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Abstract—In this paper, we introduce degenerate versions of the hypergeometric Bernoulli and
Euler polynomials. We demonstrate that they form Δλ–Appell sets and provide some of their
algebraic properties, including inversion formulas, as well as the associated matrix formulation. Ad-
ditionally, we focus our attention on the monomiality principle associated with them and determine
the corresponding derivative and multiplicative operators.
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1. INTRODUCTION

As Choi has recently pointed out in his editorial note for the Special Issue Recent Advances in Spe-
cial Functions and Their Applications [4]: “Due to their remarkable properties, a plethora of special
functions have been crafted and harnessed across a diverse spectrum of fields spanning centuries. These
functions have found their place in a variety of disciplines, including mathematics, physics (quantum
mechanics, electrodynamics, thermodynamics, fluid dynamics, and solid-state physics), engineering,
statistics, astronomy and astrophysics, computer science, economics and finance, chemistry, biology,
geophysics, medicine, materials science, and environmental science. These are just a few examples, and
special functions can find applications in various other scientific and engineering disciplines whenever
complex mathematical relationships need to be described or solved”.

Among this broad class special functions are the degenerate Bernoulli–Euler and the generalized
degenerate Bernoulli–Euler polynomials of order α ∈ C, respectively. These polynomials were intro-
duced by Leonard Carlitz in the seminal papers [2, 3] by means of the generating functions and series
expansions

texλ(t)

eλ(t)− 1
=

∞∑
n=0

Bn,λ(x)
tn

n!
, (1)
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2exλ(t)

eλ(t) + 1
=

∞∑
n=0

En,λ(x)
tn

n!
, (2)

(
t

eλ(t)− 1

)α

exλ(t) =

∞∑
n=0

B(α)
n,λ(x)

tn

n!
, (3)

(
2

eλ(t) + 1

)α

exλ(t) =
∞∑
n=0

E(α)
n,λ(x)

tn

n!
, (4)

where for λ, x, t ∈ R, the degenerate exponentials are defined as follows (cf. [20])

exλ(t) =

{
(1 + λt)

x
λ , if λ ∈ R \ {0}

ext, if λ = 0,
=

{∑∞
n=0(x)n,λ

tn

n! , |λt| < 1, if λ ∈ R \ {0}∑∞
n=0 x

n tn

n! , if λ = 0.

As usual, for x = 1 we use the notation eλ(t) = e1λ(t), and the generalized falling factorials (x)n,λ, are
given by (cf. [18–20])

(x)n,λ =

⎧⎪⎨
⎪⎩

1, if n = 0∏n
i=1(x− (i− 1)λ), if n ≥ 1

0, if n < 0,

where x, λ ∈ R and n ∈ Z.

It is clear that ex0(t) = ext, (x)n,0 = xn, and the series expansions (1)–(4) are valid in a suitable
neighborhood of t = 0, providing degenerate versions of the classical Bernoulli and Euler polynomials,
respectively.

Since their introduction, these families of special polynomials have been intensively studied. Mo-
tivated by a number of interesting and recent contributions [12, 18–20, 23–26] in which the au-
thors provide inversion type formulas for the degenerate Bernoulli/Euler polynomials, identities of
symmetry for degenerate Euler polynomials, several properties of degenerate Bernstein polynomials,
degenerate differential/difference operators, matrix-inversion formulas for mixed-type hypergeomet-
ric Bernoulli–Gegenbauer polynomials, and different properties and applications for hypergeometric
Bernoulli/Euler polynomials, in the present paper we consider separately degenerate versions of hy-
pergeometric Bernoulli/Euler polynomials, and study some of their properties. More precisely, we
demonstrate that they form Δλ-Appell sets and provide their corresponding inversion formulas, as
well as the associated matrix formulation. Additionally, we focus our attention on the monomiality
principle associated with these two families of special polynomials and determine their derivative and
multiplicative operators.

The paper is organized as follows. Section 2 serves as a preliminary section containing the necessary
definitions, notation, and terminology, including a brief summary of Δλ-Appell polynomials and some
relevant properties of hypergeometric Bernoulli/Euler polynomials. In Section 3, we demonstrate
that the sequences of hypergeometric Bernoulli/Euler polynomials are Δλ-Appell sequences (Theorem
1) and provide the corresponding inversion formulas (Theorem 2), as well as the associated matrix
formulation (Corollary 1). Section 4 is devoted to the study of the monomiality principle associated
with such special polynomials (Theorem3).

2. NOTATION AND BACKGROUND

Throughout this paper, let N,N0,Z,R, and C denote, respectively, the set of all natural numbers,
the set of all non-negative integers, the set of all integers, the set of all real numbers, and the set of all
complex numbers. Furthermore, the convention 00 = 1 will be adopted. Also, we denote by Pn the linear
space of polynomials with real coefficients and degree less than or equal to n.
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For w ∈ C and k ∈ Z, we use the notations w(k) and (w)k for the rising and falling factorials,
respectively, i.e.,

w(k) =

⎧⎪⎨
⎪⎩
1, if k = 0∏k

i=1(w + i− 1), if k ≥ 1

0, if n < 0

and (w)k =

⎧⎪⎨
⎪⎩
1, if k = 0∏k

i=1(w − i+ 1), if k ≥ 1

0, if n < 0.

Remark. It is not difficult to see that for n ∈ N0 the set {1, x, x(x − λ), . . . , (x)n,λ} is a Newton basis
for Pn.

Following the ideas from [6, 14], we consider the notion of Δλ-Appell sequences, as follows: let I ⊂ R

be any interval, f : I → R be a function and λ ∈ R
+. We denote Δλ the finite difference operator given

by Δλ[f ](x) = f(x+ λ)− f(x).
Let us define the finite difference operator of order k, with k ∈ N, as

Δk
λ[f ](x) = Δλ

[
Δk−1

λ [f ]
]
(x) =

k∑
j=0

(−1)k−j

(
k

j

)
f(x+ jλ),

where the conventions Δ0
λ = I and Δ1

λ = Δλ are adopted, being I the identity operator.
A sequence of polynomials {pλn(x)}n≥0 ≡ {pn(x)}n≥0 is called Δλ-Appell sequence if it satisfies the

following conditions

(1) deg(pn(x)) = n, for n ≥ 0,

(2) Δλ [pn] (x) = nλpn−1(x), for all n ≥ 1.

For instance, for each λ ∈ R the generalized {(x)n,λ}n≥0 falling factorials are Δλ-Appell sequences
and they satisfy the following relation [6]

Δk
λ[(x)n,λ] =

n!

(n− k)!
(x)n−k,λ, 0 ≤ k ≤ n.

Furthermore, if we consider the degenerate exponential exλ(t) as a function of the variable x, that is
ft,λ(x) = exλ(t), then we have

Δλ[e
x
λ](t) = λtexλ(t). (5)

Δλ-Appell polynomials was considered and studied from an algebraic point of view by Costabile and
Longo in [6]. More precisely, given the power series

a(t) = α0 +
t

1!
α1 +

t2

2!
α2 + · · · + tn

n!
αn + · · · , α0 �= 0 (6)

with αi ∈ R, i ∈ N0, and {pn(x)}n∈N0
the sequence of Δλ-Appell polynomials determined by the series

expansion of the product functions a(t)(1 + λt)
x
λ , i.e.,

a(t)(1 + λt)
x
λ = p0(x) +

t

1!
p1(x) +

t2

2!
p2(x) + · · ·+ tn

n!
pn(x) + · · · .

Costabile and Longo [6] obtained that if {βj}j∈N0
(β0 �= 0) is the sequence of Taylor coefficients for the

series expansion of 1
a(t) , then⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p0(x) =
1
β0
,

pn(x) =
(−1)n

(β0)
n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 (x)1 · · · (x)n−1 (x)n

β0 β1 · · · βn−1 βn

0 β0 · · ·
(
n−1
1

)
βn−2

(
n
1

)
βn−1

· · ·
(n−1

2

)
βn−3

(n
2

)
βn−2

...
...

. . .
...

...

0 0 · · · β0
( n
n−1

)
β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, n = 1, 2, . . .

(7)
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Consequently, the polynomial characterization (7) allows to prove some known general properties, by
using elementary linear algebra tools as in the setting of Appell polynomials (see, [5] for more details).

2.1. Hypergeometric Bernoulli/Euler Polynomials

For a fixed m ∈ N, the hypergeometric Bernoulli polynomials are defined by means of the following
generating function [11, 13, 22–24]

tmext

et −
∑m−1

l=0
tl

l!

=
∞∑
n=0

B[m−1]
n (x)

tn

n!
, |t| < 2π, (8)

and the hypergeometric Bernoulli numbers are defined by B
[m−1]
n := B

[m−1]
n (0) for all n ≥ 0. The

hypergeometric Bernoulli polynomials also are called generalized Bernoulli polynomials of level m
[24, 25]. It is clear that if m = 1 in (8), then we recover the definition of the classical Bernoulli

polynomials Bn(x) and classical Bernoulli numbers, respectively, i.e., Bn(x) = B
[0]
n (x) and Bn = B

[0]
n ,

respectively, for all n ≥ 0.
The first four hypergeometric Bernoulli polynomials are as follows

B
[m−1]
0 (x) = m!, B

[m−1]
1 (x) = m!

(
x− 1

m+ 1

)
,

B
[m−1]
2 (x) = m!

(
x2 − 2

m+ 1
x+

2

(m+ 1)2(m+ 2)

)
,

B
[m−1]
3 (x) = m!

(
x3 − 3

m+ 1
x2 +

6

(m+ 1)2(m+ 2)
x+

6(m− 1)

(m+ 1)3(m+ 2)(m+ 3)

)
.

Similarly, for a fixed m ∈ N, the hypergeometric Euler polynomials are defined as follows (see for
instance, [26])

2mext

et +
∑m−1

l=0
tl

π

=
∞∑
n=0

E[m−1]
n (x)

tn

n!
, |t| < π, (9)

and the hypergeometric Euler numbers are defined by E
[m−1]
n := E

[m−1]
n (0), for all n ≥ 0. The

hypergeometric Euler polynomials also are called generalized Euler polynomials of level m [25]. Again,
if m = 1 in (9), then we recover the definition of the classical Euler polynomials En(x), and classical

Euler numbers, respectively, i.e., En(x) = E
[0]
n (x), and En = 2nE

[0]
n

(
1
2

)
= 2nEn

(
1
2

)
, respectively, for

all n ≥ 0.
For instance, if m = 3, then the first six hypergeometric Euler polynomials are

E
[2]
0 (x) = 4, E

[2]
1 (x) = 4(x− 1), E

[2]
2 (x) = 4(x− 1)2, E

[2]
3 (x) = 4x3 − 12x2 + 12x− 2,

E
[2]
4 (x) = 4x4 − 16x3 + 24x2 − 8x− 10, E

[2]
5 (x) = 4x5 − 20x4 + 40x3 − 20x2 − 50x+ 58.

The following results collect some properties satisfied by these two families of polynomials (cf.
[22, 26]).

Proposition 1. For a fixed m ∈ N, let
{
B

[m−1]
n (x)

}
n≥0

be the hypergeometric Bernoulli

polynomials. Then, the following statements hold

a) Summation formula. For every n ≥ 0, B[m−1]
n (x) =

∑n
k=0

(
n
k

)
B

[m−1]
k xn−k.

b) Differential relations (Appell polynomial sequences). For n, j ≥ 0 with 0 ≤ j ≤ n, we have[
B[m−1]

n (x)
](j)

=
n!

(n − j)!
B

[m−1]
n−j (x).
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c) Inversion formula [22, Equation (2.6)]. For every n ≥ 0,

xn =
n∑

k=0

(
n

k

)
k!

(m+ k)!
B

[m−1]
n−k (x).

Consequently, the set
{
B

[m−1]
0 (x), B

[m−1]
1 (x), . . . , B

[m−1]
n (x)

}
is a basis for Pn (cf. [24]).

d) Recurrence relation [22, Lemma 3.2]. For every n ≥ 1,

B[m−1]
n (x) =

(
x− 1

m+ 1

)
B

[m−1]
n−1 (x)− 1

n(m− 1)!

n−2∑
k=0

(
n

k

)
B

[m−1]
n−k B

[m−1]
k (x).

e) Integral formulas
x1∫

x0

B[m−1]
n (x)dx =

1

n+ 1

[
B

[m−1]
n+1 (x1)−B

[m−1]
n+1 (x0)

]

=

n∑
k=0

1

n− k + 1

(
n

k

)
B

[m−1]
k ((x1)

n−k+1 − (x0)
n−k+1).

B[m−1]
n (x) = n

∫ x

0
B

[m−1]
n−1 (t)dt+B[m−1]

n .

f) [22, Theorem 3.1] Differential equation. For every n ≥ 1, the polynomial B[m−1]
n (x) satisfies

the following differential equation

B
[m−1]
n

n!
y(n) +

B
[m−1]
n−1

(n− 1)!
y(n−1) + · · ·+ B

[m−1]
2

2!
y′′

+ (m− 1)!

(
1

m+ 1
− x

)
y′ + n(m− 1)!y = 0.

Proposition 2. For a fixed m ∈ N, let
{
E

[m−1]
n (x)

}
n≥0

be the hypergeometric Euler polynomi-

als. Then, the following statements hold

a) Summation formulas. For every n ≥ 0,

E[m−1]
n (x+ y) =

n∑
k=0

⎛
⎝n

k

⎞
⎠ ykE

[m−1]
n−k (x) =

n∑
k=0

⎛
⎝n

k

⎞
⎠E

[m−1]
k (y)xn−k.

In particular,

E[m−1]
n (x) =

n∑
k=0

⎛
⎝n

k

⎞
⎠E

[m−1]
k xn−k.

b) Differential relations (Appell polynomial sequences). For n, j ≥ 0 with 0 ≤ j ≤ n, we have[
E[m−1]

n (x)
](j)

=
n!

(n− j)!
E

[m−1]
n−j (x).
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c) Inversion formula. For every n ≥ 0,

2mxn =

n∑
k=0

⎛
⎝n

k

⎞
⎠ (1 + ak,m)E

[m−1]
n−k (x), where ak,m =

{
1, 0 ≤ k < m,

0, k ≥ m.

Consequently, the set
{
E

[m−1]
0 (x), E

[m−1]
1 (x), . . . , E

[m−1]
n (x)

}
is a basis for Pn (cf., [26]).

d) Integral formulas
x1∫

x0

E[m−1]
n (x)dx =

1

n+ 1

[
E

[m−1]
n+1 (x1)− E

[m−1]
n+1 (x0)

]

=

n∑
k=0

1

n− k + 1

⎛
⎝n

k

⎞
⎠E

[m−1]
k

(
(x1)

n−k+1 − (x0)
n−k+1

)
.

E[m−1]
n (x) = n

∫ x

0
E

[m−1]
n−1 (t)dt+ E[m−1]

n .

e) Recurrence relation. For any m ≥ 2 and n ≥ 0, the following recurrence relation holds

E
[m−1]
n+1 (x) =

(
2xE[m−2]

n − E[m−1]
n

)
+

1

2m−1

n∑
k=1

[((
n

k

) (
2xE

[m−2]
n−k − E

[m−1]
n−k

)

−2

((
n

k − 1

))
E

[m−2]
n−k+1

]
E

[m−1]
k (x).

f) Differential equation. For any m ≥ 2, the hypergeometric Euler polynomials E
[m−1]
n (x)

satisfy the differential equation

0 =

[
2

n!

(
E[m−2]

n − 1
)
+

2xE
[m−2]
n−1 − E

[m−1]
n−1

(n− 1)!

]
y(n)

+

[
2

(n− 1)!

(
E

[m−2]
n−1 − 2

)
+
2xE

[m−2]
n−2 − E

[m−1]
n−2

(n− 2)!

]
y(n−1)

+ · · ·+
[
2m−1(1− x)− n+ 1 + E

[m−2]
2

]
y′′ +

[
2m−1(x− 2)− 2n

]
y′ − n2m−1y.

3. DEGENERATE VERSIONS OF HYPERGEOMETRIC BERNOULLI
AND EULER POLYNOMIALS

In this section, we introduce degenerate versions of the hypergeometric Bernoulli and Euler polyno-
mials. We demonstrate that they form Δλ-Appell sets and present some of their algebraic properties,
including inversion formulas, as well as the associated matrix formulation.

Definition 1. For λ ∈ R \ {0} and a fixed m ∈ N, the degenerate hypergeometric of Bernoulli
and Euler polynomials are defined by means of the following generating function and series

tm exλ(t)

eλ(t)−
∑m−1

l=0 (1)l,λ
tl

l!

=

∞∑
n=0

B
[m−1]
n,λ (x)

tn

n!
, |t| < min

{
2π,

1

|λ|

}
(10)

and

2m exλ(t)

eλ(t) +
∑m−1

l=0 (1)l,λ
tl

l!

=

∞∑
n=0

E
[m−1]
n,λ (x)

tn

n!
, |t| < min

{
π,

1

|λ|

}
. (11)
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The substitution x = 0 into (10) and (11) yields, respectively, the degenerate hypergeometric

Bernoulli and Euler numbers, i.e., B[m−1]
n,λ := B

[m−1]
n,λ (0) and E

[m−1]
n,λ := E

[m−1]
n,λ (0). Also, the following

implicit summation formulas hold

B
[m−1]
n,λ (x+ y) =

n∑
k=0

(
n

k

)
(y)n−k,λB

[m−1]
k,λ (x) =

n∑
k=0

(
n

k

)
B

[m−1]
k,λ (y)(x)n−k,λ,

E
[m−1]
n,λ (x+ y) =

n∑
k=0

(
n

k

)
(y)n−k,λE

[m−1]
k,λ (x) =

n∑
k=0

(
n

k

)
E

[m−1]
k,λ (y)(x)n−k,λ.

In particular,

B
[m−1]
n,λ (x) =

n∑
k=0

(
n

k

)
(x)n−k,λB

[m−1]
k,λ , E

[m−1]
n,λ (x) =

n∑
k=0

(
n

k

)
(x)n−k,λE

[m−1]
k,λ .

Furthermore, due to the generating functions (10) and (11), the identity

∂

∂x
exλ(t) =

ln(1 + λt)

λ
exλ(t),

and the well-known Maclaurin series

ln(1 + λt) =

∞∑
n=1

(−1)n+1λn

n
tn, |λt| < 1,

it is not difficult to appropriately use the Cauchy product of series to deduce that the derivatives of
degenerate hypergeometric Bernoulli and Euler polynomials satisfy the following identities:

d

dx
B

[m−1]
n,λ (x) =

n∑
k=0

(
n

k

)
bk,λB

[m−1]
n−k,λ(x), (12)

d

dx
E

[m−1]
n,λ (x) =

n∑
k=0

(
n

k

)
bk,λE

[m−1]
n−k,λ(x), (13)

where

bn,λ =

{
0, if n = 0,

(−1)n+1(n+ 1)!λn−1, if n �= 0.

Thus, from (12) and (13), these polynomials do not satisfy an Appell condition.

Theorem 1. For a fixed m ∈ N the sequences
{
B

[m−1]
n,λ (x)

}
n≥0

and
{
E

[m−1]
n,λ (x)

}
n≥0

are Δλ-

Appell sequences.

Proof. Since deg
(
B

[m−1]
n,λ (x)

)
= deg

(
E

[m−1]
n,λ (x)

)
= n, it is suffices to prove that

Δλ

[
B

[m−1]
n,λ

]
(x) = λnB

[m−1]
n−1,λ(x), (14)

Δλ

[
E

[m−1]
n,λ

]
(x) = λnE

[m−1]
n−1,λ(x), (15)

whenever n ≥ 1.
In order to prove the identity (14), we proceed as follows. We consider the generating function

tmexλ(t)

eλ(t)−
∑m−1

l=0 (1)l,λ
tl

l!

, as a function depending on the variable x, i.e.,

G
[m−1]
t,λ (x) =

tmexλ(t)

eλ(t)−
∑m−1

l=0 (1)l,λ
tl

l!

,
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and then, applying the finite difference operator Δλ to G
[m−1]
t,λ and using (5), we get

Δλ

[
G

[m−1]
t,λ

]
(x) = λtG

[m−1]
t,λ (x) = λt

[
tmexλ(t)

eλ(t)−
∑m−1

l=0 (1)l,λ
tl

l!

]
.

Or, equivalently, Δλ

[
G

[m−1]
t,λ

]
= λtG

[m−1]
t,λ . Therefore,

∞∑
n=0

Δλ

[
B

[m−1]
n,λ

]
(x)

tn

n!
=

∞∑
n=0

λnB
[m−1]
n−1,λ(x)

tn

n!
. (16)

Consequently, comparing the coefficients on both sides of (16), equality (14) follows.

A similar reasoning applied to the generating function
2mexλ(t)

eλ(t)+
∑m−1

l=0 (1)l,λ
tl

l!

, as a function depending on

the variable x, yields (15). �

Theorem 2. For a fixed m ∈ N the sequences
{
B

[m−1]
n,λ (x)

}
n≥0

and
{
E

[m−1]
n,λ (x)

}
n≥0

satisfy,

respectively, the following inversion formulas

(x)n,λ =

n∑
k=0

(
n

k

)
k!(1)k+m,λ

(k +m)!
B

[m−1]
n−k,λ(x), (17)

(x)n,λ =
1

2m

n∑
k=0

(
n

k

)
ak,λE

[m−1]
n−k,λ(x), (18)

where

an,λ =

{
2(1)n,λ, if 0 ≤ n < m,

(1)n,λ, if n ≥ m.

Consequently, the sets{
B

[m−1]
0,λ (x), B

[m−1]
1,λ (x), . . . , B

[m−1]
n,λ (x)

}
and

{
E

[m−1]
0,λ (x), E

[m−1]
1,λ (x), . . . , E

[m−1]
n,λ (x)

}
are bases for Pn.

Proof. Using (10), we can deduce that

tmexλ(t) =

(
eλ(t)−

m−1∑
l=0

(1)l,λ
tl

l!

)( ∞∑
n=0

B
[m−1]
n,λ (x)

tn

n!

)

=

∞∑
l=m

(1)l,λ
tl

l!

∞∑
n=0

B
[m−1]
n,λ (x)

tn

n!
= tm

∞∑
n=0

n∑
k=0

(1)k+m,λ

(k +m)!(n − k)!
tn.

Hence,
∞∑
n=0

(x)n,λ
tn

n!
=

∞∑
n=0

n∑
k=0

(
n

k

)
k!(1)k+m,λ

(k +m)!
B

[m−1]
n−k,λ(x)

tn

n!
, (19)

and comparing the coefficients on both sides of (19), we obtain (17).
Analogously, (11) implies that

2mext =

(
eλ(t) +

m−1∑
l=0

(1)l,λ
tl

l!

)( ∞∑
n=0

E
[m−1]
n,λ (x)

tn

n!

)
=

∞∑
n=0

an,λ
tn

n!

∞∑
n=0

E
[m−1]
n,λ (x)

tn

n!
,

where

an,λ =

{
2(1)n,λ, if 0 ≤ n < m,

(1)n,λ, if n ≥ m.
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Therefore,
∞∑
n=0

(x)n,λ
tn

n!
=

1

2m

∞∑
n=0

n∑
k=0

(
n

k

)
ak,λE

[m−1]
n−k,λ(x)

tn

n!
, (20)

and comparing the coefficients on both sides of (20), equality (18) follows.
To conclude, by combining the fact that the set {1, x, x(x − λ), . . . , (x)n,λ} forms a specific Newton

basis for Pn with the inversion formulas (17) and (18), we complete the proof. �

Theorem 2 offers an alternative approach to compute degenerate hypergeometric Bernoulli and Euler
polynomials using inversion formulas instead of the determinant method (6). For instance, by referring
to (17), one can readily obtain and explicit representation of the first four degenerate hypergeometric
Bernoulli polynomials as follows:

B
[m−1]
0,λ (x) =

m!

(1)m,λ
, B

[m−1]
1,λ (x) =

m!

(1)m,λ

[
x− (1−mλ)

(m+ 1)

]
,

B
[m−1]
2,λ (x) =

m!

(1)m,λ

[
(x)2,λ − 2(1)m+1,λ

(m+ 1)(1)m,λ
x

+
2(1)m+1,λ(1−mλ)

(m+ 1)2(1)m,λ
− 2(1)m+2,λ

(m+ 2)(m+ 1)(1)m,λ

]
,

B
[m−1]
3,λ (x) =

m!

(1)m,λ

[
(x)3,λ − 3(1)m+1

(m+ 1)(1)m,λ
(x)2,λ

+

(
6(1)2+m,λ

(m+ 2)(m+ 1)(1)m,λ
−

6(1)2m+1

(m+ 1)2(1)m,λ

)
x

+

(
6(1)2m+1,λ

(m+ 1)3(1)2m,λ

− 6(1)m+2,λ

(m+ 2)(m+ 1)2(1)m,λ

)
(1−mλ)

+

(
6(1)m+3,λ

(m+ 3)(m+ 2)(m+ 1)(1)m,λ
− 6(1)m+1,λ(1)m+2,λ

(m+ 1)2(m+ 2)(1)2m,λ

)]
.

Similarly, by referring to (18), one can readily obtain and explicit representation of the first four
degenerate hypergeometric Euler polynomial as follows:

E
[m−1]
0,λ (x) = 2m−1, E

[m−1]
1,λ (x) = 2m−1(x− 1), E

[m−1]
2,λ (x) = 2m−1

[
(x− 1)2 − λ(x− 1)

]
,

E
[m−1]
3,λ (x) = 2m−1

[
(x− 1)3 − 2λ2(x− 1)− 6x2 + 3λ(x+ 1)− 3λ(1 + λ) + (6x+ 3λ− 3)

]
.

From a matrix perspective, Theorem 2 yields the following corollaries.

Corollary 1. For a fixed m ∈ N and any n ∈ N0, the matrix Tλ(x) =
(
1 (x)1,λ · · · (x)n,λ

)T
admits two representations

Tλ(x) = M
[m−1]
λ B

[m−1]
λ (x), Tλ(x) =

1

2m
N

[m−1]
λ E

[m−1]
λ (x),

where M
[m−1]
λ and N

[m−1]
λ are (n+ 1)× (n+ 1) lower triangular matrices defined as

M
[m−1]
λ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1)m,λ

m! 0 0 · · · 0

(1)1+m,λ

(1+m)!
(1)m,λ

m! 0 · · · 0

2
(1)2+m,λ

(2+m)! 2
(1)1+m,λ

(1+m)!
(1)m,λ

m! · · · 0
...

...
...

. . .
...

n!
(1)n+m,λ

(n+m)! n!
(1)n+m−1,λ

(n+m−1)!
n!
2!

(1)n+m−2,λ

(n+m−2)! · · · (1)m,λ

m!

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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N
[m−1]
λ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0,λ 0 0 · · · 0

a1,λ a0,λ 0 · · · 0

a2,λ 2a1,λ a0,λ · · · 0
...

...
...

. . .
...

an,λ
( n
n−1

)
an−1,λ

( n
n−2

)
an−2,λ · · · a0,λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

B
[m−1]
λ (x) =

(
B

[m−1]
0,λ (x) B

[m−1]
1,λ (x) · · · B

[m−1]
n,λ (x)

)T
,

and

E
[m−1]
λ (x) =

(
E

[m−1]
0,λ (x) E

[m−1]
1,λ (x) · · · E

[m−1]
n,λ (x)

)T
.

Under the hypotheses of Theorem 2, it is evident that the matrix N
[m−1]
λ is invertible. Consequently,

Corollary 2. For a fixed m ∈ N and any n ∈ N0, the following holds

E
[m−1]
λ (x) = 2m

(
N

[m−1]
λ

)−1
M

[m−1]
λ B

[m−1]
λ (x).

4. ASSOCIATED MONOMIALITY PRINCIPLE

It is well known that the monomiality principle is based on an abstract definition of the concept of
derivative and multiplicative operators which allows us to treat different families of special polynomials
as ordinary monomials. The procedure underlines a generalization of the Heisenberg–Weyl group, and
many relevant properties of a broad classes of special polynomials can be conveniently framed within the
context of the monomiality principle (see, for instance [8, 10]). This principle is essentially a Giuseppe
Datolli modern formulation of a point of view, not only tracing back to Steffensen [27–29], but even to
older studies by H.M. Jeffery (cf. [7–9] and the references therein).

The rules underlying monomiality are fairly simple and can be formulated as follows.

Let x ∈ R and n ∈ N. If a couple of operators D̂,M̂ are such that

(a) They do exist along with a differential realization, cf. [9].

(b) They can be embedded to form Weyl algebra, namely, if the commutator is such that [D̂,M̂] :=

D̂M̂ − M̂D̂ = 1̂.

(c) It is possible to univocally define a polynomial set such that

p0(x) = 1, D̂p0(x) = 0, pn(x) = M̂np0(x) = M̂n1,

then it follows that

M̂pn(x) = M̂n+11 = pn+1(x), (21)

D̂pn(x) = D̂M̂n1 = npn−1(x), (22)

and the polynomials {pn(x)}n≥0 are called quasi-monomials.

A consequence of (21) and (22), we have that pn(x) satisfies the differential equation M̂D̂{pn(x)} =

npn(x), if M̂ and D̂ have differential realizations.
The primary objective of the monomiality principle is to identify operators for multiplication and

differentiation. Additionally, in the context of the monomiality principle, we establish the following
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outcomes to characterize the degenerate hypergeometric Bernoulli polynomials B
[m−1]
n,λ (x) and the

degenerate hypergeometric Euler E[m−1]
n,λ (x) polynomials.

In what follows, we determine the derivative and multiplicative operators associated to degenerate
hypergeometric Bernoulli/Euler polynomials. In order to do that we have consider some ideas from [17].

Theorem 3. For a fixed m ∈ N the polynomials
{
B

[m−1]
n,λ (x)

}
n≥0

and
{
E

[m−1]
n,λ (x)

}
n≥0

are quasi-

monomials with respect to the following derivative and multiplicative operators

D̂[m−1]
λ =

eλ
∂
∂x − 1

λ
, (23)

M̂
[m−1]
λ =

λm

eλ
∂
∂x − 1

+
x

eλ
∂
∂x

−
(e

∂
∂x )1−λ −

∑m−2
l=0 (1)l+1,λ

(eλ
∂
∂x−1)l

λll!

e
∂
∂x −

∑m−1
l=0 (1)l,λ

(eλ
∂
∂x−1)l

λll!

, (24)

and

N̂
[m−1]
λ =

x

eλ
∂
∂x

−
(e

∂
∂x )1−λ +

∑m−2
l=0 (1)l+1,λ

(eλ
∂
∂x−1)l

λll!

e
∂
∂x +

∑m−1
l=0 (1)l,λ

(eλ
∂
∂x−1)l

λll!

. (25)

Proof. Since

eλ
∂
∂x(e

x
λ(t)) = eλ

∂
∂x(ln(1+λt)x/λ) = eλ

∂
∂x(x ln(1+λt)1/λ) = eλ ln(1+λt)1/t = eln(1+λt) = 1 + λt,

we have eλ
∂
∂x (e

x
λ(t))−1
λ = t, which implies that

(
eλ

∂
∂x (e

x
λ(t))−1
λ

)
exλ(t) = texλ(t). Or, equivalently,

(
eλ

∂
∂x − 1

λ

)
exλ(t) = texλ(t). (26)

Let us define the derivative operator D̂[m−1]
λ as follows: D̂[m−1]

λ = eλ
∂
∂x−1
λ . Thus, from (10), (11), (26),

and direct calculations, it follows that

D̂[m−1]
λ B

[m−1]
n,λ (x) = nB

[m−1]
n−1,λ(x), D̂[m−1]

λ E
[m−1]
n,λ (x) = nE

[m−1]
n−1,λ(x),

whenever n ≥ 1.
In order to prove (24), we proceed as follows. Let us consider the generating function

B
[m−1]
λ (x, t) =

tmexλ(t)

eλ(t)−
∑m−1

l=0 (1)l,λ
tl

l!

.

Then, differentiation of B[m−1]
λ (x, t) with respect to t, yields

∂

∂t
B

[m−1]
λ (x, t) =

(
m

t
+

x

1 + λt
−

e1−λ
λ (t)−

∑m−2
l=0 (1)l+1,λ

tl

l!

eλ(t)−
∑m−1

l=0 (1)l,λ
tl

l!

)
B

[m−1]
λ (x, t). (27)

So, from differentiation with respect to t on the right hand side of (10) and (27), we can deduce that(
m

t
+

x

1 + λt
−

e1−λ
λ (t)−

∑m−2
l=0 (1)l+1,λ

tl

l!

eλ(t)−
∑m−1

l=0 (1)l,λ
tl

l!

)
B

[m−1]
λ (x, t) =

∞∑
n=0

B
[m−1]
n+1,λ(x)

tn

n!
.

We define the multiplicative operator as follows:

M̂
[m−1]
λ =

m

t
+

x

1 + λt
−

(1 + λt)
1−λ
λ −

∑m−2
l=0 (1)l+1,λ

tl

l!

(1 + λt)
1
λ −

∑m−1
l=0 (1)l,λ

tl

l!
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=
λm

eλ
∂
∂x − 1

+
x

eλ
∂
∂x

−
(e

∂
∂x )1−λ −

∑m−2
l=0 (1)l+1,λ

(eλ
∂
∂x−1)l

λll!

e
∂
∂x −

∑m−1
l=0 (1)l,λ

(eλ
∂
∂x−1)l

λll!

.

Hence, by using (10), (27), and the last formulas, we obtain
∞∑
n=0

M̂
[m−1]
λ B

[m−1]
n,λ (x)

tn

n!
=

∞∑
n=0

B
[m−1]
n+1,λ(x)

tn

n!
, (28)

and by comparing the coefficients on both sides of (28), we conclude that

M̂
[m−1]
λ B

[m−1]
n,λ (x) = B

[m−1]
n+1,λ(x).

Finally, a similar argument can be applied for the proof of (25). �
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