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1. Introduction

For κ ∈ N0, u ∈ C, with u , 1, the Frobenius–Euler polynomials H (κ)
r (x; u) of order κ, are defined

by the generating function as follows (by (see e.g., [4, 14] and the references therein):(
1 − u
ez − u

)κ
exz =

∞∑
r=0

H (κ)
r (x; u)

zr

r!
, |z| < | log(u)|.

https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.2025167


3624

When κ = 1,H (1)
r (x; u) := Hr(x; u) is called the r-th Frobenius–Euler polynomials. In the special case

where κ = 1 and u = −1, Hr(x;−1) := Er(x) denotes Euler polynomials (see [17] and the references
therein).

A remarkable amount of research has been done on polynomial families and their various extensions
(see, for example, [6,8,18,21,22]). The introduction of new generalizations has been accompanied by
the establishment of several fundamental properties, recurrence formulas, differential equations, and
relationships between these polynomials and other families of numbers and polynomials.

The polynomials FEr
[m−1,κ](x; u; γ) represent an intriguing blend of two classes of special

functions: the hypergeometric Euler polynomials and the Frobenius–Euler polynomials. The notable
presence of these polynomial families across diverse fields, including physical mathematics,
information theory, combinatorics, approximation theory, number theory, numerical analysis, and
partial differential equations, is well-documented and widely recognized. The significance of
investigating the properties of the polynomials FEr

[m−1,κ](x; u; γ) lies in their fundamental role in
mathematical analysis, number theory, and applied sciences. These polynomials generalize various
well-known polynomial families, providing deeper insights into their structural properties, recurrence
relations, and differential equations. Here are some key aspects of their significance:

Unification and generalization. The study connects the generalized Apostol-type Frobenius–Euler
polynomials with well-established families, such as the Stirling numbers, Apostol–Bernoulli, Apostol–
Euler, Apostol–Genocchi polynomials, and classical polynomials like Fubini, Bernstein, and Hermite
polynomials. This broader framework allows for new interpretations and extensions of known results.

Structural properties and recurrence relations. Establishing recurrence relations and
differential equations associated with these polynomials is crucial for their computational efficiency
and theoretical applications. These relations provide a foundation for deriving explicit formulas and
generating functions, which are instrumental in various mathematical fields.

Connection with other special functions and polynomials. The exploration of connection
formulas highlights the interplay between different polynomial families. Such connections often lead
to new combinatorial identities, algebraic properties, and functional equations, which can be applied
in diverse mathematical and engineering problems.

Zero distribution and graphical applications. The graphical representation and analysis of the
zeros of these polynomials offer insights into their asymptotic behavior and structural patterns.
Understanding the distribution of zeros is crucial in approximation theory, spectral analysis, and
numerical methods.

Applications in mathematical and applied fields. The study of these polynomials can have
implications in combinatorial mathematics, quantum physics, and numerical analysis. Their
recurrence relations and differential properties may lead to new results in solving differential
equations, signal processing, and optimization problems.

Thus, the investigation of these polynomials enriches the theory of special functions, providing new
tools and results that contribute to both theoretical mathematics and practical applications.

The objective of this study is to investigate a number of properties of the polynomials
FEr

[m−1,κ](x; u; γ), including their connection formulas and the distribution of their zeros. The
organization of this paper is as follows: In Section 2, we provide definitions and review previous
results concerning Stirling numbers of the second kind, as well as generalized Apostol–Bernoulli,
Apostol–Euler, Apostol–Genocchi polynomials of level m, and the Fubini, Bernstein, and Hermite
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polynomials. Section 3 delves into several properties of the generalized Apostol-type
Frobenius–Euler polynomials, their recurrence relations, and differential equations. Section 4 presents
various formulas establishing connections with other families of numbers and polynomials. Finally,
Section 5 presents the graphical application for the polynomials so that the zeros of the function and
how the nets are formed for different n can be studied.

2. Background and previous results

Throughout this paper, adherence is observed to the following standard conventions: The set of
natural numbers is denoted by N = 1, 2, 3, . . . The set of non-negative integers is denoted by N0 =

0, 1, 2, . . . represents the set of non-negative integers; Z refers to the set of integers; R denotes the set of
real numbers, and C stands for the set of complex numbers. When referring to the complex logarithm,
we adopt the principal branch, and for expressions of the form w = zκ, we denote the single branch of
the multi-valued function w = zκ such that 1κ = 1.

The Stirling numbers S (r, s) of the second kind are defined by (see [19, p. 78]):

(ez − 1)s

s!
=

∞∑
r=s

S (r, s)
zr

r!
, (2.1)

zr =

r∑
s=0

S (r, s)z(z − 1) · · · (z − s + 1),

so that

S (r, 1) = S (r, r) = 1, S (r, r − 1) =

(
r
2

)
.

On the other hand, Açı́kgöz et al. [2, Eq (2.12)] defined the generalized (p, q)–Stirling numbers
S [m−1]

p,q (r; k; γ) of the second kind by means of the generating function(
γez

p,q −
∑m−1

h=0
zh

[h]p,q!

)υ
[υ]p,q!

=

∞∑
r=0

S [m−1]
p,q (r; υ; γ)

zr

[r]p,q!
,

when q −→ p = 1, we obtain (
γez −

∑m−1
h=0

zh

h!

)υ
υ!

=

∞∑
r=0

S [m−1](r; υ; γ)
zr

r!
. (2.2)

Note that, when m = γ = 1, the above expression reduces to Eq (2.1).
The generating function of the two-variable Fubini polynomials is given by (see [13]):

exz

1 − y (ez − 1)
=

∞∑
r=0

Fr(x; y)
zr

r!
.

Note that Fr(0; y) := Fr(y) and Fr(0; 1) := Fr.
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The Bernstein polynomials Bs,r(x), of degree r, are defined by employing the following generating
function (see [1, 3]):

(zx)s

s!
e(1−x)z =

∞∑
r=s

Bs,r(x)
zr

r!
, s ∈ N0, (2.3)

where

Bs,r(x) =

(
r
s

)
xs (1 − x)r−s .

For mathematical convention, we usually set Bs,r(x) = 0 if s > r.
The generating function of the ordinary Hermite polynomials is defined by (see [10]):

e2xz−z2
=

∞∑
r=0

Hr(x)
zr

r!
,

so that

Hr(x) = r!
[ r

2 ]∑
s=0

(−1)s(2x)r−2s

(r − 2s)!s!
,

where
[ r
2

]
is the truncated part of

r
2
.

Let γ ∈ C, κ ∈ N0, a, c ∈ R+ the generalized Apostol–Euler E[m−1,κ]
r (x; c, a; γ) polynomials of order

κ, are defined respectively (cf. [5, 7, 15]):

∞∑
r=0

E
[m−1,κ]
r (x; c, a; γ)

zr

r!
=

 2m

γcz +
∑m−1

h=0
(zlna)h

h!


κ

cxz. (2.4)

When c = a = e, we arrive at the following:

E
[m−1,κ]
r (x; e, e; γ) := E[m−1,κ]

r (x; γ).

Recently, Quintana et al. [9] introduced some properties and recurrence formula of generalized Euler
polynomials E[m−1]

r (x) of level m. Also, they provided the following expression:

ez +

m−1∑
h=0

zh

h!
=

∞∑
n=0

(
1 + ar,m

) zr

r!
,

where

ar,m =

1, if 0 ≤ r < m,

0, if r ≥ m.

Motivated by these papers, we define the generalized Apostol-type Frobenius–Euler polynomials of
order κ and level m.
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3. The generalized Apostol-type Frobenius–Euler polynomials and their properties

Definition 3.1. For a fixed m ∈ N, κ, r ∈ N0, γ ∈ C, u ∈ C\{1}, the generalized Apostol-type Forbenius–
Euler polynomials of order κ and level m are defined by the following generating function, in a suitable
neighborhood of z = 0: 

(1 − u)m

γez − u
m−1∑
l=0

zl

l!



κ

exz =

∞∑
r=0

FEr
[m−1,κ](x; u; γ)

zr

r!
. (3.1)

Upon setting x = 0 in (3.1), we have

FEr
[m−1,κ](0; u; γ) := FEr

[m−1,κ](u; γ),

called the generalized Apostol-type Frobenius–Euler numbers of order κ and level m.

Taking u = −1 in (3.1), we obtain the generalized Apostol–Euler polynomials E[m−1,κ]
r (x; c, a; γ);

when c = a = e. Compare [15, p. 55],

FEr
[m−1,κ](x;−1; γ) = E[m−1,κ]

r (x; e, e; γ) := E[m−1,κ]
r (x; γ).

According to Definition 3.1, we remark that

FEr
[m−1,1](x; u; γ) := FEr

[m−1](x; u; γ),

FEr
[0,κ](x; u; γ) := FEr

(κ)(x; u; γ) := H (κ)
r (x; u; γ),

FEr
[0,1](x; u; γ) := FEr(x; u; γ) := Hr(x; u; γ).

For example, the first four generalized Apostol-type Frobenius–Euler polynomials of order κ and level
m = 3 are:

FE0
[2,κ](x; u; γ) =

(1 − u)3κ

(γ − u)κ
,

FE1
[2,κ](x; u; γ) =

(x − κ) (1 − u)3κ

(γ − u)κ
,

FE2
[2,κ](x; u; γ) =

(x − κ)2 (1 − u)3κ

(γ − u)κ
,

FE3
[2,κ](x; u; γ) =

[(
uκ3 − γκ3 − uκ

)
+

(
3κ2γ − 3κ2u

)
x + (3κu − 3κγ) x2 + (γ − u) x3

]
(1 − u)3κ

(γ − u)κ+1 .

Upon setting κ = γ = 1 and u = −1 above, we obtain the first four generalized Euler polynomials of
level m = 3 (see [9, p. 47]).
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Performing some manipulations on the generating function (3.1), we have
(1 − u)m

γez − u
m−1∑
l=0

zl

l!



κ

exz =

(
(1 − u)m

2m(−u)

)κ


2m(
−γ

u

)
ez +

m−1∑
l=0

zl

l!



κ

exz,

and thus,

FEr
[m−1,κ](x; u; γ) =

(
(1 − u)m

2m(−u)

)κ
E

[m−1,κ]
r

(
x,
−γ

u

)
.

The proposition 3.1 provides some properties of the generalized Apostol-type Frobenius–Euler
polynomials FEr

[m−1,κ](x; u; γ) without proofs since they can easily be proved through Definition 3.1.

Proposition 3.1. For a fixed m ∈ N, let
{

FEr
[m−1,κ](x; u; γ)

}∞
r=0

be the sequence of the generalized
Apostol-type Frobenius–Euler polynomials, of order κ and level m. Then the following identities hold
true:

(1) Special value. For every r ∈ N0

FEr
[m−1,0](x; u; γ) = xr. (3.2)

(2) Summation formula. For every r ∈ N0

FEr
[m−1,κ](x; u; γ) =

r∑
s=0

(
r
s

)
FEr−s

[m−1,κ](u; γ)xk.

(3) Differential relation. For a fixed m ∈ N, κ, γ ∈ C and r, j ∈ N0 with 0 ≤ j ≤ r, we have

DxFEr+1
[m−1,κ](x; u; γ) = (r + 1) FEr

[m−1,κ](x; u; γ),

D( j)
x FEr

[m−1,κ](x; u; γ) =
r!

(r − j)! FEr− j
[m−1,κ](x; u; γ). (3.3)

(4) Integral formula. For a fixed m ∈ N, κ, γ ∈ C, we have∫ x1

x0

FEr
[m−1,κ](x; u; γ)dx =

FEr+1
[m−1,κ](x1; u; γ) − FEr+1

[m−1,κ](x0; u; γ)
(r + 1)

.

(5) Addition theorems.

FEr
[m−1,κ](x + y; u; γ) =

r∑
s=0

(
r
s

)
FEr−s

[m−1,κ](x; u; γ)ys, (3.4)

FEr
[m−1,κ](x + y; u; γ) =

r∑
s=0

(
r
s

)
FEs

[m−1,κ](u; γ) (x + y)r−s .

Setting y = 1 in (3.4), we have

FEr
[m−1,κ](x + 1; u; γ) =

r∑
s=0

(
r
s

)
FEr−s

[m−1,κ](x; u; γ).
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(6) Addition theorems of the argument.

FEr
[m−1,κ±β](x + y; u; γ) =

r∑
s=0

(
r
s

)
FEr−s

[m−1,κ](x; u; γ)FEs
[m−1,±β](y; u; γ).

(7) We have

E
[m−1]
r (x; γ) =

2mγm−1

(γ + 1)m FEr
[m−1](x;−γ−1; 1).

Proposition 3.2. The generalized Apostol-type Frobenius–Euler polynomials satisfy the following
inversion formula:

xr =
1

(1 − u)m

r∑
s=0

(
r
s

) (
γ − uas,m

)
FEr−s

[m−1](x; u; γ), (3.5)

where

as,m =

1, if 0 ≤ s < m,

0, if s ≥ m.

Proof. Setting κ = 1 in (3.1), we have

(1 − u)mexz =

γez − u
m−1∑
l=0

zl

l!

  ∞∑
r=0

FEr
[m−1](x; u; γ)

zr

r!


=

 ∞∑
r=0

(
γ − uar,m

) zr

r!

  ∞∑
r=0

FEr
[m−1](x; u; γ)

zr

r!

 ,
therefore,

(1 − u)m
∞∑

r=0

xr zr

r!
=

∞∑
r=0

r∑
s=0

(
r
s

) (
γ − uas,m

)
FEr−s

[m−1](x; u; γ)
zr

r!
.

By comparing the coefficients of
zr

r!
on both sides, we obtain the result. �

Proposition 3.3. The generalized Apostol-type Frobenius–Euler polynomials satisfy the following
relations:

γFEr
[m−1,κ](x + 1; u; γ) − u

min(r,m−1)∑
s=0

(
r
s

)
FEr−s

[m−1,κ](x; u; γ) = (1 − u)m
FEr

[m−1,κ−1](x; u; γ), (3.6)

γFEr
[m−1,κ](x; u; γ) − u

min(r,m−1)∑
s=0

(
r
s

)
FEr−s

[m−1,κ](x − 1; u; γ) = (1 − u)m
FEr

[m−1,κ−1](x − 1; u; γ). (3.7)

Upon setting κ = 1, in (3.6), we give the following corollary.
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Corollary 3.1.

xr =
1

(1 − u)m

γ r∑
s=0

(
r
s

)
FEk

[m−1](x; u; γ) − u
min(r,m−1)∑

s=0

(
r
s

)
FEr−s

[m−1](x; u; γ)

 .
Proof. (3.6). We have

∞∑
r=0

γFEr
[m−1,κ](x + 1; u; γ) − u

min(r,m−1)∑
s=0

(
r
s

)
FEr−s

[m−1,κ](x; u; γ)

 zr

r!

=γ

∞∑
r=0

FEr
[m−1,κ](x + 1; u; γ)

zr

r!
− u

∞∑
r=0

min(r,m−1)∑
s=0

(
r
s

)
FEr−s

[m−1,κ](x; u; γ)
zr

r!

=γ

∞∑
r=0

FEr
[m−1,κ](x + 1; u; γ)

zr

r!
− u

m−1∑
l=0

zl

l!

∞∑
r=0

FEr
[m−1,κ](x; u; γ)

zr

r!
.

Now, using (3.1), we obtain

γ

∞∑
r=0

FEr
[m−1,κ](x + 1; u; γ)

zr

r!
− u

m−1∑
l=0

zl

l!

∞∑
r=0

FEr
[m−1,κ](x; u; γ)

zr

r!

=γ


(1 − u)m

γez − u
m−1∑
l=0

zl

l!



κ

e(x+1)z − u
m−1∑
l=0

zl

l!


(1 − u)m

γez − u
m−1∑
l=0

zl

l!



κ

exz

=


(1 − u)m

γez − u
m−1∑
l=0

zl

l!



κ

exz

γez − u
m−1∑
l=0

zl

l!

 = (1 − u)m


(1 − u)m

γez − u
m−1∑
l=0

zl

l!



κ−1

exz,

thus

(1 − u)m


(1 − u)m

γez − u
m−1∑
l=0

zl

l!



κ−1

exz = (1 − u)m
∞∑

r=0
FEr

[m−1,κ−1](x; u; γ)
zr

r!
.

Comparing the coefficients of
zr

r!
, we obtain (3.6). �

Proof. For the proof of (3.7), a similar scheme to the previous one is used. �

Theorem 3.1. The generalized Apostol-type Frobenius–Euler polynomials satisfy the following
relation, with u , 1:

γFEr
[m−1,κ](x + 1; u; γ) − uFEr

[m−1,κ](x; u; γ)
(1 − u)

=

r∑
s=0

(
r
s

)
FEk

[m−1,κ](x; u; γ)FEr−s
(−1)(u; γ).

AIMS Mathematics Volume 10, Issue 2, 3623–3641.



3631

Proof.

∞∑
r=0

(
γFEr

[m−1,κ](x + 1; u; γ) − uFEr
[m−1,κ](x; u; γ)

) zr

r!

=γez
∞∑

r=0
FEr

[m−1,κ](x; u; γ)
zr

r!
− u

∞∑
r=0

FEr
[m−1,κ](x; u; γ)

zr

r!

=

∞∑
r=0

FEr
[m−1,κ](x; u; γ)

zr

r!
(γez − u)

= (1 − u)
∞∑

r=0
FEr

[m−1,κ](x; u; γ)
zr

r!

∞∑
r=0

FEr
[0,−1](u; γ)

zr

r!
.

Applying the Cauchy product in the above equation and comparing the coefficients of
zr

r!
on both sides,

we obtain the proof. �

Theorem 3.2. The generalized Apostol-type Frobenius–Euler polynomials satisfy the following
identity:

γFEr
[m−1](x + 1; u; γ) − u

min(r,m−1)∑
s=0

(
r
s

)
FEr−s

[m−1](x; u; γ) =

r∑
s=0

(
r
s

) (
γ − uas,m

)
× FEr−s

[m−1](x; u; γ),

where

as,m =

1, if 0 ≤ s < m,

0, if s ≥ m.

Proof. To prove Theorem 3.2, it is enough to use Definition 3.1 and perform the necessary
mathematical calculations, which lead directly to the desired result. �

Theorem 3.3. The following implicit summation formula for the generalized Apostol-type Frobenius–
Euler polynomials holds true:

FEs+l
[m−1,κ](w + y; u; γ) =

s,l∑
r,n=0

(
s
r

)(
l
n

)
(w − x)r+n

FEs+l−r−n
[m−1,κ](x + y; u; γ). (3.8)

Proof. From (3.1), we have
(1 − u)m

γez − u
m−1∑
l=0

zl

l!



κ

e(x+y)z =

∞∑
r=0

FEr
[m−1,κ](x + y; u; γ)

zr

r!
,
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substituting z by z + a in the above equation, we obtain
(1 − u)m

γe(z+a) − u
m−1∑
l=0

(z + a)l

l!



κ

ex(z+a)ey(z+a) =

∞∑
r=0

FEr
[m−1,κ](x + y; u; γ)

(z + a)r

r!
.

Now, using the following formula [20, p. 52]:

∞∑
N=0

f (N)
(x + y)N

N!
=

∞∑
s,l

f (s + l)
xsyl

s!l!
, (3.9)

we obtain 
(1 − u)m

γe(z+a) − u
m−1∑
l=0

(z + a)l

l!



κ

ey(z+a) = e−x(z+a)
∞∑

s,l=0
FEs+l

[m−1,κ](x + y; u; γ)
zsal

s!l!
.

Replacing x by w in the above equation and equating the resultant equation to the above equation, we
obtain

e(w−x)(z+a)
∞∑

s,l=0
FEs+l

[m−1,κ](x + y; u; γ)
zsal

s!l!
=

∞∑
s,l=0

FEs+l
[m−1,κ](w + y; u; γ)

zsal

s!l!
,

∞∑
N=0

(w − x)N (z + a)N

N!

∞∑
s,l=0

FEs+l
[m−1,κ](x + y; u; γ)

zsal

s!l!
=

∞∑
s,l=0

FEs+l
[m−1,κ](w + y; u; γ)

zsal

s!l!
. (3.10)

Recalling (3.9), the left-hand side of (3.10) becomes

∞∑
N=0

(w − x)N (z + a)N

N!

∞∑
s,l=0

FEs+l
[m−1,κ](x + y; u; γ)

zsal

s!l!

=

∞∑
r,n=0

(w − x)r+n zran

r!n!

∞∑
s,l=0

FEs+l
[m−1,κ](x + y; u; γ)

zsal

s!l!

=

∞∑
s,l=0

s,l∑
r,n=0

(w − x)r+n

r!n! FEs−r+l−n
[m−1,κ](x + y; u; γ)

zsal

(s − r)!(l − n)!

=

∞∑
s,l=0

s,l∑
r,n=0

(
s
r

)(
l
n

)
(w − x)r+n

FEs+l−r−n
[m−1,κ](x + y; u; γ)

zsal

s!l!
.

Comparing coefficients, we get the assertion (3.8). �
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Theorem 3.4. The following relation for the generalized Apostol-type Frobenius–Euler polynomials
holds true:

(2u − 1)
r∑

j=0

min( j,m−1)∑
s=0

(
r
j

)(
j
s

)
FEr− j

[m−1](u; γ)FE j−s
[m−1](x; 1 − u; γ)

=um
FEr

[m−1](x; u; γ) − (1 − u)m
FEr

[m−1](x, 1 − u; γ). (3.11)

Proof. We set

(2u − 1) (1 − u)m umexz ∑m−1
l=0

zl

l!(
γez − u

∑m−1
l=0

zl

l!

) (
γez − (1 − u)

∑m−1
l=0

zl

l!

) =
(1 − u)m umexz(
γez − u

∑m−1
l=0

zl

l!

) − (1 − u)m umexz(
γez − (1 − u)

∑m−1
l=0

zl

l!

) . (3.12)

On the left-hand side of (3.12), we deduce

(2u − 1) (1 − u)m umexz ∑m−1
l=0

zl

l!(
γez − u

∑m−1
l=0

zl

l!

) (
γez − (1 − u)

∑m−1
l=0

zl

l!

)
= (2u − 1)

(1 − u)m ∑m−1
l=0

zl

l!(
γez − u

∑m−1
l=0

zl

l!

) (1 − (1 − u))m exz(
γez − (1 − u)

∑m−1
l=0

zl

l!

)
= (2u − 1)

∞∑
r=0

r∑
j=0

(
r
j

)
FEr− j

[m−1](u; γ)
min( j,m−1)∑

s=0

(
j
s

)
FE j−s

[m−1](x; 1 − u; γ)
zr

r!
.

On the right-hand side of (3.12), we obtain

(1 − u)m umexz(
γez − u

∑m−1
l=0

zl

l!

) − (1 − u)m umexz(
γez − (1 − u)

∑m−1
l=0

zl

l!

)
= um

∞∑
r=0

FEr
[m−1](x; u; γ)

zr

r!
− (1 − u)m

∞∑
r=0

FEr
[m−1](x; 1 − u; γ)

zr

r!

=

∞∑
r=0

(
um

FEr
[m−1](x; u; γ) − (1 − u)m

FEr
[m−1](x; 1 − u; γ)

) zr

r!
.

Comparing coefficients yields (3.11). �

Theorem 3.5. For the generalized Apostol-type Frobenius–Euler polynomials, we have the following
recurrence relation:

FEr+1
[m−1,κ](x; u; γ) = (x − κ) FEr

[m−1,κ](x; u; γ) −
uκr!

(1 − u)m (m − 1)! (r + 1 − m)!
×FEr+1−m

[m−1,κ+1](x; u; γ). (3.13)

Upon setting m = γ = 1 and u = −1 in (3.13), we obtain:

E(κ)
r+1(x) = (x − κ) E(κ)

r (x) +
κ

2
E(κ+1)

r (x),

where E(κ)
r+1(x), is the Euler polynomial of order κ and degree r + 1 (see [11, p. 3258]).
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Proof. Let us consider the following generating function

G[m−1,κ](x; z; u; γ) =

 (1 − u)m

γez − u
∑m−1

h=0
zh

h!

κ exz.

Then, the differentiation of both sides of the above equation

∂

∂z
G[m−1,κ](x; z; u; γ) = κ

 (1 − u)m

γez − u
∑m−1

k=0
zh

h!

κ−1
−(1 − u)m

(
γez − u

∑m−2
k=0

zh

h!

)
(
γez − u

∑m−1
h=0

zh

h!

)2

 exz

+x

 (1 − u)m

γez − u
∑m−1

h=0
zh

h!

κ exz

= (x − κ)G[m−1,κ](x; z; u; γ) −
uκzmG[m−1,κ](x; z; u; γ)G[m−1](0; z; u; γ)

(1 − u)m (m − 1)!z
,

and consequently

(1 − u)m (m − 1)!z
∂

∂z
G[m−1,κ](x; z; u; γ)

= (1 − u)m (m − 1)!z(x − κ)G[m−1,κ](x; z; u; γ) − uκzmG[m−1,κ](x; z; u; γ)G[m−1](0; z; u; γ). (3.14)

Now, differentiating with respect to z on the right-hand side of (3.1) and using (3.14), we obtain

(1 − u)m (m − 1)!z
∂

∂z
G[m−1,κ](x; z; u; γ) = (1 − u)m (m − 1)!

∞∑
r=0

rFEr
[m−1,κ](x; u; γ)

zr

r!
. (3.15)

On the other hand, we have

(1 − u)m (m − 1)!z(x − κ)G[m−1,κ](x; z; u; γ)

= (1 − u)m (m − 1)!(x − κ) ×
∞∑

r=0

rFEr−1
[m−1,κ](x; u; γ)

zr

r!
(3.16)

and

uκzmG[m−1,κ](x; z; u; γ)G[m−1](0; z; u; γ)

=uκ
∞∑

r=m

r!
(r − m)!

r−m∑
s=0

(
r − m

s

)
FEr−m−s

[m−1](u; γ)FEs
[m−1,κ](x; u; γ)

zr

r!
. (3.17)

Substitution of (3.15)–(3.17) into (3.14) and equating coefficients of power series on both sides, the
proof is complete. �

Theorem 3.6. For the generalized Apostol-type Frobenius–Euler polynomials, we have the following
differential equation:(x − κ) Dx −

uκ
(1 − u)m (m − 1)!

r+1−m∑
s=0

FEr+1−m−s
[m−1](u; γ)

(r + 1 − m − s)!
Dr−s+1

x − r

× FEr
[m−1,κ](x; u; γ) = 0. (3.18)
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Proof. Applying the factorization method (see [12, 16]) and using (3.3), we can rewrite (3.13) as
follows:

FEr+1
[m−1,κ](x; u; γ)

=

(x − κ) −
uκ

(1 − u)m (m − 1)!

r+1−m∑
s=0

FEr+1−m−s
[m−1](u; γ)

(r + 1 − m − s)!
Dn−k

x

 × FEr
[m−1,κ](x; u; γ). (3.19)

Therefore, the operator

L+
r,m =

(x − κ) −
uκ

(1 − u)m (m − 1)!

r+1−m∑
s=0

FEr+1−m−s
[m−1](u; γ)

(r + 1 − m − s)!
Dr−s

x

 ,
where

Dr−s
x :=

dr−s

dxr−s .

Now, applying the operator L−r+1 :=
1

r + 1
Dx on both sides of (3.19), we have

(L−r+1L+
r,m)FEr

[m−1,κ](x; u; γ) = FEr
[m−1,κ](x; u; γ).

Finally, after some rearrangements of terms, we achieve the desired result. �

4. Some connection formulas for the generalized Apostol-type Frobenius–Euler polynomials

In this section, we present some formulas connecting the generalized Apostol-type
Frobenius–Euler polynomials with generalized Stirling numbers of the second kind, the two-variable
Fubini polynomials, Bernstein polynomials, and Hermite polynomials.

Theorem 4.1. Let m ∈ N, υ, j ∈ N0. The following relations are demonstrated between the generalized
Frobenius with Euler polynomials of the Apostol type and the generalized Stirling numbers of the
second kind:

xn = υ!
(

u
(1 − u)m

)υ r∑
j=0

(
r
j

)
FE j

[m−1,υ](x; u; γ)S [m−1]
(
r − j, υ,

γ

u

)
, (4.1)

FEr
[m−1,κ−υ](x; u; γ) = υ!

(
u

(1 − u)m

)υ r∑
j=0

(
r
j

)
FE j

[m−1,κ](x; u; γ)S [m−1]
(
r − j, υ,

γ

u

)
. (4.2)

Proof. (4.1). Indeed, 
(1 − u)m

γez − u
m−1∑
l=0

zl

l!



υ

exz =

∞∑
r=0

FEr
[m−1,υ](x; u; γ)

zr

r!
,
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exz =

∞∑
r=0

FEr
[m−1,υ](x; u; γ)

zr

r!

γez − u
m−1∑
l=0

zl

l!

υ ( υ!
υ!(1 − u)mυ

)

= υ!
∞∑

r=0
FEr

[m−1,υ](x; u; γ)
zr

r!

γu ez −

m−1∑
l=0

zl

l!

υ
υ!

(
u

(1 − u)m

)υ
.

Now, using (2.2), we have

∞∑
r=0

xr zr

r!
= υ!

(
u

(1 − u)m

)υ ∞∑
r=0

FEr
[m−1,υ](x; u; γ)

zr

r!

∞∑
r=0

S [m−1]
(
r; υ;

γ

u

) zr

r!

= υ!
(

u
(1 − u)m

)υ ∞∑
r=0

r∑
j=0

(
r
j

)
FE j

[m−1,υ](x; u; γ)S [m−1]
(
r − j; υ;

γ

u

) zr

r!
.

Finally, comparing the coefficients, we obtain the assertion (4.1). �

Corollary 4.1. We have

FEr
[m−1,−υ](x; u; γ) = υ!

(
u

(1 − u)m

)υ r∑
j=0

(
r
j

)
S [m−1]

(
r − j, υ,

γ

u

)
x j.

Proof. If we set κ = 0 in (4.2) and use Eq (3.2), we complete the proof of the corollary. �

Proposition 4.1. Let m ∈ N and r ∈ N0. The following relationships have been established between
the generalized Apostol-type Frobenius–Euler polynomials and the two-variable Fubini polynomials,
the Bernstein polynomials, the Stirling polynomials of the second kind of level m, and the Hermite
polynomials:

FEr
[m−1,κ](x; u; γ) =

r∑
s=0

(
r
s

)
FEr−s

[m−1,κ](u; γ) [(1 + w)Fs(x,w) − wFs(x + 1,w)] ,

Bs,r(x) = xs
r−s∑
n=0

(
r − s

n

)(
r
s

)
FEr−s−n

[m−1,−υ](u; γ)FEn
[m−1,υ](1 − x; u; γ),

Br,s(x) = xsυ!
(

u
(1 − u)m

)υ r−s∑
j=0

(
r − s

j

)(
r
s

)
FEr−s− j

[m−1,κ](1 − x; u; γ)S [m−1]
(

j; υ,
γ

u

)
,

FEr
[m−1,κ](x; u; γ) =

[ r
2 ]∑

s=0

r−2s∑
j=0

(
r − 2s

j

)(
r

2s

)
(2s)!

s! FE j
[m−1,κ](u; γ)Hr−2s− j

( x
2

)
.

5. Apostol–type Frobenius–Euler polynomials and their applications

This section presents an application due to the zero distributions of this new class of generalized
Apostol-type Frobenius–Euler polynomials.
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To study the zero distributions using (3.1) and Mathematica Wolfram, we show the zero patterns.
We show plots of zero distributions; to plot these, we give values to the coefficients of the Apostol-type
Frobenius–Euler polynomials {m→ 3, u→ 2, κ → 2, γ → 4}, and the equation used is:

exz(
4ez − 2

(
1 + z + z2

2

))2 . (5.1)

We give values for n (10, 20, 30, 50), and we have the plots.
In Figure 1 the plots are organized as 1a black dots for 10 points, in 1b blue dots for 20 points, in

1c red dots for 30 points, and 1d green dots for 50 points, the shape of these plots seems like a fish. At
the same time, as we increase the dots, we can see a more defined shape, and in the plot 1d, here we
see two dots around (-10, -20) and (-10, 20).

-2 0 2 4

-4

-2

0

2

4

Re[x]

Im(x)

(a) Zeros of FE10
[2,2](x; 2; 4) = 0

-5 0 5
-10

-5

0

5

10

Re[x]

Im(x)

(b) Zeros of FE20
[2,2](x; 2; 4) = 0

-15 -10 -5 0 5 10

-10

-5

0

5

10

Re[x]

Im(x)

(c) Zeros of FE30
[2,2](x; 2; 4) = 0

-20 -10 0 10

-20

-10

0

10

20

Re[x]

Im(x)

(d) Zeros of FE50
[2,2](x; 2; 4) = 0

Figure 1. Roots of Apostol-type Frobenius–Euler generalized polynomials, plotted
considering 10, 20, 30, and 50 points.

Another interesting application is the induced mesh of generalized Apostol-type Frobenius–Euler
polynomials for different numbers of n (3.1) FEr

[m−1,κ] = 0.
In Figure 2, we show four graphs representing the mesh distribution by z-coefficient equal to 10,

20, 30 and 50, respectively. As we increase the z-value, we notice that it forms a cone shaped. In
Figure 2a, there are black dots for 10 points, and in Figure 2d green dots for 50 points, we see a more
defined mesh shape.

Then, based on the Apostol-type Frobenius–Euler polynomials. We computed an approximate
solution that satisfies them, FEr

[m−1,κ] for n = 2, 3, ..., 10. The results are presented in Table 1.
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(a) Zeros of FE10
[2,2](x; 2; 4) = 0

-5 5
Zero's
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(b) Zeros of FE20
[2,2](x; 2; 4) = 0
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(d) Zeros of FE50
[2,2](x; 2; 4) = 0

Figure 2. Mesh distribution of Apostol-type Frobenius–Euler generalized polynomials,
plotted considering 10, 20, 30 and 50 points.

Table 1. Approximate solutions for FEr
[m−1,κ] = 0.

n x

1 0.817219
2 0.820808 - 0.817211 i, 0.820808 + 0.817211 i
3 0.585556 - 1.48212 i, 0.585556 + 1.48212 i, 1.31145
4 0.239933 - 2.06742 i, 0.239933 + 2.06742 i, 1.42216 - 0.730256 i, 1.42216 + 0.730256 i
5 -0.181558 - 2.59823 i, -0.181558 + 2.59823 i, 1.3582 - 1.38743 i, 1.3582 + 1.38743 i, 1.79663
6 -0.762338 - 3.3425 i, -0.762338 + 3.3425 i, -0.567434, 1.92081 - 2.62112 i,

1.92081 + 2.62112 i, 3.28321
7 -1.27326 - 3.64882 i, -1.27326 + 3.64882 i, -0.567429, 1.26675 - 3.3269 i,

1.26675 + 3.3269 i, 3.28321 + 1.43895 i, 3.29972 + 1.43895 i
8 -1.73694 - 4.00473 i, -1.73694 + 4.00473 i, -0.567428, 0.608126 - 3.82671 i,

0.608126 + 3.82671 i, 2.90345 + -2.584355 i, 2.90345 + 2.58435 i, 3.91179
9 -2.23827 - 4.43454 i, -2.23827 + 4.43454 i, -0.567428, -0.0245166 - 4.13057 i,

-0.0245166 + 4.13057 i, 2.34366 + -3.41153 i, 2.34366 + 3.41153 i,
3.99888 - 1.34432 i, 3.99888 + 1.34432 i

10 -2.70965 - 5.20815 i, -2.70965 + 5.20815 i, 0.117982 - 3.44461 i,
0.117982 + 3.44461 i, 2.47995 + -1.59536 i, 2.47995 + 1.59536 i,
4.37324, 4.94372, 5.45324 -1.86857 i, 5.45324 + 1.86857 i
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6. Conclusions

This paper introduces a novel category of generalized Apostol-type Frobenius with Euler
polynomials and investigates their intricate mathematical properties in detail using generating
function techniques. A significant contribution of this study is the establishment of their associated
differential equation through the factorization method, complemented by the formulation of a
recurrence relation for these polynomials. Furthermore, the study derives several correlation formulas
that establish a connection between these generalized polynomials and classical special functions,
including the Bernstein, Fubini, and Hermite polynomials.

Moreover, graphical representations are provided by analysing the behavior of polynomial zeros
and visualising their networks for specific values of n. These graphs offer insights into the structure
and behavior of the polynomials and demonstrate their practical utility in modeling and numerical
computations.

The results presented in this paper establish a solid foundation for future explorations. In the field
of approximation theory, these generalized polynomials have the potential to enhance the efficacy of
techniques such as spectral methods, orthogonal expansions, and the approximation of complex
functions. Similarly, their associations with special polynomials demonstrate fascinating avenues for
the advancement of number theory, particularly concerning modular forms, integer sequences, and
combinatorial identities. Finally, the factorization and recurrence approaches adopted here could
inspire new developments in classical analysis and symbolic computation, rendering these
polynomials a promising tool for further interdisciplinary research.
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