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Abstract

We present a calculation of the matrix elements of the most general set of DSs2 dimension-six four-fermion operators.
The values of the matrix elements are given in terms of the corresponding B-parameters. Our results can be used in many

0 0phenomenological applications, since the operators considered here give important contributions to K –K mixing in
Ž .several extensions of the Standard Model supersymmetry, left-right symmetric models, multi-Higgs models etc. . The

determination of the matrix elements improves the accuracy of the phenomenological analyses intended to put bounds on
basic parameters of the different models, as for example the pattern of the sfermion mass matrices. The calculation has been
performed on the lattice, using the tree-level improved Clover action at two different values of the strong coupling constant
Ž 2Ž . y1 .bs6rg a s6.0 and 6.2, corresponding to a s2.1 and 2.7 GeV respectively , in the quenched approximation. The0

renormalization constants and mixing coefficients of the lattice operators have been obtained non-perturbatively. q 1999
Published by Elsevier Science B.V. All rights reserved.

1. Introduction

Important information on the physics beyond the
Ž .Standard Model SM , such as supersymmetry, left-

right symmetric models, multi-Higgs models etc.,
can be obtained by studying FCNC processes. Among
these, DFs2 transitions play a very important role.

w xThey have been used in 1,2 , for example, to put
constraints on the sfermion mass matrix. In this
paper we present the results of a lattice calculation of
the matrix elements of the most general set of DSs2

dimension-six four-fermion operators, renormalized
Ž . w xnon-perturbatively in the RI MOM scheme 3–7 .

Our results can be combined with the recent two-loop
calculation of the anomalous dimension matrix in the

0 0w xsame renormalization scheme 8 to obtain K –K
mixing amplitudes which are consistently computed
at the next-to-leading order. A phenomenological
application of the results for the matrix elements
given below, combined with a complete next-to-lead-

Ž .ing order NLO evolution of the Wilson coeffi-
w xcients, is presented elsewhere 9 .

0370-2693r99r$ - see front matter q 1999 Published by Elsevier Science B.V. All rights reserved.
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0 0K –K mixing induces the neutral kaon mass
difference DM and is related to the indirect CPK

violation parameter e . In the Standard Model, thisK

transition occurs via the dimension-six four-fermion
operator O DSs2, with a ‘‘left-left’’x chiral struc-
ture. The B-parameter of the matrix element

0 DSs2 0² < < :K O K , commonly known as B , has beenK

extensively studied on the lattice due to its phe-
w xnomenological relevance 10 , and used in many
w xphenomenological studies 11 . For the other opera-

tors, instead, all the phenomenological analyses be-
yond the SM have used B-parameters equal to one,
which in some cases, as will be shown below, is a
very crude approximation. The present work is the
first fully non-perturbative study of the matrix ele-
ments of the complete set of DSs2 four-fermion
operators. With respect to other calculations, the
systematic errors in our results are reduced in two

.ways: i by using the tree-level improved Clover
w x w xaction 12 and operators 13 we obtain matrix ele-

Ž .ments for which discretization errors are of OO a a ;s
.ii by renormalizing non-perturbatively the lattice

operators, we have eliminated the systematic error
due to the bad behaviour of lattice perturbation
theory. With the non-perturbative renormalization,
the residual error is that due to the truncation of the
continuum perturbative series in the evaluation of the
Wilson coefficients of the effective Hamiltonian.

Ž 2 .This error is of OO a , where a is the continuums s

renormalization constant and could in principle be
reduced by the calculation of the N 2 LO corrections
in the continuum. In the RI scheme, for example,
this step has recently been done for the calculation of

w xthe renormalized quark mass 14 .
For the reader who is not interested in technical

details, we now give the results for the B-parameters
of the relevant operators. The choice of the basis is
arbitrary, and different bases can be found in the

w x w xliterature, see for example 1 and 8 . We have used
the SUSY basis for which the numerical values of
the Wilson coefficients, computed at the NLO, are

w x 1given 9 , namely
a a b bO ss g 1yg d s g 1yg d ,Ž . Ž .1 m 5 m 5

a a b bO ss 1yg d s 1yg d ,Ž . Ž .2 5 5

1 We use here the Euclidean notation.

a b b aO ss 1yg d s 1yg d ,Ž . Ž .3 5 5

a a b bO ss 1yg d s 1qg d ,Ž . Ž .4 5 5

a b b aO ss 1yg d s 1qg d , 1Ž . Ž . Ž .5 5 5

where a and b are colour indices. The B-parame-
ters for these operators are defined as

8
0 0 2 2ˆ² < < :K O m K s M f B m ,Ž . Ž .1 K K 13
0 0ˆ² < < :K O m KŽ .2

25 MK 2 2sy M f B m ,Ž .K K 2ž /3 m m qm mŽ . Ž .s d

0 0ˆ² < < :K O m KŽ .3

21 MK 2 2s M f B m ,Ž .K K 3ž /3 m m qm mŽ . Ž .s d

0 0ˆ² < < :K O m KŽ .4

2MK 2 2s2 M f B m ,Ž .K K 4ž /m m qm mŽ . Ž .s d

0 0ˆ² < < :K O m KŽ .5

22 MK 2 2s M f B m , 2Ž . Ž .K K 5ž /3 m m qm mŽ . Ž .s d

ˆ ˆŽ . Ž .where the notation O m or simply O denotes thei i

operators renormalized at the scale m. A few words
Ž .of explanation are necessary at this point. In Eq. 2

operators and quark masses are renormalized at the
Ž .scale m in the same scheme e.g. RI, MS, etc. . The

Ž .numerical results for the B-parameters, B m com-i

puted in this paper refer to the RI scheme. Moreover,
without loss of generality, we have omitted terms,
present in the usual definition of the Bs, which are
of higher order in the chiral expansion. Since the
definition of the B-parameters is conventional, we

Ž .prefer to use those in Eq. 2 for which, as explained
in Section 3, the scaling properties are the simplest
ones.

Our best estimates of the B-parameters, for a
renormalization scale of ms2 GeV are

B m s0.69"0.21, B m s0.66"0.04,Ž . Ž .1 2

B m s1.05"0.12, B m s1.03"0.06,Ž . Ž .3 4

B m s0.73"0.10. 3Ž . Ž .5
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The remainder of the paper is organized as fol-
lows: in Section 2, we address the problem of opera-
tor mixing and renormalization and give a brief

Ž .account of the non-perturbative method NPM used
in the computation of the operator renormalization
constants; in Section 3, we discuss the definition of
the B-parameters and describe their extraction from
the lattice correlation functions; in Section 4, we
present our results for the full operator basis, at
bs6.0 and 6.2 and for different renormalization
scales; a discussion of the errors assigned to the final

Ž .results in Eq. 3 can also be found in this section;
finally, in Section 5, we present our conclusions.

2. Non-Perturbative Renormalization

In this section, we briefly recall the reasons for
which the non-perturbative renormalization of the
lattice operators is important and describe the proce-
dure which has been used to obtain, for the cases of
interest, finite matrix elements from the bare lattice
operators.

The Wilson lattice regularization breaks chiral
symmetry. This implies that each operator in the
DSs2 Hamiltonian mixes with operators belonging

w xto different chiral representations 15,16 . Because of
the mixing induced by the lattice, the correct chiral
behaviour of the operators is achieved with Wilson
fermions only in the continuum limit. This repre-
sented a long-standing problem in the evaluation of

w x 2B 17,18 , only recently solved with the introduc-K

tion of Non-Perturbative Renormalization methods.
In these approaches the renormalization constants
Ž .mixing matrix are computed non-perturbatively on
the lattice either by projecting on external quark and

Ž . w xgluon states NPM as proposed in 3 or, in the spirit
w x w xof 16 , by using chiral Ward Identities 20,21 .

Recent studies of the B-parameters, with both non-
w xperturbative renormalization methods, 4–6,21 , show

that discretization effects are less important than
those due to the perturbative evaluation of the mix-
ing coefficients.

2 In the staggered fermion approach, where chiral symmetry is
partially preserved, the DSs2 matrix element displays the correct
chiral behaviour. Thus, the B -parameter obtained with staggeredK

w xfermions 19 has been deemed more reliable.

Given the success of the non-perturbative meth-
ods in the computation of B , the NPM has beenK

applied to the evaluation of the two DIs3r2 B-
parameters of the electro-penguin operators, B3r2

7
3r2 Žand B these B-parameters coincide with those of8

.the operators O nd O respectively . Also in this4 5
w xcase, as shown in 6 , it has been found that the

non-perturbative renormalization of the lattice opera-
tors gives B-parameters that significantly differ from

w xthose renormalized perturbatively 6,22 .
An extensive study of the renormalization proper-

w xties of the four-fermion operators can be found in 7 .
There we detail the issues of relevance to the non-
perturbative renormalization of all the DSs2 opera-
tors. We have used these results in the present study.

The NPM for the evaluation of the renormaliza-
tion constants of lattice operators consists in impos-
ing suitable renormalization conditions on lattice am-

w xputated quark correlation functions 3 . In our case,
we compute four-fermion Green functions in the
Landau gauge. All external quark lines are at equal
momentum p. After amputating and projecting these

Ž w x w x .correlation functions see 4 and 7 for details , the
renormalization conditions are imposed in the deep
Euclidean region at the scale p2 sm2. This renor-
malization scheme has been recently called the Reg-

Ž . w x Žularization Independent RI scheme 23 MOM in
.the early literature in order to emphasize that the

renormalization conditions are independent of the
regularization scheme, although they depend on the
external states used in the renormalization procedure
Ž . Žand on the gauge . Thus, at fixed cutoff i.e. fixed
.b , we compute non-perturbatively the renormaliza-

ˆRIŽ .tion constants and the renormalized operator O m

in the RI scheme. In order to obtain the physical
amplitudes, which are renormalization group invari-
ant and scheme independent, the renormalized matrix
elements must subsequently be combined with the
corresponding Wilson coefficients of the effective
Hamiltonian. For the operators of interest, the latter
are known at the NLO in continuum perturbation

w xtheory 8 .
w xIn 7 , we have determined non-perturbatively the

operator mixing for the complete basis of four-ferm-
ion operators, with the aid of the discrete symmetries
Žparity, charge conjugation and switching of

. w xflavours , in the spirit of 17 . The renormalization of
the parity-even operators, relevant to this work, is
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more conveniently expressed in terms of the follow-
ing basis of five operators:

Q sV=VqA=A , Q sV=VyA=A ,1 2

Q sS=SyP=P , Q sS=SqP=P ,3 4

Q sT=T . 4Ž .5

The operators Q , . . . ,Q form a complete basis on1 5
Žthe lattice. In these expressions, G=G with Gs

.V, A,S, P,T a generic Dirac matrix stands for
1 Ž .c Gc c Gc q c Gc c Gc , where c , i s1 2 3 4 1 4 3 2 i2

1, . . . ,4 are fermion fields with flavours chosen so as
Ž w xto reproduce the desired operators see 7 for de-

.tails .
The parity-even parts of the five SUSY operators

Ž .defined in Eq. 1 , which are the relevant ones for
0 0K –K mixing, are related to the operators of Eq.

Ž .4 in the following way:
1O sQ , O sQ , O sy Q yQ ,Ž .1 1 2 4 3 4 52

1O sQ , O sy Q . 5Ž .4 3 5 22

On the lattice, Q mixes under renormalization1

with the other four operators as follows

5

Q̂ sZ Q q Z Q , 6Ž .Ý1 11 1 1 i i
is2

where Z is a multiplicative logarithmically diver-11

gent renormalization constant; it depends on the
Žcoupling and am. The mixing coefficients Z with1 i

.is2, . . . ,5 are finite; they only depend on the lat-
2Ž .tice coupling g a .0

The other renormalized operators are defined as
follows:

ˆ s s ˆ s sQ sZ Q qZ Q , Q sZ Q qZ Q ,2 22 2 23 3 3 32 2 33 3

ˆ s s ˆ s sQ sZ Q qZ Q , Q sZ Q qZ Q , 7Ž .4 44 4 45 5 5 54 4 55 5

where the Z s are logarithmically divergent renor-i j

malization constants which depend on the coupling
and am. The above mixing matrices are not peculiar
to the lattice regularization, but also occur in the
continuum. The breaking of chiral symmetry by the
Wilson action requires the additional subtractions:

Q s sQ q Z s Q , is2,3,Ýi i i j j
js1,4,5

Q s sQ q Z s Q , is4,5,Ýi i i j j
js1,2,3

where the Z s s are finite coefficients which onlyi j
2Ž .depend on g a .0

The results for all the renormalization constants
s ŽZ and Z computed with the NPM, for severali j i j

.renormalization scales m, at bs6.0 and 6.2 can be
w xfound in 7 .

3. B-parameters

In this section we discuss the definition of the
B-parameters and their dependence on the renormal-
ization scale. We also sketch the extraction of these
quantities from lattice correlation functions.

The B-parameters are usually defined as

0 0ˆ² < < :K O m KŽ .i
B m s , 8Ž . Ž .i 0 0ˆ² < < :K O K VSAi

where the operator matrix elements in the Vacuum
Ž .Saturation Approximation VSA are given by

1
20 0 0ˆ ˆ² < < : <² < < : <K O K s2 1q K A 0 ,VSA1 mž /Nc

1
20 0 0ˆ ˆ² < < : <² < < : <K O K sy2 1y K P 0 ,VSA2 ž /2 Nc

2
20 0 0ˆ ˆ² < < : <² < < : <K O K s 1y K P 0 ,VSA3 ž /Nc

20 0 0ˆ ˆ² < < : <² < < : <K O K s2 K P 0VSA4

1
20 ˆ<² < < : <q K A 0 ,mNc

2
2 20 0 0 0ˆ ˆ ˆ² < < : <² < < : < <² < < : <K O K s K P 0 q K A 0 .VSA5 mNc

9Ž .

ˆ ˆA and P are the renormalized axial current andm

ˆ ˆpseudoscalar densities, A sZ A and PsZ P,m A m P
Ž .with Z the finite renormalization constant of theA

lattice axial current, A ssg g d, and Z the renor-m m 5 P

malization constant of the lattice pseudoscalar den-
ˆsity, Pssg d. For simplicity, P is renormalized at5

the same scale m, and in the same renormalization
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Žscheme as the four-fermion operators the RI scheme
.in our case . Using the relations

20 2 2ˆ<² < < : <K A 0 sM f ,m K K

2MK20 2 2ˆ<² < < : <K P 0 s M f , 10Ž .K Kž /m m qm mŽ . Ž .s d

where the second equality is a consequence of the
Ž Ž .Ward identity for the axial current with m m ands

Ž .m m renormalized in the same scheme and at thed
ˆ.same scale as P , we find, with N s3c

8
0 0 2 2ˆ² < < :K O m K s M f ,Ž . VSA1 K K3

0 0ˆ² < < :K O m KŽ . VSA2

25 MK 2 2sy M f ,K Kž /3 m m qm mŽ . Ž .s d

0 0ˆ² < < :K O m KŽ . VSA3

21 MK 2 2s M f ,K Kž /3 m m qm mŽ . Ž .s d

0 0ˆ² < < :K O m KŽ . VSA4

2M 1K 2 2s2 q M f ,K Kž /m m qm m 6Ž . Ž .s d

0 0ˆ² < < :K O m KŽ . VSA5

22 M 3K 2 2s q M f . 11Ž .K Kž /3 m m qm m 2Ž . Ž .s d

ˆThe VSA values of the matrix elements of O and4
ˆ Ž .O in Eq. 11 differ from the factors appearing in5

Ž .the definition of the B-parameters in Eq. 2 by the
terms proportional to 1r6 and 3r2 respectively.
These terms, which originate from the squared ma-

Ž .trix elements of the axial current in Eq. 9 , are of
higher order in the chiral expansion and have been
dropped in our definition of the B-parameters. This
implies that, out of the chiral limit, the values of B4

and B with our definition differ from those ob-5
Ž .tained by using Eq. 11 . To illustrate this point, let

us imagine that as m ™`, for some value of thes

renormalization scale m, the values of the matrix
ˆ ˆelements of O and O were exactly those of the4 5

Ž .VSA. Under these hypotheses, using Eq. 2 , we
Ž . Ž .would get B m s7r6 and B m s5r2 instead4 5

of one.
We now explain why we prefer the definition of

Ž .the B-parameters given in Eq. 2 rather than the
Ž .standard definition obtained from Eq. 11 . Neglect-

ing discretization errors, the B-parameters of the
ˆ ˆ Ž .operators O –O defined in Eq. 2 obey the renor-2 5

malization group equation

dB mŽ .i
m s g y2g B m , 12Ž . Ž .Ž .O P iidm

Ž .where mdrdm s mErEm q b a ErEa , and gs s O i

Ž . Ž .g and g are the anomalous dimension matrixO O Pi j ˆ Ž .of the operator O m and of the scalar densityi

respectively 3. The physical amplitude is given by

0 0 0 0ˆ² < < : ² < < :K HH K sC M rm K O m KŽ . Ž .e f f i W i

sC M rm =B mŽ . Ž .i W i

1
4 2= M fK K2

m m qm mŽ . Ž .Ž .s d

yg r2 bO 0ia MŽ .s W
; ž /a mŽ .s

Ž .g y2g r2 bO P 0i= a mŽ .Ž .s

g rbP 0= a m , 13Ž . Ž .Ž .s

where, in the last expression, we have only shown
the leading behaviour of the different factors which
depend on m, namely the Wilson coefficient, the

Ž .B-parameter and the quark masses. Eq. 13 shows
explicitly the cancellation of the m-dependent terms
in the amplitude: the quark masses scale with an
anomalous dimension which is opposite in sign to

ˆŽ Ž . Ž .that of the pseudoscalar density since m m P m is
. Ž .renormalization group invariant so that B m ri

2 ˆŽ . Ž .m m scales as the corresponding operator O m ;i

the m-dependence of the latter is then cancelled by
that of the corresponding Wilson coefficient. This
remains true at all order in a . Out of the chirals

limit, with the standard definition of the B-parame-

3 ˆ ˆFor simplicity we ignore the mixing of the operators O – O2 3
ˆ ˆand O – O .4 5
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ters obtained by using the VSA matrix elements of
Ž . Ž . Ž .Eq. 11 , the scaling properties of B m and B m4 5

would have been much more complicated. The rea-
son is that, in these cases, the two contributions on
the right hand side have a piece which scales as the

Žsquared pseudoscalar density and another propor-
20 ˆ<² < < : < .tional to the physical quantity K A 0 whichm

is renormalization group invariant. The m-indepen-
dence of the final result would then have been
recovered then in a very intricate way. Since the
definition of the B-parameters is conventional, we

Ž .prefer to use that of Eq. 2 , for which the scaling
properties of all the B-parameters are the simplest
ones. Moreover, with this choice, they are the same
as those derived in the chiral limit.

In order to extract the B-parameters, we need to
compute the following two- and three-point correla-
tion functions:

² † : yp P xG t , p s P x P 0 e ,Ž . Ž . Ž .ÝP x
x

² † : yp P xG t , p s A x P 0 e ,Ž . Ž . Ž .ÝA x 0
x

G t ,t ; p ,qŽ .Ô x y

† ˆ † ypP y qP x² :s P y O 0 P x e e , 14Ž . Ž . Ž . Ž .Ý
x , y

ˆŽ . Ž .where x' x,t , y' y,t and O stands for anyx y

renormalized four-fermion operator of interest. All
correlation functions have been evaluated with de-
generate quark masses. By forming suitable ratios of
the above correlations, and looking at their asymp-
totic behaviour at large time separations, we can
isolate the desired matrix elements

0 0ˆ² < < :G K q O K pŽ . Ž .Ô 11R s ™ ,1 2 22 0Z G G <² < < : <Z 0 P KA P P A

G1 Ô 2R sy2 1 G GP P22 1y ZPž /2 Nc

0 0ˆ² < < :1 K q O K pŽ . Ž .2
™y ,22 01 <² < < : <Z 0 P KP2 1yž /2 Nc

G1 Ô 3R s3 2 G GP P21y ZPž /Nc

0 0ˆ² < < :1 K q O K pŽ . Ž .3
™ ,22 02 <² < < : <Z 0 P KP1yž /Nc

0 0ˆ² < < :G1 1 K q O K pŽ . Ž .Ô 44R s ™ ,4 2 22 0G G 22Z <² < < : <Z 0 P KP PP P

0 0ˆ² < < :GN N K q O K pŽ . Ž .Ôc c 55R s ™ .5 2 22 0G G 22Z <² < < : <Z 0 P KP PP P

15Ž .

We stress that the B-parameters extracted from
R , R and R are identical to the B-parameters for1 4 5

the operators O DSs2,O3r2 and O3r2 respectively. In8 7
w x DSs2 3r26 , the results referred to the operators O ,O8

and O3r2 at bs6.0 only. In this paper, we present7

the results for all the B-parameters and for bs6.0
and 6.2.

4. Numerical results

Our simulations have been performed at bs6.0
and 6.2 with the tree-level Clover action, for several

Žvalues of the quark masses corresponding to the

Table 1
Ž .Summary of the parameters of the runs at b s6.0 run A and

Ž . y1b s6.2 run B . The calibration of the lattice spacing a has
w xbeen done using the lattice-plane method of 25

Parameter Run A Run B

b 6.0 6.2
No. Confs. 460 200

3 3Volume 18 =64 24 =64

k 0.1425 0.14144
0.1432 0.14184
0.1440 0.14224

– 0.14264

Time intervals 10–22 14–26
42–54 38–50

y1 )Ž . Ž . Ž . Ž .a K GeV 2.12 4 2.7 1
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Table 2
Values of the B-parameters in the chiral limit, at different scales m2a2 for bs6.0

2 2m a B B B B B1 2 3 4 5

0.31 0.72"0.14 0.70"0.08 1.62"0.28 1.21"0.08 1.70"0.24
0.62 0.70"0.15 0.64"0.04 1.21"0.12 1.08"0.05 0.81"0.10
0.96 0.70"0.15 0.61"0.03 1.10"0.08 1.04"0.04 0.68"0.07
1.27 0.70"0.15 0.60"0.03 1.03"0.07 1.01"0.04 0.69"0.06
1.38 0.70"0.15 0.59"0.03 1.03"0.07 1.01"0.04 0.70"0.05
1.85 0.71"0.15 0.59"0.03 0.98"0.06 0.99"0.04 0.68"0.05
2.46 0.72"0.15 0.57"0.03 0.96"0.05 1.00"0.04 0.69"0.04
4.00 0.74"0.15 0.55"0.02 0.87"0.04 0.99"0.03 0.73"0.04

values of the hopping parameter k given in table
.Table 1 , in the quenched approximation. The physi-

cal volume is approximatively the same on the two
lattices. A summary of the main parameters is given
in the same table. ‘‘Time Intervals’’ denote the range

Ž .in time in lattice units on which the two-point
correlation functions have been fitted to extract the
meson masses and the matrix elements of A and P.m

The ratios R , related to the matrix elements of thei

four-fermion operators, have been extracted on the
same time intervals. Statistical errors have been esti-
mated with the jacknife method, by decimating 10
configurations at a time.

As discussed in Section 2, the renormalization
constants have been obtained from the quark correla-
tion functions, in the Landau gauge. The results for

3 Ž 3 .the Zs have been obtained on a 16 =32 16 =32
Ž .lattice at bs6.0 6.2 , using a statistical sample of

Ž .100 180 configurations. In constructing the renor-
malized operators we have used the central values of
the renormalization constants neglecting their statis-
tical errors. For this reason the errors on the B-
parameters only include those of operator matrix

Ž Ž ..elements. In the ratios Eq. 15 , we also need the
axial-current renormalization constant Z and theA

m-dependent renormalization constant Z of theP

pseudoscalar density. Although Z should not de-A

pend on am, slight variations of its NPM estimate,
arising from systematic effects, partially cancel anal-
ogous variations of R , giving more stable results in1

the extraction of the matrix elements. The NPM
estimates for Z and Z used in the present work areP A

w xthose of 24 .
In order to extract the B-parameters from the

Ž . w xratios of Eq. 15 , we follow the procedure of 5 , by
Ž 2fitting the R linearly in X and Y i.e. linearly in mi K

Ž . .and pPq with the function

R sa qb Xqg Y , 16Ž .i i i i

where

8 G G† 8 f 2 m2
A A K K

Xs ™ ,22 03 G G 3 <² < < : <Z 0 P KP P A

pPqŽ .
Ys X , 17Ž .2mK

Table 3
Values of the B-parameters in the chiral limit, at different scales m2a2 for bs6.2

2 2m a B B B B B1 2 3 4 5

0.31 0.67"0.21 0.72"0.10 0.90"0.40 0.99"0.12 0.21"0.24
0.62 0.68"0.21 0.63"0.06 0.94"0.16 0.98"0.08 0.46"0.13
0.96 0.68"0.21 0.60"0.04 0.91"0.11 0.95"0.07 0.54"0.10
1.27 0.68"0.21 0.58"0.04 0.89"0.08 0.93"0.07 0.56"0.09
1.38 0.68"0.21 0.58"0.04 0.88"0.08 0.92"0.07 0.55"0.09
1.85 0.67"0.21 0.57"0.03 0.84"0.07 0.91"0.06 0.56"0.08
2.46 0.68"0.21 0.56"0.03 0.82"0.06 0.91"0.06 0.58"0.07
4.00 0.69"0.21 0.54"0.03 0.78"0.05 0.91"0.06 0.60"0.07
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Table 4
Values of the B-parameters at the physical kaon mass, at different scales m2a2 for bs6.0

2 2m a B B B B B1 2 3 4 5

0.31 0.72"0.14 0.74"0.06 1.57"0.22 1.19"0.06 1.70"0.19
0.62 0.70"0.15 0.69"0.03 1.22"0.10 1.08"0.04 0.92"0.09
0.96 0.70"0.15 0.66"0.03 1.12"0.07 1.05"0.03 0.79"0.06
1.27 0.70"0.15 0.65"0.02 1.06"0.06 1.03"0.03 0.79"0.05
1.38 0.70"0.15 0.64"0.02 1.06"0.05 1.02"0.03 0.79"0.05
1.85 0.71"0.15 0.63"0.02 1.02"0.05 1.01"0.03 0.77"0.04
2.46 0.72"0.15 0.61"0.02 0.99"0.04 1.02"0.03 0.77"0.04
4.00 0.74"0.15 0.59"0.02 0.90"0.03 1.01"0.03 0.81"0.03

with

pPqsE p E q ypPq ,Ž . Ž .
E p m pŽ . i2 2 2sinh ssinh q sin .Ýž / ž /ž /2 2 2is1,3

18Ž .

Assuming a and b to be zero, B is given by:1 1 1

B sg . 19Ž .1 1

Since we are working in the linear approximation in
X and Y, there is no difference between the value
obtained in the chiral limit and at the physical kaon
mass. In the chiral limit, the B-parameters for the
other four operators are given by

B sa , is2,3,4,5 . 20Ž . Ž .i i

We stress again that B sB3r2 and B sB3r2. At4 8 5 7

the physical kaon mass we have instead

B sa q b qg X , is2,3,4,5 , 21Ž . Ž . Ž .i i i i s

where X is obtained by extrapolating linearly X ass

a function of the squared pseudoscalar meson mass
to the physical value mexp.K

In Tables 2 and 3 we give the values of the
B-parameters in the chiral limit, extracted using Eq.
Ž . Ž .19 and Eq. 20 , at bs6.0 and 6.2 respectively; in
tables Tables 4 and 5 the B-parameters are evaluated

Ž .at the physical kaon mass using Eq. 21 for is
2,3,4,5. At bs6.0, the results for B , B and B1 4 5

extrapolated to the chiral limit are slightly different
w xfrom those of 6 . There are several reasons for the
.differences: i in order to fix the scale and the

strange quark mass we have used the lattice-plane
w x .method of 25 ; ii in the present analysis, we use the

Ž .‘‘lattice dispersion relation’’ of Eq. 18 , instead

than the continuum one E2 sm2 qÝ p2 whichis1,3 i
4 .was adopted in our previous study ; iii in order to

reduce the systematic effects due to higher order
terms in the chiral expansion, i.e. to higher powers
of pPq, we have not used the results corresponding

Ž . Ž .to ps2prL 1,0,0 and qs2prL y1,0,0 . This
choice stabilizes the results for B between bs6.01

and bs6.2 whilst the results for the other B-param-
eters remain essentially unchanged.

We now describe the criteria followed in order to
obtain our best estimates of the B-parameters. Al-
though we have data at two different values of the
lattice spacing, the statistical errors, and the uncer-
tainties in the extraction of the matrix elements, are
too large to enable any extrapolation to the contin-
uum limit a™0: within the precision of our results
we cannot detect the dependence of B-parameters on
a. For this reason, we estimate the central values by
averaging the B-parameters obtained with the physi-
cal mass me x p at the two values of b. Since theK

results at bs6.0 have smaller statistical errors but
suffer from larger discretization effects, we do not
weight the averages with the quoted statistical errors
but take simply the sum of the two values divided by
two. As far as the errors are concerned we take the
largest of the two statistical errors. This is a rather
conservative way of estimating the errors. In order to
compare the results of Run A and Run B, we must
choose the same physical renormalization scale m.

4 Although the continuum and lattice dispersion relations are
equivalent at the order in a at which we are working, the latter
gives a better description of the data for large momenta, see for

w xexample 26 .
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Table 5
Values of the B-parameters at the physical kaon mass, at different scales m2a2 for bs6.2

2 2m a B B B B B1 2 3 4 5

0.31 0.67"0.21 0.75"0.07 1.05"0.29 1.05"0.09 0.57"0.18
0.62 0.68"0.21 0.66"0.04 0.98"0.12 1.01"0.06 0.67"0.10
0.96 0.68"0.21 0.63"0.03 0.95"0.08 0.99"0.06 0.70"0.08
1.27 0.68"0.21 0.61"0.03 0.92"0.07 0.97"0.05 0.71"0.07
1.38 0.68"0.21 0.61"0.03 0.91"0.06 0.97"0.05 0.70"0.07
1.85 0.67"0.21 0.60"0.03 0.88"0.06 0.97"0.05 0.70"0.06
2.46 0.68"0.21 0.59"0.03 0.86"0.05 0.97"0.05 0.71"0.06
4.00 0.69"0.21 0.57"0.02 0.82"0.04 0.97"0.05 0.73"0.06

Using the estimates of the lattice spacing given in
table Table 1, we have taken m2a2 s0.96 and m2a2

s0.62, corresponding to ms2.08 GeV and ms
2.12 GeV, at bs6.0 and 6.2 respectively. We quote
the results as obtained at ms2 GeV, since the
running of the matrix elements between m;2.1 and
2.0 is totally negligible in comparison with the final
errors. In table Table 6, we summarize the values
which have been used to give the final estimates.
The columns denoted by me x p have been used to getK

Ž .the final results in Eq. 3 .
w xIn 22 B and B have been obtained at bs6.02 3

with the Wilson action and the operators renormal-
ized perturbatively in the MS scheme; the result is

B s0.59"0.01, B s0.79"0.01 22Ž .2 3

ŽAlthough a direct comparison is not possible our
.results are in the RI scheme , to the extent that the

matching coefficients between the two schemes are a
w x Ž . Ž .small effect 6 , comparison of Eq. 3 and Eq. 22

suggests that perturbative renormalization gives sig-

Table 6
B-parameters at the renormalization scale ms ay1 ,2 GeV,
corresponding to m2a2 s0.96 and m2a2 s0.62 at b s6.0 and

Ž .6.2 respectively. All results are in the RI MOM scheme

ŽB m,2 b s6.0 b s6.2
e x p e x p.GeV m s0 m s0 m s m m s0 m s mK K K K K K K

w x6 this work this work this work this work

Ž . Ž . Ž . Ž . Ž .B 0.66 11 0.70 15 0.70 15 0.68 21 0.68 211
Ž . Ž . Ž . Ž .B –- 0.61 3 0.66 3 0.63 6 0.66 42
Ž . Ž . Ž . Ž .B –- 1.10 8 1.12 7 0.94 16 0.98 123

Ž . Ž . Ž . Ž . Ž .B 1.03 3 1.04 4 1.05 3 0.98 8 1.01 64
Ž . Ž . Ž . Ž . Ž .B 0.72 5 0.68 7 0.79 6 0.46 13 0.67 105

nificantly different results in some cases. This con-
firms the need for non perturbative renormalization.

5. Conclusions

In this paper we have presented a lattice calcula-
tion of the matrix elements of the most general set of
DSs2 dimension-six four-fermion operators, renor-

Ž .malized non-perturbatively in the RI MOM scheme
w x3–7 . The calculations have been performed at two
different values of the lattice spacing a. Although
our precision is not sufficient to make an extrapola-
tion to the continuum limit, the comparison between
the results on two different lattices allows a better
estimate of the final errors. The main results for the
five B-parameters are summarized in Table 6. From
this table, we have extracted our best estimates

Ž .which are given in Eq. 3 . We observe that the
lattice values of B are close to their VSA whereas3,4

this is not true for B . Our results allow an1,2,5

improvement in the accuracy of phenomenological
analyses intended to put bounds on basic parameters
of theories beyond the Standard Model.
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