine set. The principal component (PC1) 
explained 26.8% of variance and showed a positive load with CSF levels of IL-9, IL-4, GCSF, IL-7, IL-17, 
IL-13, IL-6, IL-1β, TNF, and IL-2. Logistic regression showed a significant association between PC1 and 
ALS diagnosis. In addition, in ALS patients, the same component was significantly associated with 
higher disease progression rate score and positively correlated with NLR. CSF inflammatory activation 
in present in ALS at the time of diagnosis and may characterize patients at higher risk for disease 
progression.
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NLR  Neutrophil-to-lymphocyte ratio
OR  Odds ratio
PC  Principal component
PCA  Principal component analysis
PD  Parkinson’s disease
TNF  Tumor necrosis factor

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting upper and lower motoneurons, 
characterized by progressive course and unfavorable  prognosis1. The pathogenesis of ALS is not fully understood, 
although several mechanisms potentially involved in motor neuron degeneration have been identified, includ-
ing neuronal hyperexcitability, mitochondrial dysfunction, oxidative stress, dysregulated vesicular transport, 
impaired DNA repair, and altered protein  homeostasis2.

A role of neuroinflammation has been proposed in different neurodegenerative conditions, including ALS. 
Clinical and neuropathological  data3 proposed the activation of both the innate and the adaptive immune 
response in animal models and in patients with  ALS4,5. Notably, mutations typically associated with ALS, includ-
ing SOD1 and c9orf72, have been also associated with enhanced immune activation and cytokine  expression6.

Previous studies pointed to increased expression of inflammatory mediators in patients with  ALS7. High 
blood and CSF levels of several inflammatory cytokines and chemokines, including interleukin (IL)-1β, IL-4, 
IL-6, IL-8, IL-17, tumor necrosis factor (TNF), and granulocyte colony stimulating factor (GCSF) have been 
reported in ALS patients compared with  controls8–15. In addition, some associations have been reported between 
the CSF concentrations of specific proinflammatory molecules, such as IL-2, IL-6, and interferon (IFN)γ, and 
parameters of disease  progression12,13,16.

While recent studies suggest that indexes of systemic inflammation could be useful biomarkers related to 
disease progression in  ALS17, the role of CSF inflammatory cytokines as diagnostic and prognostic biomarkers 
in ALS is still poorly  defined7,18. Significant variability exists among studies in the cytokines analyzed, and it is 
unclear whether a specific cytokine profile could characterize ALS patients and help to predict the disease  course7.

In this study, we analyzed a large set of inflammatory CSF mediators in a group of newly diagnosed ALS 
patients and in a group of control patients without inflammatory or degenerative neurological disorders. Prin-
cipal component analysis (PCA) was used to explore with an unbiased approach the possible synergistic effects 
of different molecules and identify specific CSF cytokine profiles associated with ALS. We identified a main 
component (PC1), reflecting the combined effect of different inflammatory cytokines, particularly IL-9, IL-4, 
GCSF, IL-7, IL-17, IL-13, IL-6, IL-1β, TNF, IL-2, which is associated with ALS diagnosis. This component was 
also significantly associated with higher disease progression rate score calculated at the time of ALS diagnosis 
and positively correlated with markers of peripheral inflammation.

Methods
ALS and control patients
In this cross-sectional studies, 56 patients with definite, clinical or laboratory supported probable ALS according 
to El-Escorial  criteria19, were consecutively recruited from April 2016 to September 2020 at the Neurology Unit of 
IRCCS Neuromed hospital in Pozzilli (IS) Italy. We excluded patients with other neurological diseases, relevant 
medical conditions or inflammatory diseases. A control group of 47 patients without degenerative/inflammatory 
diseases, including vascular leukoencephalopathy (N = 19 patients), metabolic and hereditary polyneuropathies 
(N = 14), normal pressure hydrocephalus (N = 3), functional neurological disorder (N = 6), migraine (N = 1), 
spondylotic myelopathy (N = 2) and spastic paraparesis (N = 2) was also enrolled. The research was conducted 
according to the principles expressed in the Declaration of Helsinki. Written consent was obtained from each par-
ticipant. The study was approved by the Ethics Committee of IRCCS Neuromed Research Institute (cod. 10–17).

Clinical assessment
Clinical disability status was evaluated in all ALS patients at the time of diagnosis using the ALS Functional 
Rating Scale-Revised (ALSFRS-R) total score and  subscores20. As a reliable prognostic biomarker, we used the 
disease progression rate (DPR) that expresses the ALSFRS-R as a function of the disease  duration21. We calculated 
the DPR at the time of diagnosis, defined as (ALSFRS-R total score − ALSFRS-R patient’s total score at time of 
diagnosis)/patient’s disease duration from onset to diagnosis in months. ALS patients were also divided into 
different disease progression groups according to disease progression rate scores (low < 0.47, medium 0.47–1.11, 
high > 1.11) as in Labra et al.21. Patients were not treated with riluzole, edavarone or anti-inflammatory drug 
therapy.

Blood and CSF collection and analysis
Blood and CSF samples were collected at the time of diagnosis during hospitalization at the Neurology Unit of 
IRCCS Neuromed hospital in Pozzilli (IS) Italy. Blood samples were collected from all subjects by venipunc-
ture performed in the morning following overnight fasting. The Neutrophil-to-lymphocytes ratio (NLR) was 
calculated as absolute peripheral neutrophil count divided by absolute periphery lymphocyte count. CSF was 
collected by Lumbar puncture (LP), centrifuged (1300 rpm, 10 min) to remove cellular elements, and stored at 
− 80 °C until being analyzed using a Bio-Plex multiplex cytokine assay (Bio-Rad Laboratories, Hercules, CA), 
according to the manufacturer’s instructions. The CSF molecules examined included: interleukin (IL)-1β, IL- 
2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12, IL-13, IL-17, granulocyte colony stimulating factor (GCSF), 
Macrophage inflammatory protein (MIP)-1a, MIP-1b, Tumor necrosis factors (TNF), Eotaxin. Concentrations 
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were calculated according to a standard curve generated for the specific target and expressed as picograms/ml. 
All samples were analyzed in triplicate.

Statistical analysis
Kolmogorov–Smirnov test was applied to verify normality of data distribution. Data were expressed as mean 
(standard deviation, SD) or as median (25–75th percentiles) if not normally distributed.

We applied the Principal Component Analysis (PCA) to the sample of the 18 CSF cytokines to reduce the 
dimensionality of the cytokine data set and explore possible synergic effects of CSF cytokines. Logistic regressions 
were used to test the association between PCA components and group (ALS patients vs control patients) and 
disease progression rate. Non-parametric Spearman’s correlation was used to evaluate the correlation between 
CSF cytokines levels and demographic/clinical variables. Non-parametric Mann–Whitney test was applied to 
evaluate differences in CSF cytokines levels between groups. A p value < 0.05 was considered significant. The 
Benjamini–Hochberg (B–H) correction was applied when analyzing individual CSF cytokines to control the 
false discovery rate and the Type I errors (false positives). Box plots were used to depict statistically significant 
differences in cytokine levels between groups.

All analyses were performed using IBM SPSS Statistics for Windows (IBM Corp., Armonk, NY, USA). Miss-
ing data: NLR in 4 control patients (8.5%).

Results
CSF inflammatory molecules in ALS and controls
The clinical characteristics of ALS and control individuals are shown in Table 1. No significant differences were 
found in age and sex distribution between the two groups (p = 0.109, and p = 0.496, respectively). In addition, 
peripheral white blood cells and NLR did not differ between ALS and control patients (see Table 1).

PCA was performed on a set of 18 CSF cytokines from 56 ALS patients and 47 control patients. The first 6 
principal components (PCs) explained 70.67% of the variance in the whole cytokine set, suggesting a synergistic 
effect of the different cytokines. The association of individual CSF cytokines with the first 6 PCs are shown in 
Fig. 1A and Supplementary Table 1.

We used logistic regression to test the association between group (ALS patients vs controls) and the first 6 
PCs (Fig. 1B). A negative association was found between PC1 and group (ALS vs controls) (OR 0.429, 95% CI 
0.232–0.792, p = 0.007), indicating that this component is associated with ALS diagnosis.

As shown in Fig. 1A, PC1 was the main component explaining the 26.8% of variance in the cytokine set. 
The inflammatory cytokines IL-9, IL-4, GCSF, IL-7, IL-17, IL-13, IL-6, IL-1β, TNF IL-2, and IL-10 showed a 
significant positive load with this component.

The association between PC1 and group (ALS patients vs controls) was significant also considering possible 
effects of sex and age (OR 0.342, 95% CI 0.168–0.696, p = 0.003).

When comparing the CSF levels of single inflammatory molecules in the ALS and control groups, we found 
higher CSF concentrations of several cytokines associated with PC1, including IL-1β (p = 0.031), IL-2 (p = 0.007), 
IL-4 (p = 0.037), IL-6 (p = 0.01), IL-9 (p = 0.008), IL-13 (p = 0.01), IL-17 (p = 0.006), GCSF (p < 0.001) in ALS 
patients compared with control patients (Fig. 2, and Supplementary Table 2). After controlling for multiple 
comparisons, differences in CSF levels of IL-2, IL-6, IL-9, IL-13, IL-17, and GCSF were statistically significant 
(all B–H p < 0.05).

Considering that IL-7 levels were particularly low in both patients and controls (Supplementary Table 2), 
we evaluated whether this finding might have influenced the PCA analysis. The PCA analysis was performed 
excluding IL-7. The analysis confirmed 6 PCs explaining 71.1% of the variability, showing an association with 
individual cytokines comparable to the previous analysis. The significant association between PC1 and group 
(ALS vs controls) was confirmed (OR 0.399, 95% CI 0.213–0.749, p = 0.004).

CSF inflammatory molecules and clinical characteristics
In ALS patients and controls, we analyzed possible associations between CSF cytokines and demographic char-
acteristics at diagnosis, including peripheral inflammatory markers.

Table 1.  Clinical characteristics of ALS and control patients. *Pearson’s Chi-square p; §Mann–Whitney p. 
ALSFRS-R ALS Functional Rating Scale-Revised, LP Lumbar puncture, NLR neutrophil-to-lymphocyte ratio.

ALS patients (N = 56) Control patients (N = 47)

Sex, F N (%) 19/56 (33.9) 19/47 (40.4) 0.496*

Age at LP Median (IQR) 62.7 (55.6–72.1) 59.1 (51.9 – 65.5) 0.109§

Disease duration, months Median (IQR) 8.5 (6–12) – –

ALSFRS-R total score Median (IQR) 44 (42–45) – –

ALSFRS-R bulbar subscore Median (IQR) 12 (11–12) – –

White blood cells total count Median (IQR) 6.7 (5.7–8) 7.34 (5.6–8.42) 0.353§

Neutrophils Median (IQR) 4.15 (3.4–5) 4.5 (3.3–5.6) 0.507§

Lymphocytes Median (IQR) 1.79 (1.47–2.2) 1.9 (1.6–2.3) 0.333§

NLR Median (IQR) 2.4 (1.76–3.07) 2.29 (1.82–2.9) 0.808§
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In the control group, no significant associations were found between PCA components and either demo-
graphic characteristics (sex and age at LP) or peripheral inflammatory indexes (NLR) (all p > 0.05).

No significant associations were found between PCA components and demographic parameters (sex and 
age at LP) in ALS patients (all p > 0.05), except a positive correlation between age at LP and PC3 (Spearman’s 
Rho = 291, p = 0.03, N = 56). This PC, explaining the 9.8% of the variability in the cytokine set, was positively 
associated with IL-5, IL-8, IFNγ and MIP-1a. A negative correlation was found between PC1 and disease duration 
(Spearman’s Rho = − 0.279, p = 0.037, n = 56). In addition, a positive correlation was observed between disease 
duration and PC5 (Spearman’s Rho = 0.426, p = 0.001, n = 56). PC5 was a minor component of the PCA, explain-
ing only the 7.6% of variance. The CSF levels of Eotaxin and IFNγ showed a significant positive load with this 

Figure 1.  Association of individual CSF cytokines with the first 6 PCs. (A) Principal component analysis 
(PCA) results: load of individual cytokines with the first 6 PCs, significant associations (cut-off = 0.4) are shown 
(red = positive; blue = negative). (B) Logistic regression: associations between diagnosis group (ALS vs controls) 
and the first 6 PCs, OR and 95% CI are shown, *p < 0.05. ALS amyotrophic lateral sclerosis, CI confidence 
interval, CSF cerebrospinal fluid, GCSF granulocyte colony-stimulating factor, IFN interferon, IL interleukin, 
MIP macrophage inflammatory protein, OR odds ratio, PC principal component, TNF tumor necrosis factor.

Figure 2.  CSF cytokines in ALS and control patients. Boxplot showing the CSF levels of inflammatory 
cytokines in ALS and controls. The circles represent outlier patients. The star marks the extreme values. Mann–
Whitney p and B–H corrected p are shown. ALS amyotrophic lateral sclerosis, B–H Benjamini–Hockberg, CSF 
cerebrospinal fluid, GCSF granulocyte colony-stimulating factor, IL interleukin.
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component (see Fig. 1). Conversely, no significant correlations were found between PCs and disease severity 
evaluated using the ALSFR total score and bulbar subscale (all p > 0.05). Finally, in the ALS group, a significant 
positive correlation was found between PC1 and NLR (Spearman’s Rho = 0.309, p = 0.021). No significant cor-
relations were found between NLR and other PCs.

When analyzing individual CSF cytokines, negative correlations were found between disease duration and 
IL-8 (Spearman’s Rho = − 0.288, p = 0.031, n = 56), MIP-1b (Spearman’s Rho = − 0.477, p < 0.001, n = 56), TNF 
(Spearman’s Rho = − 0.350, p = 0.008, n = 56), and MIP-1a (Spearman’s Rho = − 0.267, p = 0.047, n = 56) (Supple-
mentary Table 3). However, after controlling for multiple comparisons, only the negative correlation between 
disease duration and MIP-1b was statistically significant (B–H p = 0.004). In addition, some correlations were also 
observed between specific cytokines and ALSFRS-R total and bulbar scores (Fig. 3 and Supplementary Table 3). In 
particular, negative correlations were found between ALSFRS-R total score and IL-4 (Spearman’s Rho = − 0.291, 
p = 0.030), GCSF (Spearman’s Rho = − 0.322, p = 0.015), and between ALSFRS-R bulbar score and IL-2 (Spear-
man’s Rho = − 0.281, p = 0.036), IL-4 (Spearman’s Rho = − 0.398, p = 0.002), IL-8 (Spearman’s Rho = − 0.392, 
p = 0.003), GCSF (Spearman’s Rho = 0.337, p = 0.011), and MIP-1a (Spearman’s Rho = − 0.303, p = 0.023). However, 
after controlling for multiple comparisons, only the negative correlations between ALSFRS-R bulbar subscale 
and both IL-4 (B–H p = 0.027), and IL-8 (B–H p = 0.027) were statistically significant. Positive correlations were 
observed also between NLR and CSF cytokines including IL-6 (Spearman’s Rho = 0.283, p = 0.034), G-CSF (Spear-
man’s Rho = 0.291, p = 0.029), MIP-1a (Spearman’s Rho = 0.268, p = 0.046), and MIP-1b (Spearman’s Rho = 0.311, 
p = 0.020), although not significant after controlling for multiple comparisons (all B–H p > 0.05).

CSF inflammatory molecules and disease progression rate
We explored in ALS patients the association between CSF inflammatory molecules and disease progres-
sion rate. A significant positive correlation was found between disease progression rate at diagnosis and PC1 

Figure 3.  Correlations between CSF cytokines and ALSFRS-R total and bulbar scores. Cytokine concentrations 
are expressed in pg/ml. Spearman’s Rho, p, and B-H corrected p are shown. ALSFRS-R ALS Functional Rating 
Scale-Revised, CSF cerebrospinal fluid, B–H Benjamini–Hockberg, CSF cerebrospinal fluid, GCSF granulocyte 
colony-stimulating factor, IFN interferon, IL interleukin, MIP macrophage inflammatory protein, TNF tumor 
necrosis factor.
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and (Spearman’s Rho = 0.332, p = 0.012, n = 56), and a negative correlation was found with PC5 (Spearman’s 
Rho = − 0.425, p = 0.002, n = 56). No significant correlations were found with other PCs (all p > 0.1).

To better explore the association between CSF inflammation and disease progression rate, patients were 
divided into three groups according to disease progression rate score at diagnosis (see methods). 29 ALS patients 
showed low disease progression rate (< 0.47), 19 patients medium progression rate (0.47–1.11), and 8 patients 
high progression rate (> 1.11).

Multiple logistic regression evidenced a positive association between disease progression group (low vs 
medium) and PC1 (OR 3.226, 95% CI 1.412–7.374, p = 0.005) and a negative association with PC5 (OR 0.211, 
95% CI 0.072–0.614, p = 0.004). A significant negative association was also found between disease progression 
group (low vs high) and PC5 (OR 0.159, 95% CI 0.044–0.581, p = 0.005), conversely the association with PC1 
was not significant (OR 2.796, 95% CI 0.998–7.834, p = 0.051).

Considering the low number of patients in the high disease progression rate group (n = 8), we merged the 
medium and high groups for further analyses. The clinical characteristic of ALS patients in the two disease pro-
gression groups (low and medium/high) are shown in Table 2. Significant differences were found between the 
two groups in age at LP (p = 0.008), and as expected in both disease duration and clinical severity (see Table 2). 
In addition, the NLR was significantly different in the two groups, being higher in patients with medium/high 
disease progression rate scores.

Multiple logistic regression confirmed a positive association between disease progression group (low vs 
medium/high) and PC1 (OR 3.126, 95% CI 1.406–6.950, p = 0.005), and a negative association with PC5 (OR 
0.195, 95% CI 0.070–0.541, p = 0.002) (Fig. 4). These associations were significant also considering the effect of 
sex and age at LP (PC1: OR 3.725, 95% CI 1.426–9.726, p = 0.007; PC5: OR 0.086, 95% CI 0.018–0.403, p = 0.002). 
No significant associations were found with other PCs.

Finally, comparing single CSF cytokines in the two disease progression groups (Fig. 5 and Supplementary 
Table 4), higher levels of IL-2 (p = 0.037), IL-5 (p = 0.031), IL-6 (p = 0.016), IL-8 (p = 0.045), GCSF (p = 0.001), 
MIP-1a (p = 0.025), and lower levels of Eotaxin (p = 0.011) emerged in ALS patients with medium/high progres-
sion rate. After controlling for multiple comparisons, the association with GCSF was statistically significant 
(B–H p = 0.002).

Discussion
In recent years, experimental and clinical studies suggested that neuroinflammation may play an important role 
in the pathogenesis of  ALS3. Although increased expression of various CSF inflammatory mediators was previ-
ously reported in patients with  ALS7, it is unclear whether a specific cytokine profile could characterize ALS 
patients at diagnosis and help to predict the disease course.

To compare the profile of CSF molecules between ALS patients and controls, and to explore possible associa-
tions with clinical characteristics, PCA was applied to identify specific components that reflect the synergistic 
effect of different molecules. A significant association was found between ALS diagnosis and the first PC (PC1), 
which is the largest source of variability in our cytokine set, representing the combined effect of multiple inflam-
matory molecules, specifically IL-9, IL-4, GCSF, IL-7, IL-17, IL-13, IL-6, IL-1β, TNF, and IL-2. These findings 
suggest that a specific group of CSF inflammatory cytokines could be differently expressed in newly diagnosed 
ALS patients.

Previous studies explored CSF levels of inflammatory cytokines in ALS patients and  controls8,10,13,15,22. Despite 
considerable variability between studies, some inflammatory cytokines, such as IL-4, IL-7, IL-17, and GCSF, were 
more consistently elevated in ALS  patients8,13,22, while other molecules, including IFNγ and TNF, yielded more 
inconsistent  results7. Interestingly, a meta-analysis of CSF cytokine data in patients with different neurodegen-
erative conditions, such as Parkinson’s disease (PD), Alzheimer’s disease (AD) and ALS, evidenced that some 
cytokines, including GCSF, IL-2, IL-15, IL-17, MCP-1, MIP-1a, TNF and VEGF, may be specifically associated 
with  ALS15. Our results could therefore provide further evidence in favor of the existence of a specific CSF 
cytokine profile associated with ALS. In fact, the set of CSF inflammatory cytokines identified in our study by 

Table 2.  Clinical characteristics of ALS patients at diagnosis according to disease progression rate group. 
Significant values are in bold. *Pearson’s Chi-square p; §Mann–Whitney p. ALSFRS-R ALS Functional Rating 
Scale-Revised, LP Lumbar puncture, NLR neutrophil-to-lymphocyte ratio.

Low disease progression rate Medium/high disease progression rate

ALS patients N 29 27

Sex, F N (%) 8/29 (27.6) 11/27 (40.7 0.299*

Age at LP Median (IQR) 58.6 (50.8–68.8) 65.9 (60.03–75.22) 0.008§

Disease duration, months Median (IQR) 12 (11–16) 6 (5–7)  < 0.001§

ALSFRS-R total score Median (IQR) 45 (44–45) 42 (41–44)  < 0.001§

ALSFRS-R bulbar subscore Median (IQR) 12 (12–12) 12 (9–12) 0.014§

White blood cells total count Median (IQR) 6.86 (5.8–7.68) 6.57 (5.53–8.78) 0.928§

Neutrophils Median (IQR) 4.1 (3.35–4.9) 4.3 (3.4–5.6) 0.384§

Lymphocytes Median (IQR) 2.06 (1.64–2.45) 1.6 (1.3–1.9) 0.007§

NLR Median (IQR) 1.92 (1.63–2.51) 2.81 (1.06–3.45) 0.003§
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Figure 4.  PCA components and Disease progression rate. Logistic regression: associations between ALS disease 
progression rate group (low vs medium/high) and the first 6 PCs, OR and 95%CI are shown, **p < 0.05. ALS 
amyotrophic lateral sclerosis, CI confidence interval, GCSF granulocyte colony-stimulating factor, OR Odds 
ratio, PC principal component.

Figure 5.  CSF cytokines and disease progression rate. Boxplot showing the CSF levels of inflammatory 
cytokines in ALS and controls. The circles represent outlier patients. The star marks the extreme values. Mann–
Whitney p and B–H corrected p are shown. ALS amyotrophic lateral sclerosis, B–H Benjamini–Hockberg, CSF 
cerebrospinal fluid, GCSF granulocyte colony-stimulating factor, IL interleukin, MIP macrophage inflammatory 
protein.
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an unsupervised method (PCA) showed high concordance with previous studies, suggesting that this approach 
may be useful to reduce the variability of results.

Experimental studies in different neurodegenerative disorders have demonstrated that neuroinflammation 
may be directly involved in neuronal damage and disease  progression23. In animal models of ALS, microglial 
activation and increased expression of proinflammatory mediators and have been associated with neuronal 
 damage24. Inflammation may critically interact with different pathogenetic mechanisms involved in ALS pro-
gression, exacerbating oxidative damage and promoting protein  misfolding23,25. In addition, neurophysiological 
studies have demonstrated that inflammatory molecules, may directly exacerbate excitotoxic damage altering 
the activity of glutamatergic and GABAergic  synapses26,27.

An association between CSF inflammatory biomarkers at diagnosis and parameters of clinical progression 
has been reported in other neurodegenerative disorders, such as multiple sclerosis and  AD28,29. Previous studies 
explored in ALS patients the association between CSF inflammatory molecules and clinical  parameters7, reporting 
correlations between specific CSF cytokines, such as IL-8, MCP-1, MIP-1a, IFNγ and disease  severity8–10,12,13,16,30.

When evaluating possible associations between CSF molecules and clinical characteristics of ALS patients, 
a significant positive association was found between PC1 and disease progression rate. In addition, a negative 
association was observed between disease progression rate and PC5. This component showed positive associa-
tions only with Eotaxin and IFNγ.

The analysis of individual cytokines yielded more variable results. Although several CSF cytokines associated 
with PC1, including IL-2, IL-6, and GCSF, were higher in ALS patients with medium/high progression rate, after 
controlling for multiple comparisons only GCSF remained significant. In addition, some of these molecules, 
particularly IL-2, IL4, IL-8, GCSF, MIP1a showed also negative correlations with ALSFRS-R total and bulbar 
subscales, although only IL-4 and IL-8 CSF levels resulted significantly associated after controlling for multiple 
comparisons.

Cytokines related with PC1 include a heterogeneous group of pro- and anti-inflammatory molecules. IL-1β, 
IL-2, IL-6, TNF, and IL-17 have been implicated in the pathogenesis of various neurological disorders and rep-
resent important pro-inflammatory cytokines involved in the chemotaxis and activation of immune  cells31. CSF 
levels of these molecules were previously associated with a more severe course in patients with neurodegenerative 
and neuroinflammatory  diseases32–35. Conversely, IL-4, IL-5 and IL-13 have been associated with T helper type 2 
responses and with the activation of anti-inflammatory processes and the resolution of  inflammation36. Also IL-9 
has been associated with anti-inflammatory activities modulating the expression of regulatory T  cells37. Finally, 
GCSF is a growth factor released by various immune cells, which stimulates the production of granulocytes and 
 monocytes38. GCSF receptors are expressed by peripheral immune cells, microglial cells and  neurons39. Protective 
effects of this molecule have been reported in animal models of stroke and neurodegenerative  disorders39,40, and 
GCSF has thus been proposed as a therapeutic intervention in patients with  ALS41–45.

Taken together, these results suggest a heterogeneous activation of the immune response in newly diag-
nosed ALS patients, with concurrent elevation of both pro- and anti-inflammatory cytokines. Although our 
results, together with previous data, support the existence of a CSF inflammatory activation in ALS, it is unclear 
whether this inflammatory process represents an unspecific response to brain damage or is directly involved in 
neurodegeneration. While CSF correlation studies are inconclusive in this regard, several lines of evidence from 
genetic studies and animal models suggest a direct role for inflammation in the pathogenesis and progression of 
ALS. Indeed, while genes classically associated with ALS (e.g., SOD1, C9Orf72) have been shown to influence 
inflammatory  responses6, it has been also demonstrated that polymorphisms in cytokine genes can influence 
the course of  ALS46–48.

An important aspect limiting the clinical utility of CSF markers is the invasive collection procedure. For 
prognostic purposes, indices of peripheral inflammation appear more suitable and have been evaluated in sev-
eral diseases in recent years. NLR is a recognized marker of systemic inflammation and correlates with worse 
prognosis in different clinical conditions, including neurodegenerative disorders as PD and  AD49,50. Studies in 
ALS evidenced that increased NLR was associated with fast progression and shorter  survival17. In our study, 
NLR was significantly higher in ALS patients with medium/high disease progression rate scores and was also 
positively associated with PC1, suggesting a link between peripheral and central inflammatory markers in ALS.

Limitations of the present study include the lack of follow up clinical evaluations and the enrollment of a 
control group composed of patients with neurological non-inflammatory/non-degenerative disorders. We used 
disease progression rate which is a reliable measure of progression risk in ALS patients at diagnosis, however, 
further studies with prospective data are needed to confirm our findings. Indeed, variability and inconsistency in 
previous findings could be due to different reasons, including difference in the cytokines analyzed, in the demo-
graphic and clinical characteristics of the ALS and control patients. In our study we included newly diagnosed 
and untreated ALS patients with early stage of disease and relatively short disease duration.

Overall, our findings are in line with a role of neuroinflammation in ALS pathogenesis and progression. The 
unsupervised approach employed in our study suggests possible synergistic effects of different inflammatory CSF 
cytokines particularly IL-9, IL-4, GCSF, IL-7, IL-17, IL-13, IL-6, IL-1β, TNF, IL-2, Eotaxin, and IFNγ. However 
further studies are needed to clarify whether this CSF inflammatory profile is specifically associated with ALS, 
and to define the specific contribution of different molecules.

Data availability
The data that support the findings of this study are available from the corresponding author, upon reasonable 
request.
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