
Chapter 33 
Fractal Neurodynamics 

Karolina Armonaite, Livio Conti, and Franca Tecchio 

Abstract The neuronal ongoing electrical activity in the brain network, the neuro-
dynamics, reflects the structure and functionality of generating neuronal pools. The 
activity of neurons due to their excitatory and inhibitory projections is associated 
with specific brain functions. Here, the purpose was to investigate if the local 
ongoing electrical activity exhibits its characteristic spectral and fractal features in 
wakefulness and sleep across and within subjects. Moreover, we aimed to show 
that measures typical of complex systems catch physiological features missed by 
linear spectral analyses. For this study, we concentrated on the evaluation of the 
power spectral density (PSD) and Higuchi fractal dimension (HFD) measures. 
Relevant clinical impact of the specific features of neurodynamics identification 
stands primarily in the potential of classifying cortical parcels according to their 
neurodynamics as well as enhancing the effectiveness of neuromodulation interven-
tions to cure symptoms secondary to neuronal activity unbalances. 

Keywords Neurodynamics · Power spectral density · Power law · Higuchi 
fractal dimension · Local signature 

33.1 EEG-Derived Neurodynamics Assessment in the 
Human Brain 

The statistical properties of electrical signals produced in the brain are of great 
interest as they contain a harvest of information that is not yet fully understood, 
show specificity of different source areas and exhibit unpredictability due to their 
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irregular behaviours and non-stationarity of the underlying generating mechanisms. 
These processes characterize the complex internal brain activities when neuronal 
assemblies are synchronously coupled and switch between the states during brain 
functioning instead of external stimuli [14]. Other researchers prefer to regard the 
brain as a dynamical system, since majority of neuronal assemblies are excitable 
non-linear sub-systems possessing self-organization and power-law scaling proper-
ties [4, 10, 31, 35]. 

There are several claims that the brain’s electrical ongoing activity is deemed to 
be scale-free if its power spectrum follows power law distribution P(f) ~ 1/fβ [19, 
31, 58], which is also a prerequisite for fractality [28]. If the brain oscillations have 
been well studied up to date, the non-oscillatory components are still a topic for 
discussion, and the methods for interpretation as well as the robust estimation of the 
scale-free neurodynamics are still being studied [20]. 

Nevertheless, evidence suggests that fractal properties of neurodynamics are 
handy to evaluate the complexity of implied processes and can have a direct 
application in clinics. More precisely, the fractal measures have been useful to 
distinguish consciousness from unconscious states, e.g. sleep stages and depth of 
anaesthesia [6, 18, 23, 49], fractal signatures can be also used as a biomarker 
in detecting senile dementia [5, 51] and are claimed to be a better predictor of 
schizophrenia than neural spectral oscillations [45]. In addition, fractal properties 
of EEG on the scalp and in intracranial recordings have been investigated to seek a 
signature of different cortical areas [7, 8, 17]. 

In this chapter, we will attempt to describe the local cortical neurodynamics 
via spectral and fractal analyses of electrophysiological time series and discuss 
their limits. The aim is to highlight the existence of typical features in distinct 
cortical parcels and that these properties are maintained even during sleep/wake 
stages. Moreover, cited studies confirmed the hypothesis that the measures of system 
complexity can better detect the specificities of the ongoing electrical activity than 
the linear ones such as the spectral analysis. 

33.2 Neurodynamics as Local Cortical Signature: A Spectral 
Estimate 

The first classification of the brain started with Korbinian Brodmann, who suggested 
the anatomical parcelling of the cortex based on the cytology of the constituent 
neurons [9]. The proof of different brain structural properties raised the notion to 
study their function separately and the functional connectivity between them [54]. 

While great interest has been given to studying the task-related behaviours, up 
to date, the possible brain parcellation based on intrinsic characteristics of the 
neuroelectric activity during resting states was barely investigated. The attempt 
to find a ‘fingerprint’ of distinct brain areas in EEG recordings was suggested by 
clustering them on the basis of distinct spectral profiles of their electrical activity.
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Keitel and Gross [36] demonstrated that each brain area engages in different spectral 
behaviour that is characteristic of individual areas. 

Cottone et al. [17] deployed the power spectrum measure to identify the local 
neurodynamics of the primary motor cortex (M1) and primary somatosensory cortex 
(S1) from EEG recordings on the scalp of 20 subjects, in both hemispheres, during 
resting wakefulness with eyes open and eyes closed, sensory stimulation and per-
forming simple motor functions. The authors have shown that the neurodynamics’ 
spectral indices displayed a clear and different pattern for S1 and M1 areas. They 
did not notice a distinction between the left and right side; however, all subjects 
were showing clear alpha (8–12 Hz) frequency band activity in S1 and high beta 
(26–33 Hz) and gamma (33–80 Hz) activity in M1. 

More recently, the investigation of spectral properties of different brain regions 
was published by Montreal Neurological Institute (MNI) using stereotactic EEG 
recordings [25] demonstrating that different brain areas in resting wakefulness 
possess a characteristic activity. The authors have shown that alpha rhythm is found 
in the occipital lobe, the parietal lobe and temporal lobes. Beta rhythm is frequently 
found in the anterior head regions. In particular, well-sustained beta frequencies are 
described in the precentral and postcentral gyri with peaks at lower frequencies 
present in the postcentral regions. The precentral gyrus also expresses gamma 
activity. Moreover, beta peaks are found in the middle cingulate gyrus and anterior 
insula [25]. 

Following Cottone et al. [17] and Frauscher et al. [25] results, another attempt to 
analyse the typical spectral features was made by Armonaite et al. [7]. The authors 
studied three primary cortices: auditory (A1), somatosensory (S1) and motor (M1) 
from MNI intracranial stereotactic EEG recordings (sEEG). The distribution of the 
electrode contacts across three brain parcels of interest is shown in Fig. 33.1 where 
a single channel per subject per area has been selected (representative channel). The 
authors analysed the local neurodynamics characteristic spectral features, initially, 
within a subject and later across the population. 

33.2.1 Spectral Features in Resting Wakefulness 

The purpose of the Armonaite et al. [7] study was to deepen knowledge of the brain 
neurodynamics as cortical area signature. For extracting the spectral properties of 
the signals, authors calculated the power spectral density (PSD) of each channel in 
the three investigated regions during resting wakefulness (Fig. 33.2). The spectrum 
was categorized into 7 frequency bands: delta (≤4 Hz), theta (4–8 Hz), alpha (8– 
12 Hz), low beta (12–26 Hz), high beta (26–33 Hz), low gamma (33–49 Hz) and 
high gamma (49-80 Hz). 

Initially, the authors compared the PSD in the three regions of interest within 
a subject and then averaged across the population. In Fig. 33.3, the scatterplots 
of the PSD evaluated in each frequency band, for each cortical region separately 
in each subject, are compared between a couple of areas (M1 vs S1, M1 vs A1
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Fig. 33.1 The distribution of representative channels in A1, S1 and M1. After Armonaite et al. [7]. 
After a representative channel selection for each subject, the number of subjects that followed the 
constrain of the Armonaite et al. [7] study was reduced to 10 subjects in A1 (green), in S1 (blue) 
to 17 subjects and in M1 (red) to 20 subjects. The location of the selected representative channel 
for each subject in each area is shown on the cortex image in three projections 

Fig. 33.2 The PSD for each channel in A1, S1 and M1. After Armonaite et al. [7]. The normalized 
PSD was evaluated for each channel in each region. To spot the trend at lower frequencies, the x-
axis is represented on the logarithmic scale. From the left: A1, (10 channels) PSD expresses the 
highest power in the delta band; S1, (17 channels) PSD exhibited higher power in theta and alpha; 
M1, (20 channels) PSD expressed high power in theta, alpha, beta and gamma frequency bands 

and S1 vs A1) in the wake. Only scatterplots for the frequency bands where the 
two sources statistically differ are presented. The bisector of the rectangular plot 
areas, divides the upper and lower regions where the PSD of the compared cortical 
parcels dominates. It is evident that the local neurodynamics evaluated in each 
subject appeared specific for the cortical district in terms of PSD band values. S1 
consistently shows greater power than M1, evaluated with Wilcoxon nonparametric 
test (Wtest), in alpha band [Wtest = 26, p= 0.03] and smaller in high beta [Wtest = 25, 
p = 0.03], low gamma [Wtest = 15, p = 0.01] and high gamma [Wtest = 28, 
p = 0.04]. A1 has power in delta frequency band greater than M1 (9 out of 9 
subjects) while smaller in low beta (7/9), high beta (7/9) and low gamma (7/9) 
bands. A1 steadily shows greater power than S1 in delta band (6/6) and smaller 
in low (5/6) and high beta (4/6) bands.
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Fig. 33.3 Local neurodynamics comparisons in frequency bands. After Armonaite et al. [7]. 
Comparing the neurodynamics between couples of the studied brain areas, the scatterplots of the 
normalized PSD for each subject are shown for the frequency bands where the PSD of two sources 
statistically differ. Top panel: M1 versus S1 [16 subjects] in 4 bands. Middle panel: M1 versus 
A1 [9 subjects] in 4 bands. Bottom panel: S1 versus A1 [6 subjects] in 3 bands. In each plot, a 
point above (below) the diagonal has a PSD of the source represented on x-axis lower (higher) than 
that of the source shown on y-axis. The Greek letter stands for the frequency bands, where the l/h 
prefix indicates low/high range, respectively 

Further, the PSD – averaged across all channels – shows specific features between 
cortical areas also at the population level. The PSD in delta band is prevalent for A1, 
in alpha for S1 and in high beta and gamma for M1 (Fig. 33.4). 

33.2.2 Spectral Features During Sleep 

There is a large amount of literature suggesting that the statistical features of 
the brain activity measured via electrophysiological tools can vary across sleep
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Fig. 33.4 PSD across population. Modified from Armonaite et al. [7]. In the left panel, the 
normalized PSD averaged across representative channels of each subject is given for A1 (green), 
S1 (blue) and M1 (red). In the right panel, the bars indicate PSD mean on each frequency band, 
always averaged over representative channels, where the error bar is the standard deviation of the 
frequency band for all 7 frequency bands. The stars indicate those bands where the highest PSD 
has been found across regions, i.e. δ prevailing in A1; α in S1 and from hβ in M1. To enhance the 
higher frequencies, we show y-axis on logarithmic scale 

stages [11, 15, 18, 44]; however, there is a lack of evidence that the differences 
of neurodynamics of separate brain areas can maintain between in the diverse sleep 
stages. 

The variations of oscillatory frequency components were well described by Von 
Ellenrieder et al. [52] across regions during sleep from sEEG data. They found 
less heterogeneity of different regions in N2 and N3 sleep stages with respect 
to the variability of frequency components across different brain regions during 
wakefulness and rapid eye movement (REM) sleep stage. They also observed that, 
across different sleep stages, the clear peaks were prevalent more in the limbic 
system and in mesial visual and motor cortices, whereas more homogeneity was 
found in the rest of the investigated regions. 

Armonaite et al. [8] further studied the neurodynamics in three sleep stages 
(N2, N3 and REM) of primary motor, somatosensory and auditory cortices, by 
measuring their properties via power spectral densities, in order to assess if the local 
neurodynamics of investigated cortical regions maintains its’ spectral features and 
differentiation not only in wake, but also across different sleep stages both within a 
subject and across population. 

It was observed that within a subject in REM sleep M1 had greater power than 
S1 in low beta, high beta and low gamma bands [Wtest = 11, p = 0.05, Wtest = 4, 
p = 0.01, Wtest = 5, p = 0.01], respectively. It was also found that M1 had greater 
PSD than S1 in alpha band [Wtest = 24, p = 0.07] in N2 sleep stage. Likewise, also 
in N3 stage alpha waves were prevailing more in M1 than in S1 with [Wtest = 18, 
p = 0.03] [8]. However, across population, systematic cortical area differences were 
not observed unlike in wakefulness (Fig. 33.5).
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Fig. 33.5 PSD averaged across population in three regions of interest, in four sleep stages. After 
Armonaite et al. [8]. The mean and standard deviation of normalized PSD as a function of 
frequency calculated across all subjects, separately for M1, S1 and A1 areas, are presented. PSD 
values are normalized so that the area under each curve is equal to 1 

33.3 Fractal Neurodynamics: Properties and Estimate 
Methods 

As the large literature on the subject demonstrates, the brain’s electromagnetic 
signals show complex properties and are still a topic for intense discussion, as they 
exhibit irregular behaviours that the spectral analysis might not be effective to catch. 
In fact, the electrophysiological signals contain not only harmonic oscillations but 
also noisy fluctuations that might be as informative [60]. These components are 
being suggested to be approached as scale-free and even fractal properties [28]. 

Some authors are quite sceptical about the scale-free, self-organized and fractal 
nature of brain neurodynamics, claiming that these noisy fluctuations occur merely 
due to the simple superposition of random components acting on multiple time 
scales [30]. Other researchers support also the idea that the observed power law 
of the power spectrum, so-called 1/fβ noise, would be an artefact due to many 
averaged narrow-band periodic oscillations of different amplitudes and frequencies 
[13], or could be due to the rapid exponential rise and slow exponential decay of 
dendritic response to an impulse input, possibly convolved with Poisson process 
pulses [26]. Moreover, Evertz et al., in a recent paper suggested a model according 
to the 1/fβ property would be the result of several independent perturbed damped 
alpha oscillations [22]. It was demonstrated that oscillatory alpha power correlates 
with the value of the β power law exponent of PSD at high frequencies, therefore, 
subjects with higher rhythmical alpha power would express higher β exponent for 
high frequencies [42] We show an example of the power spectrum of a damped 
harmonic oscillation and its’ behaviour on log–log scale in Fig. 33.6. This is a naïve, 
but necessary demonstration that the harmonic oscillations in the signal should be 
taken into consideration in order to avoid the meaningless surge of the slope while 
looking for the power-law trend. 

On the other side, He [31] argues that rhythmic, recurring patterns of brain 
activity in a certain range of frequencies and arrhythmic activity with no prevailing 
frequency are distinct and the latter would indicate scale-free dynamics. Despite
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Fig. 33.6 Damped oscillator and artificial surge of a slope that can mimic a power law behaviour. 
In the top panel, we show the time series (top-right) and the spectrum (top-left) of a simulated 
periodic damped signal y(t) = sin(ωt) e−γ t , with ω = 5 Hz for three values (arbitrarily selected) 
of the damping parameter γ = −2, −5 and − 10 Hz. In the right panel, the PSD of the signals are 
given in a log–log scale. The three black straight lines here indicate the best linear fit (evaluated 
with the least square method) of the higher frequency spectrum portion 

that, the author is in line with the idea that periodic oscillations, like those prevailing 
in the 8–12 Hz frequencies in resting state, generate a trend in the power spectrum 
that can affect the estimation of the slope β of power law exponent. Therefore, 
before seeking the fractal nature of an EEG signal, it is necessary to incorporate 
an approach to identify its class and capture periodic oscillations from those that 
are irregular and non-periodic. Without this step, the methods deployed to estimate 
fractal dimension can lead to worthless estimates [21]. 

33.3.1 Evidence of Existing Scale-Free, Fractal Properties 
within EEG Signals 

Nearly all complex systems express scale-free activity [12, 16, 58]. Despite 
the claims that 1/fβ can be accounted as a sum of damped harmonic narrow 
band oscillations [22], the precise patterns in their structure would require the
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presence of different underlying mechanisms that generates this specific time-
independent activity [32]. Yamamoto and Hughson [56, 57] suggested a method, 
called coarse-graining spectral analysis (CGSA), to separate physiological signals 
harmonic oscillations from arrhythmic activity and possibly fractal. Other authors 
[20] suggested similar techniques for parametrizing periodic and non-periodic 
oscillatory activity. Alternatively to identify fluctuations in certain time scales one 
can apply high/low-pass filters [48]. Independently from the method of detrending 
the harmonic oscillations from time series, the main goal is to obtain the underlying 
scale-free activity. 

Therefore, 1/fβ property rather suggests a scale-free, fractal pattern within the 
brain. [32] have shown that after removing oscillation from the power spectrum, the 
power-law exponent β is different in cortical areas to another and changes during 
different task performances [32]. Furthermore, the authors have proved that 1/f 
scaling is not an artefact due to the instrumental noise [2], by recording an ECoG in 
a room without a patient. The results did not demonstrate the power-law distribution 
of these dummy records. 

Interestingly, in the work of He et al. [32] the trend of PSD on a log-log scale 
was not completely linear, but instead expressed a couple of ‘shoulders’. According 
to their claim, this could occur due to the incomplete elimination of oscillatory 
components. However, we believe this could be an effect of existing different fractal 
regimes in the series that yield multifractality. This idea needs further investigation. 

Some observations have also suggested that shared noise between two chaotic 
oscillators can actually induce, rather than inhibit, synchronization [59]. In addition, 
it was also demonstrated that uncorrelated noise can enhance coherent dynamic 
activity [43]. The understanding behind this phenomenon can be helpful in looking 
for the signature of local neurodynamics and synchronization between different 
cortical parcels. However, since the study of EEG recordings in the frequency 
domain has its own limits, one might be tempted to look if other estimation methods 
exist that can catch the non-linearities and fractal nature of the signals. 

33.3.2 Fractal Dimension Estimation Methods 

The PSD of a gaussian white signal will show a flat behaviour as represented in 
Fig. 33.7a; on the other hand, the PSD of a fractal signal at each time scale will 
follow a power law distribution, with a constant slope on a log–log scale, across 
all frequency ranges, as shown in Fig. 33.7b where the PSD of a Brownian noise 
signal is represented. However, the electrophysiological time series are the overlap 
of several signals with different features at different frequency ranges. Moreover, 
due to the characteristic frequencies in time domain, it becomes more complicated 
to point out power law properties as the PSD function on log–log scale expresses 
several peaks and humps as can be seen in Fig. 33.7c. For this reason, it is necessary 
to find a stable method to investigate the characteristic patterns in temporal scale 
beyond the frequency domain representation.
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Fig. 33.7 Examples of PSD of white noise, Brownian noise and a sEEG signal. After Armonaite 
PhD thesis (2022) (a) PSD of an example of a typical stationary white noise is given in a double-
(semi-) logarithmic scale for the main (inset) figure. The dashed yellow line indicates the best linear 
fit evaluated with the least square method. (b) We show the PSD of a fractal, Brownian noise, that 
follows power law distribution over all frequency ranges. (c) In the inset figure, the PSD of a sEEG 
signal from primary motor cortex (M1) with clear theta, beta and low gamma peaks is given. In 
the main figure, the same signal PSD on a log–log scale is plotted with a linear fit over the highest 
frequency range (33–80 Hz), where the power law behaviour is observed 

There are plenty of methods that were used to examine the neurodynamics in 
healthy and with brain neural activity alterations illnesses subjects. Such as the 
predictability of ongoing neural activity during cognitive tasks using the Hurst 
exponent [33], Katz algorithm, correlation dimension and Liapunov exponent for 
differentiating sleep stages [1, 39], Lempel Ziv and Shannon entropy algorithm for 
depth of anaesthesia measure [23, 50] and Higuchi fractal dimension as a biomarker 
of Alzheimer’s disease [5, 51]. An attempt to classify cortical areas via the Higuchi 
fractal dimension is given by [7, 17]. 

33.3.2.1 Higuchi Fractal Dimension (HFD) 

Higuchi fractal dimension (HFD) is considered to be a highly sensitive measure in 
the detection of information contained in physiological time series [38, 46]. Several 
authors also claimed that this method has a superiority over other fractal dimension 
estimation methods [3, 37, 47]. 

It has been shown that HFD is well assessed in diverse research areas such as 
analyzing heart rate variability [29], characterizing primary waves in seismograms 
[27], studying magnetic energy dissipation [55], volcanoes magnetic field [24], 
geomagnetic field [40] and other electromagnetic physical systems [41]. 

The reason why HFD would be superior to other fractal dimension estimates is 
because it is calculated directly in time domain, it can catch signal specificities in 
short time windows [34] and would be less sensitive to the signals that are not well 
pre-processed [38]. 

The method to calculate HFD is as follows. 
Consider given N-length time series {X(1), X(2), X(3), . . . , X(N)}. For a time 

interval, we skip a number of samples equal to k. We obtain m number of sets of
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new time series .Xm
k : X(m), X(m + k), X(m + 2k), . . . , X(m + [(N − m)/k)]). Then 

we calculate the length of the curve .Xm
k as follows: 

. Lm(k) =

⎡
⎢⎢⎣

⎛
⎜⎜⎝

int
(

N−m
k

)
∑
i=1

|X (m + i k) − X (m + (i − 1) k)|

⎞
⎟⎟⎠

N − 1

int
(

N−m
k

)
k

⎤
⎥⎥⎦

1

k

The length L(k) of the newly generated subseries .Xm
k is evaluated by averaging 

the k sets of Lm(k) values, as: 

. L(k) = 1

k

k∑
m=1

Lm(k)

If limit exists for k → ∞, such as L(k) ∝ k−HFD then the curve is fractal with 
dimension equal to HFD. 

Higuchi fractal dimension is a quantitative measure of signal complexity, and it 
is not independent from power law exponent calculated with the classical spectral 
analysis. Higuchi [34] in his seminal paper stated, that there is a direct relationship 
between HFD and the β parameter of the 1/fβ power spectrum that holds β = 5 –  
2HFD if 1 ≤ β ≤ 3 and 1 ≤ HFD ≤ 2. 

33.4 Neurodynamics as Local Cortical Signature: A Fractal 
Estimate 

Despite the fact that the power spectrum has been largely applied to estimate the 
characteristic frequencies of the local neurodynamics, it was demonstrated that 
the irregular fluctuations of ongoing neuronal activity can be more ‘stable’ than 
oscillatory ones: that is, they show less spontaneous intrasubject variability and 
less intersubject variability [45, 53]. In the papers of Armonaite et al. [7, 8], 
the authors aimed to demonstrate existing solid neurodynamical patterns across 
different cortical areas using Higuchi fractal dimension measure during wakefulness 
and three sleep stages. The purpose of these studies was to deepen knowledge of 
the brain neurodynamics as cortical area signature. Moving on from the successful 
attempt to differentiate the neurodynamics of the S1 and M1 hand representations 
based on noninvasive EEG [17], Armonaite et al. [7, 8] aim to strengthen the results 
by investigating intracranial sEEG data.
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Fig. 33.8 Comparing the HFD of brain areas couples within a subject. After Armonaite et al. [8]. 
Scatterplots of each subject HFD in couple of areas: S1 versus M1 (16 subjects); A1 versus M1 (9 
subjects) and A1 versus S1 (6 subjects). The diagonal is traced indicating where the HFD of the 
source represented in x is higher/lower than that in y. Colour codes as always indicate sources that 
are being compared: S1 blue, M1 red and A1 green 

33.4.1 Distinct Cortical Areas Exhibit Typical Complexity 
Relationship During Wakefulness 

Investigating the neurodynamics of S1 and M1 cortical parcels during resting 
wakefulness, sensory stimulation and hand motor function, the estimate of Higuchi 
fractal dimension shows a cortical area effect with a smaller value for S1 than M1 
[17]. Following these results, Armonaite et al. [7] estimated the Higuchi fractal 
dimension of 21 subject sEEG signals during resting wakefulness in three cortical 
parcels: A1, S1 and M1. And compared Higuchi fractal dimension between the 
couples of cortical areas within the subject, initially, and then on average across 
the population. The results of this analysis are compatible with the previous ones, 
as it is shown that M1 expresses higher complexity than S1 and both higher than 
A1 with [Wtest = 12, p = 0.01] (see also scatterplot of Fig. 33.8). Then the average 
value of HFD across the population was evaluated, and authors observed that even 
though the errors overlap, on average HFD for M1 is higher than S1 and A1 (Fig. 
33.9). 

33.4.2 Cortical Parcels Hold Typical Fractal Characteristics 
During Sleep 

Since significant differences in neurodynamics across different cortical areas A1, 
S1 and M1 in resting wakefulness were found, further investigation by Armonaite 
et al. [8] was done with the aim: (i) to explore if the neurodynamics (expressed by 
Higuchi fractal dimension) maintain their local specificities along different sleep 
stages and (ii) to study if the local complexity in the investigated areas reduces in 
deep sleep with respect to awake and REM stages.
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Fig. 33.9 Mean of HFD for 
the A1, S1 and M1 parcels 
across population. After 
Armonaite et al. [8]. The 
mean and standard deviation 
HFD evaluated across the 
population considering only 
representative channel for the 
three regions of interest. The 
HFD value is given for 
kmax = 35 

Fig. 33.10 Comparison via HFD of local neurodynamic in pairs of regions. After Armonaite et al. 
[8]. The scatterplots of HFD between subjects for S1 versus M1 [16 subjects]. In each plot, a point 
above (below) the diagonal has HFD value of the source represented on the axis lower (higher) 
than that of the source shown on the axis 

The comparisons within the subject showed that across all sleep stages the 
relationship of Higuchi fractal dimension values in the three investigated cortical 
parcels shows stable overall behaviour with M1 ≥ S1 ≥ A1. The comparisons of 
the HFD values for S1 and M1 within a subject are given in Fig. 33.10. 

By taking the mean value of HFD across subjects in each cortical parcel in 
the three sleep stages as well as wakefulness, an evident decrease of an average 
HFD value in each cortical parcel (from wakefulness to deeper sleep stages) can be 
observed (Fig. 33.11). 

33.5 Conclusions 

1. Evidence – from a selected group of regions – suggests that diverse cortical areas 
express a typical ongoing local electrical activity as their own signature. 

2. Spectral estimation methods may not always reveal the underlying specificities 
of the signal, failing to adequately account for irregularities and arrhythmias 
present in the fluctuations. Although Fourier transform estimation allows linkage 
with current knowledge describing the specific physiological roles of different
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Fig. 33.11 Estimation of complexity, via HFD, of the local neurodynamics across people in 
wakefulness and sleep stages. After Armonaite et al. [8]. The mean HFD estimated across the 
population in wakefulness, REM, N2 and N3 sleep stages. For each subject, we considered a 
representative of all available channels within the A1, S1 and M1 regions. The Higuchi fractal 
dimension was evaluated at kmax = 35 in each state 

frequency domains, such estimation does not capture the complex nature of 
fluctuations typical of various cortical parcels. 

3. By comparing the neurodynamic signature measured by power spectral density 
(PSD) and Higuchi fractal dimension (HFD) in wakefulness and during the three 
sleep phases (REM, N2 and N3), a consistency between the two assessments 
emerged in three paradigmatic primary cortices (A1, S1 and M1), with M1 
exhibiting a higher frequency activity than S1 and A1 not only during the 
waking state but also in the REM, N2 and N3 sleep phases, albeit in multiple 
frequency domains that decrease as sleep deepens. The single HFD number 
shows M1 > S1 > A1 during wakefulness and the three sleep phases, with the 
value of the three regions decreasing as sleep deepens. 

4. The nonlinear measure typical of complex systems, the fractal dimension, 
emerges as more stable than PSD; a ‘synthesis’ with a single value of spectral 
features; useful for classifying sleep stages. 
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