
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
2025, Vol. 18, Issue 1, Article Number 5656
ISSN 1307-5543 – ejpam.com
Published by New York Business Global

The Monomiality Principle Applied to Extensions of
Apostol-Type Hermite Polynomials

Stiven Dı́az1∗, William Ramı́rez1,2, Clemente Cesarano2, Juan Hernández3,
Escarlin Claribel Pérez Rodŕıguez4
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Abstract. In this research paper, we present a class of polynomials referred to as Apostol-type
Hermite-Bernoulli/Euler polynomials Uν(x, y; ρ;µ), which can be given by the following generating
function

2− µ+ µ
2 ξ

ρeξ + (1− µ)
exξ+yξ2 =

∞∑
ν=0

Uν(x, y; ρ;µ)
ξν

ν!
,

for some particular values of ρ and µ. Further, the summation formulae and determinant forms of
these polynomials are derived. This novel family encompasses both the classical Appell-type poly-
nomials and their noteworthy extensions. Our investigations heavily rely on generating function
techniques, supported by illustrative examples to demonstrate the validity of our results. Fur-
thermore, we introduce derivative and multiplicative operators, facilitating the definition of the
Apostol-type Hermite-Bernoulli/Euler polynomials as a quasi-monomial set.
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1. Introduction

The Appell polynomials {An(x)}n=0,1,2,... are a family of special functions introduced
by the French mathematician Paul Appell (see [2]). These polynomials are defined by a
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generating function

A(ξ)exξ =
∞∑
ν=0

Aν(x)
ξν

ν!
, (1)

where A(ξ) is given by

A(ξ) =

∞∑
ν=0

αν
ξν

ν!
,

and αν are real coefficients. Further, An(x) satisfying the recursive relations

d

dx
Aν(x) = νAν−1(x). (2)

The Appell polynomials have various properties that make them useful in mathematical
analysis, particularly in the study of differential equations and other fields [15, 18]. Famous
instances of polynomial sequences that satisfy (1), or equivalently the recursive relations,
include: The polynomials of Bernoulli and Euler. The exponential generating function of
the geometric polynomials of Bernoulli and Euler are given by (see [1, 23]):

ξexξ

eξ − 1
=

∞∑
ν=0

Bν(x)
ξν

ν!
, |ξ| < 2π,

and
2exξ

eξ + 1
=

∞∑
ν=0

Eν(x)
ξν

ν!
, |ξ| < π.

It is known that the Bernoulli polynomials can be expressed in terms of the Bernoulli
numbers Bs. In fact, for ν ∈ N0 := N∪{0}, using the generating function of the Bernoulli
polynomials, we obtain

Bν(x) =

ν∑
s=0

(
ν

s

)
Bsx

ν−s.

Analogously, the Euler polynomials are given by

Eν(x) =
ν∑

s=0

(
ν

s

)
Es

2s

(
x− 1

2

)ν−s

,

where Es are the Euler numbers. On the other hand, F. Costabile et al. [9] have pre-
sented multiple approaches to Appell polynomials using a determinant-based definition.
Through the application of basic linear algebra techniques, these approaches have suc-
cessfully recovered the essential properties of the polynomials. Furthermore, a triangular
theorem establishes the equivalence between these different approaches. For example, the
definition for Bernoulli polynomials using a determinantal approach is given by

B0(x) = 1,
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Bν(x) =
(−1)ν

(ν − 1)!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x x2 · · · xν−1 xν

1 1
2

1
3 · · · 1

ν−1
1
ν

0 1 1 · · · 1 1
0 0 2 · · · ν − 1 ν
...

...
. . .

...
...

...
...

0 0 · · · · · ·
(
ν−1
ν−2

) (
ν

ν−2

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, ν = 1, 2, 3, · · · (3)

Over the years, there have been further explorations and expansion of the aforemen-
tioned polynomials, leading to the inclusion of new families and generalizations [16]. Re-
cently, H. Belbachir et al. [3] introduced and studied properties of a class of polynomials,
Uν(x; ρ;µ), called unified Bernoulli-Euler polynomials of Apostol type and defined by the
following power series:

2− µ+ µ
2 ξ

ρeξ + (1− µ)
exξ =

∞∑
ν=0

Uν(x; ρ;µ)
ξν

ν!
, (4)

where ∣∣∣∣ln( ρ

1− µ

)
+ ξ

∣∣∣∣ < π, 0 ≤ µ < 1,

and ∣∣∣∣ln( ρ

µ− 1

)
+ ξ

∣∣∣∣ < 2π, otherwise.

Note that for particular values in the parameters µ and ρ, we can obtain in (4), the
polynomials of Bernoulli and Euler (as well as Apostol-Bernoulli and Apostol-Euler, see
[1]). However, this particular family does not take into account degenerate polynomials,
and Apostol-type Hermite polynomials (called Hybrid polynomials by some authors) that
have garnered the attention of various researchers and play an important role in many
problems. In the paper [10], an extension of (4) to degenerate polynomials was already
carried out but to the best of our knowledge, an extension with the Apostol-type Hermite
polynomials has not been developed and remains an open problem.

It is important to highlight that the polynomial family introduced by H. Belbachir et al.
does not constitute a unification of the aforementioned polynomial families. By applying
the reduction method outlined in Theorem 4 by L. Navas et al., we can effectively reduce
this polynomial family to a linear combination of Apostol-Euler and Apostol-Bernoulli
polynomials (see [3, 17]).

Uν(x; ρ;µ) =
1

1− µ

[(
1− µ

2

)
Eν

(
x;

ρ

1− µ

)
− µ

2
Bν

(
x;

ρ

µ− 1

)]
,

where
ξexξ

ρeξ − 1
=

∞∑
ν=0

Bν(x; ρ)
ξν

ν!
,
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and
2exξ

ρeξ + 1
=

∞∑
ν=0

Eν(x; ρ)
ξν

ν!
.

The primary objective of this paper is to define and explore an extension of Apostol-
type Hermite polynomials utilizing the polynomials presented in equation (4). The proper-
ties of this polynomial family, which we shall refer to as Apostol-type Hermite-Bernoulli/Euler
polynomials, are characterized by their generating functions, summation formulae, and
determinant forms. These polynomials encompass classical Appell-type polynomials and
their notable extensions, as they satisfy the differential equations (2). However, it is cru-
cial to clarify that, within the scope of our study, we will utilize the polynomials presented
in equation (4) without asserting them as a unification of pre-existing polynomial families.

On the other hand, the monomiality principle, in conjunction with the associated
operational formalism, has proven to be a robust tool for probing the properties of a wide
range of polynomials. This principle has been refined and elaborated upon by various
researchers, further contributing to the understanding of the properties and behaviors of
polynomials. In this paper, the derivative and multiplicative operators are established
that allow the set of the Apostol-type Hermite-Bernoulli/Euler polynomials to be defined
as quasi-monomial set.

In summary, this document provides an overview of the unified Apostol-type Hermite
Bernoulli/Euler polynomials, their properties, and their applications. It also highlights the
influence of previous research in the field and presents new findings related to the algebraic
and differential properties of these polynomials. The study of these polynomials has been
enriched by the exploration of the monomiality principle and its associated operational
techniques, further contributing to the understanding of their properties and behaviors.

2. Apostol-type Hermite-Bernoulli/Euler polynomials

In this section, we define a new family of polynomials termed the Apostol-type Hermite-
Bernoulli/Euler polynomials and delve into their algebraic and differential properties.

Definition 1. Let ρ > 0, µ ≥ 0 such that µ ̸= 1. We introduce the Apostol-type Hermite-
Bernoulli/Euler polynomials as follows:

φ(ρ, µ, ξ)exξ+yξ2 =

∞∑
ν=0

Uν(x, y; ρ;µ)
ξν

ν!
, (5)

where

φ(ρ, µ, ξ) :=
2− µ+ µ

2 ξ

ρeξ + (1− µ)
,

as long as ∣∣∣∣ln( ρ

1− µ

)
+ ξ

∣∣∣∣ < π, 0 ≤ µ < 1,
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and ∣∣∣∣ln( ρ

µ− 1

)
+ ξ

∣∣∣∣ < 2π, otherwise.

Furthermore, the Apostol-type Hermite-Bernoulli/Euler numbers are given by

Uν(ρ;µ) := Uν(0, 0; ρ;µ). (6)

In the following, we provide some illustrative examples showing the existence of poly-
nomials Un(x, y; ρ;µ).

Example 1. For ρ = 1, µ = 2, we have

ν Uν(x, y; 1; 2)

0 1

1 x− 1

2

2 x2 − x+ 2y +
1

6

3 x3 − 3

2
x2 + (6y +

1

2
)x+ 3y

4 x4 − 2x3 + (12y + 1)x2 − 12y2 + 2y − 1

60

Example 2. For ρ = 2, µ = 1, we have

ν Uν(x, y; 2; 1)

0
1

2

1
1

2
x− 1

4

2
1

2
x2 − 1

2
x+ y

3
1

2
x3 − 3

4
x2 + 3xy − 3

2
y +

1

4

4
1

2
x4 − x3 + 6yx2 − 6yx+ x+ 6y2 − 1

2

The characteristics of Hermite polynomials in two variables have a crucial role in inves-
tigating the Apostol-type Hermite-Bernoulli/Euler polynomials, offering valuable insights
into their properties and behaviors. We recall that the Hermite polynomials in two vari-
ables, Hν(x, y), satisfies the generating equation (see [6] and [7, Eq. 2]):

exξ+yξ2 =
∞∑
ν=0

Hν(x, y)
ξν

ν!
. (7)

Additionally,
H0(x, y) = 1
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and the following identity is hold (see [5, Eq. 18]):

∂

∂y
Hν(x, y) = ν(ν − 1)Hν−2(x, y) =

∂2

∂x2
Hν(x, y). (8)

Below, we elucidate several properties of the Apostol-type Hermite-Bernoulli/Euler
polynomials using the generating function approach.

Proposition 1. Let ρ > 0, µ ≥ 0 such that µ ̸= 1. The following relationship holds:

Uν(x+ z, y + w; ρ;µ) =

ν∑
k=0

(
ν

k

)
Hν−k(z, w)Uk(x, y; ρ;µ), (9)

where Hk are the Hermite polynomials.

Proof. By the following identity (see [14, p. 18, Eq. 0.36] and [4, p. 463, Def. 9.4.6]):( ∞∑
n=0

an

)( ∞∑
n=0

bn

)
=

∞∑
n=0

n∑
k=0

an−kbk, (10)

and the generating functions (5) and (7), we have

∞∑
ν=0

Uν(x+ z, y + w; ρ;µ)
ξν

ν!
= φ(ρ, µ, ξ)eξx+ξ2yeξz+ξ2w

=

( ∞∑
ν=0

Uν(x, y; ρ;µ)
ξν

ν!

)( ∞∑
ν=0

Hν(z, w)
ξν

ν!

)

=

∞∑
ν=0

(
ν∑

k=0

(
ν

k

)
Hν−k(z, w)Uk(x, y; ρ;µ)

)
ξν

ν!
.

By utilizing the product series and subsequently equating the coefficients of ξν/ν! on both
sides, we derive the identity.

Remark 1. If x := 0, z := x, y := 0 and w := y in (9), then the identity becomes

Uν(x, y; ρ;µ) =
ν∑

k=0

(
ν

k

)
Hν−k(x, y)Uk(ρ;µ). (11)

Remark 2. If we substitute z := −x and w := −y into equation (9), we can represent the
Apostol-type Hermite-Bernoulli/Euler numbers as a function of the corresponding Apostol-
type Hermite-Bernoulli/Euler polynomials:

Uν(ρ;µ) =

ν∑
k=0

(
ν

k

)
Hν−k(−x,−y)Uk(x, y; ρ;µ).
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Here, we present the result of the convolution involving the Apostol-type Hermite-
Bernoulli/Euler polynomials.

Proposition 2. The following identity holds:

ν∑
ω=0

(
ν

ω

)
Uν−ω(x, y; ρ;µ)Uω(x, y; ρ;µ) =

ν∑
ω=0

(
ν

ω

)
Uν−ω(ρ, µ)Uω(2x, 2y; ρ;µ).

Proof. By (10) and (6), we have

∞∑
ν=0

ν∑
ω=0

(
ν

ω

)
Uν−ω(x, y; ρ;µ)Uω(x, y; ρ;µ)

ξν

ν!
=

∞∑
ν=0

Uν(x, y; ρ;µ)
ξν

ν!

∞∑
ν=0

Uν(x, y; ρ;µ)
ξν

ν!

= φ2(ρ, µ, ξ)e2xξ+2yξ2

=
∞∑
ν=0

Uν(ρ, µ)
ξν

ν!

∞∑
ν=0

Uν(2x, 2y; ρ;µ)
ξν

ν!

=
∞∑
ν=0

ν∑
ω=0

(
ν

ω

)
Uν−ω(ρ, µ)Uω(2x, 2y; ρ;µ)

ξν

ν!
.

By comparing the coefficients of
ξν

ν!
on both sides of the equation above, we derive the

identity.

For the subsequent property, we employ the following identity [24, p. 52]:

∞∑
ν=0

f(ν)
(x+ y)ν

ν!
=

∞∑
l,m=0

f(l +m)
xlym

l!m!
. (12)

Proposition 3. The following implicit summation formula for Apostol-type Hermite-
Bernoulli/Euler polynomials Uν(x, y; ρ;µ) holds:

Ul+m(z, y; ρ;µ) =

l,m∑
p,q=0

(
l

p

)(
m

q

)
(z − x)p+qUl+m−(p+q)(x, y; ρ;µ).

Proof. By (12), we have

φ(ρ, µ, ξ + t)ex(ξ+t)+y(ξ+t)2 =
∞∑
ν=0

Uν(x, y; ρ;µ)
(ξ + t)ν

ν!

=
∞∑

l,m=0

Ul+m(x, y; ρ;µ)
ξltm

l!m!
,
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or equivalently

φ(ρ, µ, ξ + t)ey(ξ+t)2 = e−x(ξ+t)
∞∑

l,m=0

Ul+m(x, y; ρ;µ)
ξltm

l!m!
. (13)

By performing the previous procedure, but replacing x with z, we now obtain

φ(ρ, µ, ξ + t)ey(ξ+t)2 = e−z(ξ+t)
∞∑

l,m=0

Ul+m(z, y; ρ;µ)
ξltm

l!m!
. (14)

Then, by equating equations (13) and (14), we get

∞∑
l,m=0

Ul+m(z, y; ρ;µ)
ξltm

l!m!
= e(z−x)(ξ+t)

∞∑
l,m=0

Ul+m(x, y; ρ;µ)
ξltm

l!m!
.

Now, by the Exponential Series, (12) and (10), we obtain

∞∑
l,m=0

Ul+m(z, y; ρ;µ)
ξltm

l!m!
=

∞∑
ν=0

(z − x)ν
(ξ + t)ν

ν!

∞∑
l,m=0

Ul+m(x, y; ρ;µ)
ξltm

l!m!

=
∞∑

p,q=0

(z − x)p+q ξ
ptq

p!q!

∞∑
l,m=0

Ul+m(x, y; ρ;µ)
ξltm

l!m!

=
∞∑

l,m=0

l,m∑
p,q=0

(
l

p

)(
m

q

)
(z − x)p+qUl+m−(p+q)(x, y; ρ;µ)

ξltm

l!m!
.

By comparing the coefficients of
ξltm

l!m!
on both sides of the equation above, we derive the

identity.

Below, we introduce both the differentiation and integration of the Apostol-type Hermite-
Bernoulli/Euler polynomials.

Proposition 4. Let ρ > 0, µ ≥ 0 such that µ ̸= 1. The following properties are main-
tained:

∂

∂x
Uν(x, y; ρ;µ) = νUν−1(x, y; ρ;µ), (15)

∂

∂y
Uν(x, y; ρ;µ) = ν(ν − 1)Uν−2(x, y; ρ;µ).

Proof. Initially, notice that

∂

∂x

∞∑
ν=0

Uν(x, y; ρ, µ)
ξν

ν!
=

∂

∂x

∞∑
ν=1

Uν(x, y; ρ;µ)
ξν

ν!
. (16)
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On the other hand,

∂

∂x
φ(ρ, µ, ξ)exξ+yξ2 =

∞∑
ν=0

Uν(x, y; ρ;µ)
ξν+1

ν!

=
∞∑
ν=1

νUν−1(x, y; ρ;µ)
ξν

ν!
. (17)

By comparing (16) and (17), we obtain (15). Now,

∂

∂y
φ(ρ, µ, ξ)exξ+yξ2 =

∞∑
ν=0

Uν(x, y; ρ;µ)
ξν+2

ν!

=

∞∑
ν=2

Uν−2(x, y; ρ;µ)
ξν

(ν − 2)!

=
∞∑
ν=0

ν(ν − 1)Uν−2(x, y; ρ;µ)
ξν

ν!
.

Remark 3. An alternative method to compute the derivative with respect to y is by uti-
lizing the representation (11) and employing the identity (8). Note that,

∂

∂y
Uν(x, y; ρ;µ) =

ν∑
k=0

(
ν

k

)
Uν(ρ;µ)

∂2

∂x2
Hk(x, y)

=
ν∑

k=2

(
ν

k

)
k(k − 1)Uν(ρ;µ)Hk−2(x, y).

Remark 4. Note that by repeatedly differentiating with respect to x and applying the
induction principle on m, we can obtain the m-th order derivative of the polynomial:

∂l

∂xl
Uν(x, y; ρ;µ) = (ν)lUν−l(x, y; ρ;µ),

where (ν)l := ν(ν − 1) · · · (ν − l + 1) and 0 ≤ l.

Proposition 5. Let ρ > 0, µ ≥ 0 such that µ ̸= 1. Then∫ x1

x0

Uν(x, y; ρ;µ) dx =
1

ν + 1
[Uν+1(x1, y; ρ;µ)− Uν+1(x0, y; ρ;µ)] .

Proof. The result can be readily inferred from Proposition 4.

In [9], the authors presented a general approach for determining the Appell polyno-
mials that fulfill the recursive relations. Essentially, provided a method for finding these
polynomials by using a power series expression. Following that approach, we have
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φ(ρ, µ, ξ) =

∞∑
n=0

Un(ρ;µ)
ξn

n!
.

Now, let ζ a function give by Taylor series expansion (in ξ) at the origin, that is

ζ(ξ) :=

∞∑
n=0

δn
ξn

n!
, (18)

such that φ(ρ, µ, ξ)ζ(ξ) = 1, where δn is a sequence. Then, applying the rules of
Cauchy product (10), we obtain

φ(ρ, µ, ξ)ζ(ξ) =

∞∑
n=0

n∑
k=0

(
n

k

)
Uk(ρ;µ)δn−k

ξk

k!
.

Thus,

n∑
k=0

(
n

k

)
Uk(ρ;µ)δn−k =


1, for n = 0,

0, for n > 0.

Hence, 
δ0 =

1

U0
,

δn = − 1

U0

(
n∑

k=1

(
n

k

)
Uk(ρ;µ)δn−k

)
,

where U0 := U0(ρ, µ).

Proposition 6. The following identity hold:

U0(x, y; ρ;µ) =
1

δ0
.

Un(x, y; ρ;µ) =
(−1)n

δn+1
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

H0(x, y) H1(x, y) · · · · · · Hn−1(x, y) Hn(x, y)
δ0 δ1 · · · · · · δn−1 δn
0 δ0 · · · · · ·

(
n−1
1

)
δn−2

(
n
1

)
δn−1

0 0
. . .

(
n−1
2

)
δn−3

(
n
2

)
δn−2

...
...

. . .
...

...
...

...
0 · · · · · · · · · δ0

(
n

n−1

)
δ1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (19)
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Proof. Observe that( ∞∑
n=0

Un(ρ;µ)
ξn

n!

)( ∞∑
n=0

Hn(x, y)
ξn

n!

)
=

∞∑
n=0

Un(x, y; ρ;µ)
ξn

n!
. (20)

Multiplying both sides of Equation (20) by (18), we obtain

∞∑
n=0

Hn(x, y)
ξn

n!
=

∞∑
n=0

n∑
k=0

(
n

k

)
Uk(x, y; ρ;µ)δn−k

ξk

k!
.

By multiplying the aforementioned equation, we arrive at the subsequent infinite system
of equations in the unknown variables:

H0(x, y) = U0(x, y; ρ;µ)δ0,

H1(x, y) = U0(x, y; ρ;µ)δ1 + U1(x, y; ρ;µ)δ0,

...
...

...

Hn(x, y) = U0(x, y; ρ;µ)δn +

(
n

1

)
U1(x, y; ρ;µ)δ0 + · · ·+ Un(x, y; ρ;µ)δ0.

Due to the specific structure of the aforementioned system (lower triangular), we can
determine the unknown variables Un(x, y; ρ, µ) by exclusively utilizing the first n+1 equa-
tions. This can be achieved by employing Cramer’s rule, which facilitates the computation
of the solution.

Un(x, y; ρ, µ) =
1

δn+1
0

∣∣∣∣∣∣∣∣∣∣∣∣∣

δ0 0 0 0 · · · H0(x, y)
δ1 δ0 0 0 · · · H1(x, y)

δ2
(
2
1

)
δ1 δ0 0 · · · H2(x, y)

...
...

. . .
...

δn−1

(
n−1
1

)
δn−2

(
n−2
2

)
δn−3 · · · · · · Hn−1(x, y)

δn
(
n
1

)
δn−1

(
n
2

)
δn−2

(
n
3

)
δn−3 · · · Hn(x, y)

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

By transposition of the previous, we obtain

Un(x, y; ρ, µ) =
1

δn+1
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

δ0 δ1 δ2 · · · δn−1 δn
0 δ0

(
2
1

)
δ1 · · ·

(
n−1
1

)
δn−2

(
n
1

)
γn−1

0 0 δ0 · · ·
(
n−1
2

)
δn−3

(
n
2

)
δn−2

· · · . .
· · · · · · · ·
· · · · ·
0 0 0 · · · δ0

(
n

n−1

)
δ1

H0(x) H1(x) H2(x) · · · Hn−1(x) Hn(x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Now, by moving the ith row to the (i+1)th position, where i = 1, 2, · · · , n, we get the
desired result asserted.

Now, we will proceed with the determinant representation for the one specific case of
the polynomials illustrated in Examples 1.



Dı́az et al. / Eur. J. Pure Appl. Math, 18 (1) (2025), 5656 12 of 17

Example 3. For ρ = 1 and µ = 2, we have

U0(x, y; 1; 2) = 1,

U1(x, y; 1; 2) = −
∣∣∣∣ 1 x
1 1

2

∣∣∣∣ ,
U2(x, y; 1; 2) =

∣∣∣∣∣∣
1 x x2 + 2y
1 1

2
1
3

0 1 1

∣∣∣∣∣∣ ,

U3(x, y; 1; 2) = −

∣∣∣∣∣∣∣∣
1 x x2 + 2y x3 + 6xy
1 1

2
1
3

1
4

0 1 1 1
0 0 1 3

2

∣∣∣∣∣∣∣∣ .
Example 4. When y = 0, with ρ = 1 and µ = 2, the Bernoulli polynomials are expressed
in determinant form as shown in (3).

To better understand the following result, it is important to recall that the Apostol-
type Hermite-Bernoulli polynomials are given by (refer to [12]):

ξexξ+yξ2

λeξ − 1
=

∞∑
ν=0

Bν(x, y;λ)
ξν

ν!
, |ξ + ln(λ)| < 2π,

and the Apostol-type Hermite-Euler polynomials are given by (see [19]):

2exξ+yξ2

λeξ + 1
=

∞∑
ν=0

Eν(x, y;λ)
ξν

ν!
, |ξ + ln(λ)| < π.

Proposition 7. Let µ > 1. Then,

Uν(x, y; ρ;µ) =
1

1− µ

[
(2− µ)Eν(x, y;λ)−

µ

2
Bν(x, y;−λ)

]
,

where λ :=
ρ

1− µ
.

Proof. Note that,

2− µ+ µ
2 ξ

ρeξ + (1− µ)
=

(1− µ) + 1 + µ
2 ξ

(1− µ)

(
ρ

1− µ
eξ + 1

)

=

1 +
1 + µ

2 ξ

1− µ
ρ

1− µ
eξ + 1

=

1 +
2 + µξ

2(1− µ)
ρ

1− µ
eξ + 1

.
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Let λ :=
ρ

1− µ
. Then,

2− µ+ µ
2 ξ

ρeξ + (1− µ)
=

1

λeξ + 1
+

1

(1− µ)(λeξ + 1)
+

µξ

2(1− µ)(λeξ + 1)

=
2− µ

1− µ

1

λeξ + 1
− µ

2(1− µ)

ξ

(−λ)eξ + 1
.

It follows from (5) that

∞∑
ν=0

Uν(x, y; ρ;µ)
ξν

ν!
=

2− µ

1− µ

1

λeξ + 1
exξ+yξ2 − µ

2(1− µ)

ξ

(−λ)eξ + 1
exξ+yξ2

=
2− µ

1− µ

∞∑
ν=0

Eν(x, y;λ)
ξν

ν!
− µ

2(1− µ)

∞∑
ν=0

Bν(x, y;−λ)
ξν

ν!
.

Remark 5. Based on the earlier findings, it can be asserted that the Apostol-type Hermite-
Bernoulli/Euler polynomials can be expressed as a linear combination of the Hermite-
Bernoulli and Hermite-Euler polynomials for µ > 1. Some sources refer to this phe-
nomenon as unification, which is the rationale behind our chosen nomenclature.

3. Monomiality Principle

The concepts of quasi-monomial and the monomiality principle are indeed technical
and may require further elaboration for readers unfamiliar with them. In our work, we
have outlined the monomiality principle as a framework that generalizes the behavior of
special polynomials through abstract definitions of derivative and multiplicative operators,
treating these polynomials analogously to ordinary monomials. This principle extends the
Heisenberg–Weyl group, allowing for a unified examination of diverse polynomial families
and their properties.

Additionally, we reference foundational works [8, 11, 13, 20–22] that provide a deeper
exploration of this principle and its applications.

The operators M̂ and D̂ function dually as both multiplicative and derivative operators
within the context of a polynomial set {bm(u)}m∈N, adhering to the following expressions:

bm+1(u) = M̂{bm(u)} (21)

and

m bm−1(u) = D̂{bm(u)}.

The set {bm(u)}m∈N manipulated by these operators is termed a quasi-monomial and
must adhere to the formula:

[D̂,M̂] = D̂M̂ − M̂D̂ = 1̂,
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displaying a Weyl group structure. The properties of M̂ and D̂ determine the charac-
teristics of the quasi-monomial set {bm(u)}m∈N: For example, bm(u) satisfies the differen-
tial equation

M̂D̂{bm(u)} = mbm(u),

if M̂ and D̂ have differential realizations.

Theorem 1. The operators M̂ and D̂ associated with the Apostol-type Hermite-Bernoulli/Euler
polynomials Uν(x, y; ρ;µ) are given by

M̂ := ψ(ρ, µ, ξ) + x+ 2y
∂

∂x

and

D̂ :=
∂

∂x
.

where

ψ(ρ, µ, ξ) :=
µ/2

2− µ+
µ

2
ξ
− ρeξ

ρeξ + 1− µ
.

Proof. Differentiating the generating relation (5) with respect to the variable ξ, it
follows that

∂

∂ξ

(
φ(ρ, µ, ξ)exξ+yξ2

)
=

∞∑
ν=0

Uν+1(x, y; ρ;µ)
ξν

ν!
.

Now, since

∂

∂ξ

(
φ(ρ, µ, ξ)exξ+yξ2

)
=

 µ/2

2− µ+
µ

2
ξ
− ρeξ

ρeξ + 1− µ
+ x+ 2yξ

(φ(ρ, µ, ξ)exξ+yξ2
)
,

then

∞∑
ν=0

 µ/2

2− µ+
µ

2
ξ
− ρeξ

ρeξ + 1− µ
+ x+ 2y

d

dx

Uν(x, y; ρ;µ)
ξν

ν!
=

∞∑
ν=0

Uν+1(x, y; ρ;µ)
ξν

ν!
.

(22)

By equating the coefficients of corresponding powers of ξ on both sides of Equation
(22) and applying the monomiality principle equation (21), we deduce the operator M̂.
Additionally, Proposition 4 establishes that D̂ = ∂

∂x .

Proposition 8. The Apostol-type Hermite-Bernoulli/Euler polynomials satisfy the suc-
ceeding differential equation:[

(ψ(ρ, µ, ξ) + x)
∂

∂x
+ 2y

∂2

∂x2

]
Uν(x, y; ρ;µ) = νUν(x, y; ρ;µ).
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Proof. The outcome is instantaneous given that

D̂Uν(x, y; ρ;µ) = νUν−1(x, y; ρ;µ)

and
M̂Uν−1(x, y; ρ;µ) = νUν(x, y; ρ;µ).

4. Conclusions

In this work, we introduced a novel class of polynomials, the Apostol-type Hermite-
Bernoulli/Euler polynomials, denoted as Uν(x, y; ρ;µ), and explored their fundamental
properties. These polynomials were defined via a generating function, enabling us to derive
their summation formulae and determinant forms. This new family not only generalizes
the classical Appell-type polynomials but also extends their applicability in mathematical
analysis.

The generating function techniques employed in this study proved instrumental in
establishing the key properties of these polynomials. Additionally, the introduction of
derivative and multiplicative operators facilitated their representation as a quasi-monomial
set, thereby expanding their potential applications in various branches of mathematics and
related fields.

The illustrative examples provided throughout the paper demonstrate the validity and
versatility of the results, paving the way for further investigations into the applications
and extensions of these polynomials.
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