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1. Introduction

The geometry of curves in Galilean space has been studied for many years. Galilean
geometry is a Cayley–Klein geometry with Galilean transformations of classical kinematics.
Modern and traditional physics use the Galilean transformation group [1]. If the curve has
any points of zero curvature, the Frenet frame cannot be established, and this is especially
true for normal and binormal vectors. As a result, a number of mathematicians came up
with frames that can deal with points in Euclidean, Minkowski, and Galilean geometry
when the curvature is zero. These frames include the Bishop frame, the modified frame,
the equiform frame, and the Darboux frame [2–5].

A new adapted frame that follows a space curve was provided in [6] by Dede et al.
as an alternative to the Frenet frame. This design was referred to as the quasi-frame. This
frame is both simpler and more precise than the Frenet frame. The fact that the quasi-
frame may be seen as a generalization of the Frenet frame is one of the advantages of its
use. It is defined by a vector that does not change and an angle that is formed between
the quasi-normal and the principal normal to the Frenet frame. If the point has zero
curvature, then the frame rotates by the angle, and the quasi-normal is defined such that it
is perpendicular to both the tangent and the fixed vector. The vector that is perpendicular
to both the tangent vector and the quasi-normal vector is referred to as the quasi-binormal
vector. Much research on the quasi-frame has been conducted in a variety of Euclidean and
Minkowski spaces and may be found in [7–10].

In 1850, the observation of J. Bertrand led to the discovery of Bertrand curves, which
have become a significant subject of interest and intrigue in classical special curve theory.
Bertrand curves are a particular class of curves defined by the property of having their
principal normal coincide with that of another curve. Such curves are characterized by a
linear relationship between the curvature and torsion of the curve. In the Galilean space

Axioms 2023, 12, 823. https://doi.org/10.3390/axioms12090823 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms12090823
https://doi.org/10.3390/axioms12090823
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://doi.org/10.3390/axioms12090823
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms12090823?type=check_update&version=1


Axioms 2023, 12, 823 2 of 15

and the Lorentzian space, there are a lot of works that are associated with Bertrand curves,
such as [11–13].

The identification of involutes, which are mathematical curves derived from the rolling
of one curve onto another, is credited to C. Huygens, who was engaged in the effort to create
a more precise timepiece. [14]. Later on, in [15], the relations between the Frenet apparatus
and the involute–evolute curve pair in the space E3 were introduced. The involute–evolute
curve pair was studied by A. Turgut in Rn in [16], and the characteristics of the curves in
the Galilean space were investigated in [6].

Investigating the properties of Mannheim curves in both Euclidean and Minkowski
three-space, Liu and Wang made a significant discovery in 2007. They derived necessary
conditions that relate to a curve’s curvature and torsion, which must be satisfied for the
curve to be recognized as one of the partner curves of Mannheim. The comprehensive
analysis of Mannheim curves is expounded in [17], where detailed research findings can be
found.

Smarandache curves can be defined as a type of regular curve characterized by the
decomposition of their position vector along the Frenet frame vectors of another regular
curve. Several mathematicians have studied Smarandache curves, such as [18].

The present study is organized in the following manner. In Section 3, we investigate
the quasi-frame, including its relation with the Frenet frame, and quasi-formulas in Galilean
three-space are investigated. In Section 4, we study quasi-Bertrand curves in the Galilean
three-space and our study demonstrates that there exists a constant measure of distance
between corresponding points on two quasi-Bertrand curves that operate within Galilean
3-space, but the angle between tangent lines is not constant. In Section 5, we study quasi-
Mannheim curves in the Galilean three-space, and we prove that the distance between
corresponding points on two quasi-Mannheim curves in Galilean three-space is constant,
but the angle between tangents is not constant. In Section 6, we investigate quasi-involute
curves in the Galilean three-space. Also, we prove that there is no quasi-evolute curve
in Galilean three-space. In Section 7, we prove that there are no quasi-evolute curves
in the Galilean three-space. In Section 8, we focused on exploring the properties and
characteristics of quasi-Smarandache curves in the Galilean three-space.

2. Preliminaries

The three-dimensional Galilean space, denoted as G3, is a genuine Cayley-Klein space
equipped with the projective metric of a particular signature (0, 0, + , +). The absolute
of the Galilean three-space consists of the set {r, k, J} in which r is the absolute plane in
G3, k is the absolute line in k, and J is the fixed elliptic involution of points of f . A vector
m = (m1, m2, m3) within the Galilean three-space G3 is considered non-isotropic if its
initial component is not zero. Otherwise, it is called an isotropic vector. Further, a vector
with a first component of magnitude 1 is classified as a non-isotropic unit vector. In G3, the
Galilean metric g is defined by

g(m, n) =


m1n1, if m1 6= 0 or n1 6= 0,

m2n2 + m3n3, if m1 = 0 and n1 = 0,

where m = (m1, m2, m3) and n = (n1, n2, n3). Also, the Galilean norm of the vector q is
defined as

‖m‖ =


|m1|, if m1 6= 0,√

m2
2 + m2

3, if m1 = 0.
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Further, the Galilean vector product of m and n is defined as

m× n =



∣∣∣∣∣∣
0 e2 e3

m1 m2 m3
n1 n2 n3

∣∣∣∣∣∣, if m1 6= 0 or n1 6= 0,

∣∣∣∣∣∣
e1 e2 e3
m1 m2 m3
n1 n2 n3

∣∣∣∣∣∣, if m1 = 0 and n1 = 0,

where (e1, e2, e3) is the usual basis of R3 [3,6,13,19].
In G3, a curve is a mapping from an open interval I of R to G3 as

Γ : I −→ G3,
t −→ γ(t) = (x1(t), x2(t), x3(t)).

If the curve has no inflection points
(
Γ̇(t)× Γ̈(t) 6= 0

)
and no isotropic tangents (ẋ1(t) 6= 0)

for each t ∈ I, then it is called an admissible curve. Let an admissible differentiable curve
parameterized by the Galilean invariant arc length s be given by

γ(s) = (s, x2(s), x3(s)).

Then, the curvature κ(s) and the torsion τ(s) of the curve γ(s) are given by

κ(s) =
∥∥Γ′′(s)

∥∥ =
√

x′′22 (s) + x′′23 (s),

τ(s) =
det(Γ′(s), Γ′′(s), Γ′′′(s))

κ2(s)
(1)

and the moving Frenet frame {T(s), N(s), B(s)} of the curve γ(s) is defined by

T(s) = γ′(s) =
(
1, x′2(s), x′3(s)

)
,

N(s) =
1

κ(s)
Γ′′(s) =

1
κ(s)

(
0, x′′2 (s), x′′3 (s)

)
,

B(s) = T(s)×N(s) =
1

κ(s)
(
0, − x′′3 (s), x′′2 (s)

)
, (2)

where the vectors T(s), N(s), and B(s) are the tangent, principal normal, and binormal unit
vector fields of the curve Γ(s) [4,13]. On the another hand, the Frenet derivative formulas
are given by

d
ds

 T(s)
N(s)
B(s)

 =

 0 κ(s) 0
0 0 τ(s)
0 −τ(s) 0

 T(s)
N(s)
B(s)

. (3)

3. Quasi-Frame and Quasi-Equations in G3

The present section examines the quasi-frame and its correlation with the Frenet frame.
Additionally, quasi-formulas are scrutinized within the context of Galilean three-space G3.
Furthermore, the quasi-curvatures are introduced as part of this investigation. Consider a
curve α(s) in G3. The quasi-frame composed of three orthonormal vectors, namely the unit
tangent T(s), the unit quasi-normal vector Nq(s), and the unit quasi-binormal vector Bq(s),
can be defined. This quasi-frame, characterized by {T(s), Nq(s), Bq(s)}, is derived from the
curve’s Frenet-Serret frame and is fundamental in a range of geometric computations as
follows:

T =
α′

||α′|| , Nq =
T × z
||T × z|| , Bq = T × Nq, (4)
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where z is the projection vector given by either (1, 0, 0), (0, 1, 0), or (0, 0, 1). The choice of
the projection vector z depends on the parallelism with unit tangent vector T. We choose
here z = (1, 0, 0).

Consider the Frenet frame, denoted by {T, N, B} and θ(s) be an angle between N and
Nq; then, we can write Nq and Bq in terms of N and B as

Nq = cosθN + sinθB, (5)

Bq = −sinθN + cosθB, (6)

and we can write

N = cosθNq − sinθBq, (7)

B = sinθNq + cosθBq. (8)

Now, from Equation (3) and Equation (7), we get

T′ = κN = κcosθNq − κsinθBq.

By taking the substitution K1 = κ cosθ and K2 = κ sinθ, we have

T′ = K1Nq − K2Bq. (9)

Similarly, by using Equations (5) and (6), N′q and B′q are given, respectively, by

N′q = K3Bq, B′q = −K3Nq, (10)

where θ′ + τ = K3. Therefore, the quasi-formulas in the matrix notation are given by: T′

N′q
B′q

 =

 0 K1 −K2
0 0 K3
0 −K3 0

 T
Nq
Bq

, (11)

The quasi-curvatures K1, K2, and K3 are represented using the Frenet curvature and torsion
as

K1 = κ cosθ, K2 = κ sinθ, K3 = θ′ + τ.

Corollary 1. If α(s) is a curve in G3, then the quasi-curvatures K1, K2, and K3 are given, respec-
tively, by

K1 = g(T′, Nq), K2 = −g(T′, Bq), K3 = g(N′q, Bq) = −g(B′q, Nq).

Corollary 2. In the context of G3, the quasi-frame represents a generalization of the Frenet frame.
Specifically, in the event that K2 equals zero, the quasi-frame and the Frenet frame become equivalent.

4. Quasi-Bertrand Curves in G3

This section investigates the Bertrand curves within the framework of the quasi-frame
in G3. Our objective is to demonstrate that the distance between corresponding points on
two Bertrand curves, as determined by the quasi-frame in G3, remains invariant. However,
it should be noted that the angle between corresponding tangent lines on the two Bertrand
curves, when analyzed using the quasi-frame in G3, exhibits variation and is not constant.

Definition 1. Two curves α(s) and α∗ in G3 are said to be quasi-Bertrand curves according to the
quasi-frame if the quasi-normal line to α is the same as the quasi-normal vector to the curve α∗ at the
corresponding points, in other words, if Nq of the curve α coincides with N∗q at the corresponding
points.
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Theorem 1. If α(s) and α∗(s) are quasi-Bertrand curves in G3, then

α∗(s) = α(s) + cNq,

where c is constant.

Proof. Let α(s) and α∗(s) be quasi-Bertrand curves in G3; then, we can write

α∗(s) = α(s) + λ(s)Nq, (12)

for some differentiable function λ(s).
By differentiating Equation (12) with respect to s, we have

dα∗

ds
= T + λ′(s)Nq + λ(s)K3Bq. (13)

Therefore, we can deduce that λ(s) is constant.
Hence,

α∗(s) = α(s) + cNq,

where c is constant.

Corollary 3. The distance between two quasi-Bertrand curves is constant.

Theorem 2. The angle between the tangents of two quasi-Bertrand curves in G3 is not constant.

Proof. Let α(s) and α∗(s) be quasi-Bertrand curves in G3 and let θ(s) be the angle between
the tangents of α and α∗; then, we can write

cos θ =
g(T, T∗)
||T|| ||T∗|| . (14)

By differentiating Equation (14) with respect to s, we have

d
ds

cos θ = −K2 g(T∗, Bq)− K∗2 g(T, B∗q )
ds∗

ds
, (15)

which is not zero. Therefore, θ is not constant.

Corollary 4. The angle between the tangents of two Frenet Bertrand curves according to the Frenet
frame in G3 is constant.

Proof. If we put K2 and K∗2 into Equation (15), we have

d
ds

cos θ = 0.

This implies that the angle between the tangents is constant.

Theorem 3. If α(s) and α∗(s) are quasi-Bertrand curves in G3, then the quasi-frame of α∗(s) is
given by

T∗ =
1√

1 + C2K2
3

[T + CK3Bq],

N∗q = Nq,

B∗q =
1√

1 + C2K2
3

[−CK3e1 + Bq].



Axioms 2023, 12, 823 6 of 15

Proof. By differentiating Equation (13) with respect to s, we have

dα∗

ds∗
ds∗

ds
= T + CK3Bq; (16)

thus, we have

T∗ =
ds
ds∗

[T + CK3Bq],

and we can obtain
N∗q = Nq.

Furthermore, we have

B∗q = T∗ × N∗q =
ds
ds∗

[−CK3e1 + Bq],

such that ds∗
ds =

√
1 + C2K2

3.

5. Quasi-Mannheim Curves in G3

This section focuses on the analysis of quasi-Mannheim curves within the framework
of the quasi-frame in G3. Our objective is to establish that the distance between corre-
sponding points on two quasi-Mannheim curves, as determined by the quasi-frame in G3,
remains unchanged. However, it is important to note that the angle between the tangents
of the two quasi-Mannheim curves in G3 is not constant.

Definition 2. Two curves γ(s) and γ∗(s) in G3 are said to be quasi-Mannheim curves according
to the quasi-frame if the quasi-normal line to α is the same as the quasi-binormal vector to the curve
α∗ at the corresponding points. In this case, the curve α is called a quasi-Mannheim curve of α∗ and
α∗ is called a quasi-Mannheim partner curve.

Theorem 4. If γ(s) and γ∗ are quasi-Mannheim curves in G3, then

γ∗ = γ(s) + c1Nq,

where c1 is constant.

Proof. Let γ(s) and γ∗(s) be quasi-Mannheim curves in G3. Then, γ∗(s) can be written as

γ∗ = γ(s) + ν(s)Nq, (17)

for some differentiable function ν(s).
By differentiating Equation (17) with respect to s, we have

dγ∗

ds
= T + ν′(s)Nq + ν(s)K3Bq.

Therefore, we can deduce that ν(s) is constant.
Hence,

γ∗ = γ(s) + c1Nq,

where c1 is constant.

Corollary 5. The distance between corresponding points on two Mannheim curves remains consis-
tent.

Theorem 5. The angle between the tangents of two quasi-Mannheim curves in G3 is not constant.
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Proof. Let γ(s) and γ∗(s) be quasi-Mannheim curves in G3 and let β(s) be the angle
between the tangents of γ and γ∗; then,

cos β =
g(T, T∗)
||T|| ||T∗|| . (18)

By differentiating Equation (18) with respect to s, we have

d
ds

cos β = −K2 g(Bq, T∗) + K∗1
ds∗

ds
g(T, N∗q ), (19)

which is not zero. Therefore, β is not constant.

Corollary 6. The angle between the tangents of two Frenet Mannheim curves according to the
Frenet frame in G3 is constant.

Proof. If we put K2 and K∗2 in Equation (19), we have

d
ds

cos β = 0.

This implies that the angle between the tangents is constant.

6. Quasi-Involute Curves in G3

In this section, we explore the properties of quasi-involute curves in G3 as described
by the quasi-frame. By utilizing the quasi-frame of the original curve, we derive the
corresponding quasi-frame of the involute curve and also determine the quasi-curvatures
of the quasi-involute.

Definition 3. In the context of Galilean space G3, curves β and β∗ be given. The Curve β∗ is
known as the involute of the curve β if the tangent vector at β∗(s) is intersected by the tangent
vector at β(s), whenever g(T, T∗) = 0. Here, the quasi-frames for β and β∗ are represented by
T, Nq, Bq and T∗, N∗q , B∗q , respectively.

In simpler terms, β∗(s) can be expressed as

β∗(s) = β(s) + X(s)T(s).

Theorem 6. If β and β∗ are two curves in G3 and β∗ is an involute of β, then

β∗(s) = β(s) + (a− s)T,

where a is constant.

Proof. Let β∗ be an involute of β; then, we can write

β∗(s) = β(s) + X(s)T. (20)

By differentiating Equation (20), we have

dβ∗

ds
= (1 + X′(s))T + XK1Nq − XK2Bq.

Since dβ∗

ds is orthogonal to T, we obtain

1 + X′(s) = 0.

Therefore,
X = a− s,
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where a is constant. Hence,
β∗(s) = β(s) + (a− s)T. (21)

Theorem 7. If β and β∗ are two curves in G3 and β∗ is a quasi-involute of β, then the quasi-frame
of the curve β∗ is given as

T∗ =
K1√

K2
1 + K2

2

Nq −
K2√

K2
1 + K2

2

Bq,

N∗q =
−K2√

K2
1 + K2

2

Nq −
K1√

K2
1 + K2

2

Bq,

B∗q = −e1.

Proof. By differentiating Equation (21), we obtain

dβ∗

ds
= (a− s)K1Nq − (a− s)K2Bq. (22)

The norm of dβ∗

ds is || dβ∗

ds || = (a− s)
√

K2
1 + K2

2. Then, we obtain

T∗ =
K1√

K2
1 + K2

2

Nq −
K2√

K2
1 + K2

2

Bq. (23)

Since N∗q = T∗×z
||T∗×z|| , we obtain

N∗q =
−K2√

K2
1 + K2

2

Nq −
K1√

K2
1 + K2

2

Bq. (24)

Finally,
B∗q = T∗ × N∗q = −e1. (25)

Corollary 7. Let β and β∗ be two curves in G3. If β∗ is a Frenet involute of β, then the Frenet
frame of the curve β∗ is given as

T∗ =Nq,

N∗q =− Bq,

B∗q =− T.

Theorem 8. Let β and β∗ be two curves in G3. If β∗ is a quasi-involute of β, then the quasi-
curvatures of the curve β∗ are given, respectively, by

K∗1 =| 1

(a− s)
√

K2
1 + K2

2

[
K1K′2 − K2K′1

K2
1 + K2

2
− K3],

K∗2 =0,

K∗3 =0.
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Proof. By differentiating Equations (23)–(25) with respect to s, we obtain

ds∗

ds
T∗′ = [(

K1√
K2

1 + K2
2

)′ +
K2K3√
K2

1 + K2
2

]Nq + [
K1K3√
K2

1 + K2
2

− (
K2√

K2
1 + K2

2

)′]Bq, (26)

ds∗

ds
N∗′q = [(

−K2√
K2

1 + K2
2

)′ +
K1K3√
K2

1 + K2
2

]Nq − [
K2K3√
K2

1 + K2
2

+ (
K1√

K2
1 + K2

2

)′]Bq, (27)

ds∗

ds
B∗′q = −K1Nq + K2Bq. (28)

Since ds∗
ds = || dβ∗

ds ||, then
ds∗

ds
= (c− s)

√
K2

1 + K2
2. (29)

Since K∗1 = g(T∗′, N∗q ), we obtain

K∗1 =
1

(c− s)
√

K2
1 + K2

2

[
K1K′2 − K2K′1

K2
1 + K2

2
− K3]. (30)

Since K∗2 = −g(T′∗, B∗q ) , we obtain

K∗2 = 0. (31)

Since K∗3 = −g(N′∗q , B∗q ) = g(B′∗q , B∗q ), we obtain

K∗3 = 0. (32)

Corollary 8. Let β and β∗ be two curves in the Galilean space G3. If β∗ is a Frenet involute of β,
then the Frenet curvatures of the curve β∗ are given as

κ∗ =
−τ

(c− s)κ
,

τ = 0.

7. Quasi-Evolute Curves in G3

In this particular section, we establish the nonexistence of a quasi-evolute curve
when adopting the quasi-frame within Galilean three-space G3. Since the Euclidean and
Minkowski three-space evolute curves are well-defined, we provide a definition of the
evolute curve within the Galilean three-space.

Definition 4. Assume that ζ and ζ∗ are two curves present in the Galilean space G3. We define
the curve ζ∗ as a quasi-evolute of the curve ζ if, and only if, the tangent vector of ζ at the point ζ
intersects with the tangent vector of ζ∗ at the point ζ∗(s), satisfying the zero dot product condition
given by

g(T∗, T) = 0,

where T, Nq, Bq and T∗, N∗q , B∗q represent the quasi-frames of ζ and ζ∗, respectively. In simpler
terms, ζ∗(s) can be expressed as

ζ∗(s) = ζ(s) + Y(s)Nq + Z(s)Bq.

Theorem 9. Let ζ and ζ∗ be two curves in G3. Then, there is no quasi-evolute curve in G3.
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Proof. Let ζ∗ is an evolute of ζ; then, we can write

ζ∗(s) = ζ(s) + Y(s)Nq + Z(s)Bq. (33)

By differentiating Equation (33), we have

dζ∗

ds
= Tq + (Y′ − K3Z)Nq + (YK3 + Z′)Bq.

Then, ζ∗ − ζ = YNq + ZBq, which implies that ζ∗ − ζ is not parallel to dζ∗

ds , which is a
contradiction to ζ∗ being an evolute of ζ. Therefore, ζ∗ is not an evolute of ζ.

8. Quasi-Smarandache Curves in G3

In this section, we study the quasi-Smarandache curves in Galilean three-space of three
different types. In all cases, we deduce the quasi-frame of the quasi-Smarandache curve
in terms of the quasi-frame of the original curve. Furthermore, the quasi-curvatures of
the quasi-Smarandache curve are obtained in terms of the quasi-curvatures of the original
curve. Moreover, in all cases, the Frene–Smarandache is obtained and studied in G3.

Definition 5. If η(s) is composed of quasi-frame vectors on another curve, then η(s) is said to be a
quasi-Smarandache curve in G3. In the other words, if η(s) is admissible curve in G3 and T, Nq, Bq
is a quasi-frame of another curve ε(s), then quasi-Smarandache TNq, TBq, and TNBq curves are,
respectively, defined by

η(TNq) =
T + Nq

||T + Nq||
, (34)

η(TBq) =
T + Bq

||T + Bq||
, (35)

η(TNqBq) =
T + Nq + Bq

||T + Nq + Bq||
. (36)

8.1. TNq-Smarandache Curve in G3

If η(s) is an admissible curve in G3 and quasi-Smarandache TNq curve is defined by

η(s) = T+Nq
||T+Nq || , since T + Nq is a unit vector, then the quasi-Smarandache TNq curve is

η(s) = T + Nq. (37)

Theorem 10. If η(s) is a quasi-Smarandache TNq curve in G3, then the quasi-frame of η(s) is
given by

(T)η =A[K1Nq + (K3 − K2)Bq],

(Nq)η =A(K3 − K2)Nq − AK1Bq,

(Bq)η =− e1 = (−1, 0, 0),

where A = 1√
K2

1+(K3−K2)2
.

Proof. Let η(s) be a quasi-Smarandache TNq curve in G3. By differentiating Equation (37)
with respect to s, we have

Tη = A[K1Nq + (K3 − K2)Bq], (38)

where A = 1√
K2

1+(K3−K2)2
.
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Since (Nq)η =
Tη×z
||Tη×z|| , we obtain

(Nq)η = A(K3 − K2)Nq − AK1Bq. (39)

Since (Bq)η = (T)η × (Nq)η , then

(Bq)η = −e1 = (−1, 0, 0). (40)

Corollary 9. If η(s) is a Frenet–Smarandache curve in G3, the Frenet frame of the curve η(s) is
given as

(T)η =
1√

κ2 + τ2
[kN + τB], (N)η =

1√
κ2 + τ2

[τN − κB], (B)η = −e1.

Theorem 11. If η(s) is a quasi-Smarandache curve in G3, then the quasi-curvatures are given,
respectively, by

(K1)η = A2 A′K1K3 + A3K′1K3 − A3K3
3 + A3K2K2

3 − A2 A′K1K2 − A3K′1K2 + A3K2
3K2

−A3K2
2K3 − A2 A′K1K3 + A2 A′K1K2 − A3K2

1K3 − A3K1K′3 + A3K1K′2,

(K2)η = 0,

(K3)η = 0.

Proof. Let η(s) be a quasi-Smarandache curve in G3. By differentiating Equation (38),
we have

(T′)η = [AA′K1 + A2K′1 − A2(K2
3 − K3K2)]Nq + [AA′(K3 − K2) + A2K1K3 + A2K′3 − A2K′2]Bq.

By differentiating Equation (39), we obtain

(Nq)
′
η = [AA′(K3 − K2) + A2(K′3 − K′2) + A2K1K3]Nq

+[−AA′K1 + A2K2
3 − A2K2K3 − A2K′1]Bq,

since
(Bq)

′
η = −e′1 = 0.

Since (K1)η = g(T′η , (Nq)η), we have

(K1)η = A2 A′K1K3 + A3K′1K3 − A3K3
3 + A3K2K2

3 − A2 A′K1K2 − A3K′1K2 + A3K2
3K2

−A3K2
2K3 − A2 A′K1K3 + A2 A′K1K2 − A3K2

1K3 − A3K1K′3 + A3K1K′2.

Since (K2)η = −g(T′η , (Bq)η), we then have

(K2)η = 0.

Finally, since (K3)η = g((Nq)′1, (Bq)1) = −g((Bq)′1, Nq), we obtain

(K3)η = 0.

Corollary 10. If η(s) is a Frenet–Smarandache curve in G3, then the curvature and torsion are
given, respectively, by
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(κ)η = A3(κ′τ − τ′κ)− A3τ(τ2 − κ2),

(τ)η = 0.

Corollary 11. If η(s) is a Frenet–Smarandache curve in G3, then the Smarandache curve in G3 is
a plane curve.

8.2. TBq-Smarandache Curve in G3

If ρ(s) is an admissible curve in G3, then a quasi-Smarandache TBq curve is defined
by

ρ(s) = T + Bq. (41)

Theorem 12. If ρ(s) is quasi-Smarandache TBq curve in G3, then the quasi-frame of ρ(s) is
given by

(T)ρ = D[(K1 − K3)Nq − K2Bq],

(Nq)ρ = D[−K2Nq − (K1 − K3)Bq]

(Bq)ρ = −e1,

where D = 1√
K2

2+(K1−K3)2
.

Corollary 12. If ρ(s) is a Frenet–Smarandache curve in G3, then the Frenet frame of the curve
η(s) is

(T)ρ = N, (N)ρ = B, (B)ρ = −e1.

Theorem 13. If ρ(s) is a quasi-Smarandache curve TB in G3, then the quasi-curvatures are given,
respectively, by

(K1)ρ = −2D2D′K1K2 + 2D2D′K2K3 − D3K′1K2 + D3K2K′3 − D3K2
2K3

−D3K2
1K3 + 2D3K1K2

3 + D3K1K′2 − D3K3
3 − D3K2K′2,

(K2)ρ = 0,

(K3)ρ = 0,

where D = 1√
K2

2+(K1−K3)2
.

Corollary 13. If ρ(s) is a Frenet–Smarandache curve TB in G3, then the curvature and torsion
are given, respectively, by

(κ)ρ =
τ

|(κ − τ|) 3
2
[−κ2 + κτ − τ2],

(τ)ρ = 0.

Corollary 14. If η(s) is a Frenet–Smarandache curve TB in G3, then the Smarandache curve TB
is always a plane curve.

8.3. TNqBq-Smarandache Curve in G3

If ε(s) is an admissible curve in G3, a quasi-Smarandache TNqBq curve is defined by

ε(s) = T + Nq + Bq. (42)
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Theorem 14. If ε(s) isa quasi-Smarandache TNqBq curve in G3, then the quasi-frame of ε(s) is
given by

(T)ε = E[(K1 − K3)Nq + (K3 − K2)Bq],

(Nq)ε = E[(K3 − K2)Nq − (K1 − K3)Bq]

(Bq)ε = −e1,

where E = 1√
(K1−K3)2+(K3−K2)2

.

Corollary 15. If ε(s) is a Frenet–TNB-Smarandache curve in G3, then the Frenet frame of the
curve ε(s) is

(T)ε = G[(κ − τ)N + τB], Nε = G[τN − (κ − τ)B], Bε = −e1,

where G = 1√
(κ−τ)2+τ2

.

Theorem 15. If ε(s) is a quasi-Smarandache curve in G3, then the quasi-curvatures are given,
respectively, by

(K1)ε = E3K′1K3 − 2E3K3
3 + 2E3K2

3K2 − E3K′1K2 − E3K3K2
2

−E3K2
1K3 + 2E3K1K2

3 − E3K′3K1 + E3K′2K1,

(K2)ε = 0,

(K3)ε = 0,

where E = 1√
(K1−K3)2+(K3−K2)2

.

Corollary 16. If ε(s) is a Frenet–Smarandache curve TNB in G3, then the curvature and torsion
are given, respectively, by

κε = G3κ′τ − 2G3τ3 − G3κ2τ + 2G3κτ2 − G3τ′κ,

τε = 0,

where G = 1√
(κ−τ)2+τ2

.

Corollary 17. If ε(s) is a Frenet–Smarandache curve TNB in G3, then the Smarandache curve
TNB is always a plane curve.

Example 1. Let α : I → G3 be a curve defined as

α(s) = (s, cos s, sin s). (43)

The quasi-frame of α is
Tα = (1,− sin s, cos s),

(Nq)α = (0, cos s, sin s),

(Bq)α = (0,− sin s, cos s).

The quasi-curvatures are given as

(κ1)q = −1, (κ2)q = 0, (κ3)q = 1.
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• The TNq Smarandache cure is defined as

η(s) = T + Nq = (1, cos s− sin s, sin s + cos s).

The quasi-frame of η is

(Tq)η =
1√
2
(0,− sin s− cos s, cos s− sin s),

(Nq)η =
1√
2
(0,− cos s− sin s, sin s + cos s),

(Bq)η = −e1.

The quasi-curvatures of η are

(κ1)η =
−1√

2
,

(κ2)η = 0,

(κ3)η = 0;

• The TBq-Smarandache cure is defined as

β(s) = T + Bq = (1,−2 sin s, 2 cos s).

The quasi-frame of β is

(Tq)β =
1√
2
(0,−2 cos s,−2 sin s),

(Nq)β = (0,− sin s, cos s),

(Bq)β = −e1.

The quasi-curvatures of β are
(κ1)β = −1,

(κ2)β = 0,

(κ3)β = 0;

• The TNqBq-Smarandache curve is defined as

ε(s) = T + Nq + Bq = (1, cos s− 2 sin s, sin s + 2 cos s).

The quasi-frame of ε is

Tε =
1√
5
(0,− sin s− 2 cos s, cos s− 2 sin s),

(Nq)ε =
1
5
(0, cos s− 2 sin s, sin s + 2 cos s),

(Bq)ε = −e1.

The quasi-curvatures of ε are

(κ1)β =
−1√

5
,

(κ2)β = 0,

(κ3)β = 0.
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9. Conclusions

In this paper, firstly, the quasi-frame and its relation with the Frenet frame were
investigated in G3. Moreover, we studied quasi-Bertrand curves in G3 and we proved
that the distance between corresponding points on two quasi-Bertrand curves in G3 is
constant, but the angle between tangent lines is not constant. Furthermore, we studied
quasi-Mannheim curves in G3 and we proved that the distance between corresponding
points on two quasi-Mannheim curves in G3 is constant, but the angle between tangents is
not constant. Also, quasi-involute curves were investigated in G3 and we proved that there
are no quasi-evolute curves in G3. Finally, we studied the quasi-Smarandache curves in G3
of three different types.
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