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Sleep crucial for the animal survival is accompanied by huge changes in neuronal electrical activity over time, the neurodynamics.
Here, drawing on intracranial stereo-electroencephalographic (sEEG) recordings from the Montreal Neurological Institute (MNI), we
analyzed local neurodynamics in the waking state at rest and during the N2, N3, and rapid eye movement (REM) sleep phases. Higuchi
fractal dimension (HFD)—a measure of signal complexity—was studied as a feature of the local neurodynamics of the primary motor
(M1), somatosensory (S1), and auditory (A1) cortices. The key working hypothesis, that the relationships between local neurodynamics
preserve in all sleep phases despite the neurodynamics complexity reduces in sleep compared with wakefulness, was supported by
the results. In fact, while HFD awake > REM > N2 > N3 (P < 0.001 consistently), HFD in M1 > S1 > A1 in awake and all sleep stages
(P < 0.05 consistently). Also power spectral density was studied for consistency with previous investigations. Meaningfully, we found a
local specificity of neurodynamics, well quantified by the fractal dimension, expressed in wakefulness and during sleep. We reinforce
the idea that neurodynamic may become a new criterion for cortical parcellation, prospectively improving the understanding and
ability of compensatory interventions for behavioral disorders.
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Introduction
Increasing evidence suggests that distinct cortical
parcels can exhibit individual properties of neurody-
namics in terms of power spectral density (PSD; Lopes
Da Silva 2011; Nobili et al. 2011; Frauscher et al. 2018;
Gorgoni et al. 2021) but also different complexity levels
(Cottone et al. 2017; Marino et al. 2019; Collantoni
et al. 2020; Schartner et al. 2020; Armonaite et al. 2021;
Olejarczyk et al. 2022).

Concurrent with the reduction of responsiveness
(Andrillon et al. 2016), the complex patterns of the
neural activity strongly change when the brain is asleep,
with the low frequency waves replacing higher ones
prevalent in awake state (Steriade et al. 1993). Underlying
specific mechanisms suggest that the neural ongoing
electrical activity in sleep is strongly organized and
highly regulated (Moruzzi and Magoun 1949; Axmacher
et al. 2006; Gent et al. 2018). Such neuronal correlates
of sleep mediate its crucial role in strengthening and
integrating the 3 controlling systems of the body–brain,
the nervous system living in continuous interaction with
the hormonal and immunity systems (Steinman 2004;
Zhang et al. 2020).

We tested the working hypothesis that, if the local
neurodynamics expresses the structure and connectiv-
ity of the generating neuronal pools, the differentiation
between areas will emerge in sleep stages as well as
in awake state (Cottone et al. 2017; Armonaite et al.
2021), despite the changes in the complexity of the brain
activity occurring across sleep cycle (Burioka et al. 2005;
Casali et al. 2013; Croce et al. 2018; Olejarczyk et al.
2022). Specifically, we investigated in awake and 3 sleep
stages (N2, N3, and rapid eye movement [REM]) the local
neurodynamics of primary motor (M1), somatosensory
(S1), and auditory (A1) cortices, testing whether the rela-
tionship of their complexity measured by Higuchi fractal
dimension (HFD) maintains the M1 > S1 > A1 in all states,
despite the complexity of all areas reduced with sleep
depending. To allow comparison with previous investiga-
tions, PSD was also assessed.

Previous results about the HFD in M1 and S1 (Cottone
et al. 2017; Armonaite et al. 2021) showed that in the 2
areas HFD values largely overlap in the population, so
that sampling the 2 areas randomly in different indi-
viduals would cancel out the clear differentiation that
emerges at the intra-individual level. Also the recent
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Fig. 1. Study flowchart.

work of Olejarczyk et al. (2022) confirmed that by aver-
aging on the complete Montreal Neurological Institute
(MNI) population in the diverse sleep stages the HFD
in frontal and parietal areas did not differ statistically.
As it is precisely our aim to describe the relationships
between the neurodynamics characteristics of the differ-
ent regions, we have consequently executed the present
investigation as an intra-individual analysis.

Materials and methods
The intracranial stereo-electroencephalographic (sEEG)
of the MNI public dataset provide recordings from brain
regions considered in physiological conditions of patients
suffering from drug resistant focal epilepsy (see also
section “Limitation of the study”).

Data selection
The signals from M1, S1, and A1 primary cortices were
studied in 3 sleep stages and wakefulness selecting data
from subjects who had at least 2 investigated areas in
order to execute the desired strategy of intra-individual
analysis (Fig. 1). Briefly reporting the procedure detailed
in Armonaite et al. (2021), from the regions of inter-
est (ROIs) we selected one single representative sEEG
channel for those available in each subject on the basis
of position criteria through the spatial coordinates pro-
vided in MNI data. For S1 and M1 the criterion was local
proximity, so to have corresponding counterparts of the

same body part representation. For A1, the representative
channel was the most central among those available. We
obtained 16 subjects in M1, 14 in S1, and 6 in A1 during
awake as well as in N2 and N3 sleep stages. The number
of subjects was reduced in REM sleep, due to the lack
of data, to 13 subjects in M1, 11 subjects in S1, and 5
subjects in A1 (Fig. 2, Supplementary Fig. 2a).

Sleep stage description
The visual scoring of the sleep stages according to the
scalp EEG criterion suggested by American Academy of
Sleep Medicine, was used by the developers of the MNI
dataset. Briefly, 2 EEG derivations were used (Fz–Cz, Cz–
Pz according to International 10–20 system). When elec-
trooculogram (EOG), evaluated with an electrode for each
eye, and electromyogram for chin muscle were available,
REM sleep was identified (von Ellenrieder et al. 2020).

Data provided by MNI was ready for analysis as the
recordings of 3 sleep stages were separated as well as
each channel was pre-processed by applying low band-
pass filter up to 80 Hz and mean subtracted. Each stage
was described via 60-s long recordings sampled at 200 Hz.

Neurodynamics—power Spectrum density
features
For each channel we calculated the PSD with fast Fourier
transform (FFT), by applying the Welch method, with
50% superimposed sliding window, on time series of 256
samples each, tapered with Hamming window. Obtained
values of PSD were normalized so that the area under the
curve is equal to 1.

Due to the 80 Hz low pass-band filtering of MNI data,
we can assess spectral features only up to this frequency
value. Frequency spectrum was sub-divided into distinct
bands: delta [≤3 Hz], theta [4–7 Hz], alpha [8–12 Hz],
low beta [13–25 Hz], high beta [26–32 Hz], low gamma
[33–48 Hz], and high gamma [49–80 Hz]. We estimated
the mean value of the PSD in each frequency band as
the integral divided by the number of frequency bins in
the band.

Neurodynamics—fractal features
We hypothesize that fractal analysis can spot the speci-
ficities of the neuronal ongoing electrical activity better
than linear spectral analysis. Having Cottone et al. (2017)
with EEG on the scalp and Armonaite et al. (2021) with
intracranial sEEG demonstrated that HFD can estimate
the distinctions between cortical parcels in wakefulness,
we deployed the same method here, in order to verify
whether such HFD feature will persist or vary across 3
sleep stages. HFD is a relatively simple measure of fractal
features, yet sensitive in extracting valuable informa-
tion from physiological time series (Klonowski 2002) and
suitable for catching the non-linearity of the underlying
processes. Moreover, HFD is a measure derived directly
from the time series, avoiding phase representation, rel-
atively independent of the signals’ amplitude and length,
which could represent an advantage with respect to other
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Fig. 2. Tri-dimensional representation of selected representative channels and hypnogram. Representation, in the 3 spatial projections, of the position
of the electrode contacts for the analyzed channels in the subjects having data collected in at least 2 ROIs, among A1 (white), S1 (gray), and M1 (black).
On top, we represent an example, in one subject, of sEEG time course (2 s long) for the A1 (dashed line), S1 (dotted line), and M1 (continuous line) cortical
parcels, in the awake and the 3 studied sleep stages. The amplitude of sEEG in each area is normalized to [−1, 1]. On the right side, a typical hypnogram
is shown.

methods for investigating complexity such as box count-
ing, correlation dimension, or Katz algorithm (Accardo
et al. 1997).

The HFD algorithm (Higuchi 1988) is based on quanti-
fying the appearance of self-similarities across different
time scales. HFD is estimated from the relationship
between the length of down-sampled series and the
sampling steps. The down-sampling is executed from 2 to
kmax, and the estimates depend on this single parameter.
Although there is no gold standard for the kmax selection,
we treasured of multiple previous investigations about
the HFD dependence from kmax, and in the present work
we estimated the HFD at the value of kmax where HFD
starts stabilizing, namely kmax=35, in agreement with
(Armonaite et al. 2021), across all subjects, ROIs, and
states.

Statistical analysis
We observed that both PSD values in each frequency
band, and HFD values, across different sleep stages, show
a non-Gaussian distribution of population (as it has been
confirmed by Shapiro–Wilk test). Thus, in order to com-
pare the PSDs and HFDs of the cortical ROIs, we used the
non-parametric Wilcoxon test (hereafter Wtest values).
This test is not applicable to too small populations, there-
fore only between S1 and M1 sources such quantitative
comparison was feasible. However, for the comparison of
the latter 2 regions with A1 we provided the Fisher’s exact
test (F’stest).

Results
We aim at evaluating the differences of neuronal ongoing
activity between distinct primary cortices within a
subject. For this purpose, we were restricted to select
only the subjects who had recordings in at least 2 of

the ROIs. Hence, the total number of subjects that were
inquired in N2 and N3 sleep states is 16, among which the
S1—M1 neurodynamics comparisons were viable in 14,
the A1—S1 in 4 and the A1—M1 in 6 subjects. Instead
in REM sleep, the S1—M1 neurodynamical features’
comparisons were realizable in 11 subjects, for A1—S1
in 3 subjects, and for A1—M1 in 5 subjects. Furthermore,
we studied these differences of the neuronal ongoing
activity between the 3 ROIs across different sleep
states.

Neurodynamics—power spectrum density
We found that, while in wakefulness, S1 prevailed in
alpha band to M1, and M1 prevailed to S1 in high beta,
low gamma, and high gamma. Instead, in REM sleep,
M1 had greater power than S1 in low beta, high beta,
and low gamma (Fig. 3, Supplementary Fig. 3a, Fig. 4,
Supplementary Fig. 4a, and Table 1). In N2 stage, M1 had
greater power than S1 in alpha band. In N3 stage, M1
was prevailing to S1 in alpha and theta bands, whereas
in delta S1 prevailed to M1.

When comparing A1 with S1 and M1, in resting
wakefulness state, we observed that A1 had greater
power than S1 and M1 in delta band and lower than
S1 and M1 in low beta band. In REM stage, M1 power was
prevailing A1 in theta, beta, and gamma bands. In N2
stage, A1 power was higher than S1 in delta band, instead
the oppositely from alpha to gamma S1 power prevailed
over A1. M1 PSD was observed to be higher than A1 only
in low beta band. In N3 sleep stage, A1 power is higher
than M1 in delta band and M1 PSD is higher than A1 in
theta, alpha, and low beta bands. However, S1 expresses
higher power than A1 in low beta high beta and low
gamma frequency bands (Table 1).
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Fig. 3. Spectral and fractal estimation of local neurodynamics across people in wake and sleep. PSD and HDF mean across population in 3 ROIs, in
all stages: wake, REM, N2, and N3. In the top panel, the mean and standard deviation of PSD as a function of frequency across all selected subjects,
separately for M1, S1, and A1 areas, are presented. PSD values are normalized so that the area under each curve is equal to 1. Frequency band ranges:
δ [≤3 Hz], θ [4–7 Hz], α [8–12 Hz], lβ [13–25 Hz], hβ [26–32 Hz], and lγ [33–48 Hz]. Though the comparisons are given in the tables. Bottom panel shows
HFD mean and standard deviation across the same population.

Fig. 4. Intra-subject comparison of M1 vs S1 neurodynamic as featured by PSD and HFD. Left 7-columns rectangle: In awake and the 3 studied sleep
stages (rows), intra-subject comparison of the S1’s and M1’s neurodynamics via the scatterplots of within subject PSD band values for the frequency
bands where the S1 differs from M1. Right 1-column rectangle: scatterplots of M1 vs. S1 HFDs. In each plot, a point above (below) the diagonal represents
a subject with PSD/HFD value in M1 higher (lower) than in S1.
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Table 1. Neurodynamics comparison between cortical parcels.

PSD HFD

δ θ α Low β High β Low γ High γ

Wake S1–M1 Wtest 46 55 26 46 25 15 28 12
P 0.26 0.50 0.03 > 0.26 0.03 < 0.01 < 0.04 < 0.00 <

A1–S1 F’stest 0.00 > 0.99 0.57 0.08 < 0.57 0.57 0.99 0.00 <

A1–M1 F’stest 0.00 > 0.35 0.35 0.06 < 0.35 0.35 0.99 0.00 <

REM S1–M1 Wtest 15 24 18 11 4 5 16 6
P 0.11 0.42 0.18 0.05 < 0.01 < 0.01 < 0.13 0.02 <

A1–S1 F’stest 0.99 0.10 0.99 0.10 0.10 0.10 0.10 0.10
A1–M1 F’stest 0.21 0.01 < 0.99 0.01 < 0.01 < 0.01 < 0.01 < 0.21

N2 S1—M1 Wtest 37 49 24 34 32 25 27 16
P 0.33 0.83 0.07 < 0.25 0.20 0.08 0.11 0.02 <

A1–S1 F’stest 0.03 > 0.49 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 <

A1–M1 F’stest 0.57 0.57 0.57 0.08 < 0.57 0.57 0.99 0.08 <

N3 S1–M1 Wtest 22 22 18 36 35 33 35 24
P 0.06 > 0.06 < 0.03 < 0.30 0.27 0.22 0.27 0.07 <

A1–S1 F’stest 0.99 0.99 0.49 0.03 < 0.03 < 0.03 < 0.49 0.03 <

A1–M1 F’stest 0.08 > 0.08 < 0.08 < 0.08 < 0.57 0.57 0.99 0.57

Note: PSD statistical comparisons between cortical area pairs in awake and sleep states for each frequency band. In the last column, similar statistical analysis
for HFD data. Wilcoxon test statistics (Wtest) and P value are reported for comparing the S1 and M1 regions. Instead, we indicate P value of a Fisher’s exact test
(notated as F’stest) for comparisons S1 and M1 with A1. The tag < (>) indicates that the population PSD of the area mentioned as first (S1 or A1) is lower (higher)
than the area mentioned as second (M1 or S1). The same symbolic convention is adopted for the HFD comparisons. Statistically significant differences between
the compared areas are in bold (P ≤ 0.08, taking into account the occurring distribution, see Fig. 4 and Supplementary Fig. 4a). We adopted the notation P = 0.00,
for values P < 0.005.

PSD features across different sleep stages and wake
state showed the expected changes in each cortical area
(Table 2). Power level is higher in wakefulness that N2
sleep (denoted shortly Wake > N2) in higher frequencies
(low beta, high beta, low gamma, and high gamma) in
both M1 and S1, whereas in theta and alpha bands
only in S1; also Wake > REM in low beta band in both
M1 and S1, and in alpha in S1; instead, REM, N2 and
N3 > Wake in delta frequency band but REM > N2 in the
remaining bands. For comparisons in A1 N3 > N2 > Wake
and N3 > REM in delta band. Wake > N2 and Wake > N3
in remaining bands, instead N2 > N3 in beta and gamma
bands.

Neurodynamics—HFD
In assessing the cortical parcels’ neurodynamics we also
compared the HFD between the primary cortical ROIs. We
observed that M1 HFD was always higher than S1 in N2,
N3, and REM sleep stages, consistently with the behavior
in wakefulness.

Assessment for A1–S1 and A1–M1 comparison (Table 1)
suggests that, across all sleep stages except REM, HFD
of S1 is higher than in A1, as well as HFD of M1 is
higher than in A1. However, the A1–M1 comparisons in
N3 has lacked evidence that the differences would be
statistically significant, though 4 subjects out of 6 had
higher HFD in M1 than in A1. Comparing the sleep stages
and wakefulness in S1 and M1 we spotted out that HFD
Wake > REM > N2 > N3, instead in A1 we obtained HFD
Wake > N2 > N3 and REM > N2 (Table 2).

Discussion
The key result of our study is that, despite the huge neu-
rodynamical changes in awake and diverse sleep stages,

the neurodynamics of a single subject of each cortical
parcel differs from another cortical parcel in all these
conditions. That is, the local neurodynamics distinctive
features persist to the revolution within the brain activity
that sleep induces.

Fractal vs. spectral features
In awake, the differentiation between areas assessed via
the HFD corresponded to a wide differentiation of the
PSD values. During sleep, the neurodynamics assessed
via HFD complexity measure clearly and stably differed
in diverse primary cortical parcels in awake and all sleep
stages. Recognizing a rule of PSD differences among these
areas, M1 prevailed with respect to S1 and A1 in the
higher frequency bands: from awake (where gamma is
present and M1 prevails in beta and gamma) till to N3,
where highest frequency is alpha and it prevails in theta
and alpha.

Neurodynamics complexity reduction from wake
to deep sleep
The ability to process information is modulated by
the sleep cycles. In awake, higher functional activation
corresponds to higher complexity as sensed by higher
fractal dimension. This occurs not only when passing
from resting state with closed eyes to resting state with
open eyes, or with somatosensory stimulations, or with
actively executing a movement (Cottone et al. 2017),
but also when the cognitive process becomes more
demanding (Ma et al. 2018; Ruiz de Miras et al. 2019).
When the behavioral state goes to complete relaxation,
the complexity reduction of neurodynamics parallels,
at neuronal network level, the overall synchronization
across wide brain areas. When sleep enters deeper stages,
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Table 2. Neurodynamics comparison between sleep stages.

PSD HFD

δ θ α Low β High β Low γ High γ

M1 Wake—N2 Wtest 1 34 40 5 7 11 17 2
P 0.00 < 0.08 0.15 0.00 > 0.00 > 0.00 > 0.01 > 0.00 >

Wake—N3 Wtest 0 31 20 0 0 3 7 0
P 0.00 < 0.06 0.01 > 0.00 > 0.00 > 0.00 > 0.00 > 0.00 >

Wake—REM Wtest 11 29 23 15 22 23 23 3
P 0.02 < 0.25 0.12 0.03 > 0.10 0.12 0.12 0.00 >

N2–N3 Wtest 7 42 17 0 0 0 0 0
P 0.00 < 0.18 0.01 > 0.00 > 0.00 > 0.00 > 0.00 > 0.00 >

REM—N2 Wtest 1 1 16 2 0 0 0 0
P 0.00 < 0.00 > 0.04 > 0.00 > 0.00 > 0.00 > 0.00 > 0.00 >

REM—N3 Wtest 0 1 1 0 0 0 0 0
P 0.00 < 0.00 > 0.00 > 0.00 > 0.00 > 0.00 > 0.00 > 0.00 >

S1 Wake—N2 Wtest 1 20 4 12 11 13 17 2
P 0.00 < 0.04 > 0.00 > 0.01 > 0.01 > 0.01 > 0.03 > 0.00 >

Wake—N3 Wtest 1 5 1 3 10 6 10 1
P 0.00 < 0.00 > 0.00 > 0.00 > 0.01 > 0.00 > 0.01 > 0.00 >

Wake—REM Wtest 5 16 2 12 14 26 21 4
P 0.01 < 0.13 0.01 > 0.06 > 0.09 0.53 0.29 0.01 >

N2–N3 Wtest 0 3 1 0 14 9 4 1
P 0.00 < 0.00 > 0.00 > 0.00 > 0.02 > 0.01 > 0.00 > 0.00 >

REM—N2 Wtest 0 2 5 9 8 7 6 7
P 0.00 < 0.01 > 0.01 > 0.03 > 0.03 > 0.02 > 0.02 > 0.02 >

REM—N3 Wtest 0 0 1 1 0 0 0 1
P 0.00 < 0.00 > 0.00 > 0.00 > 0.00 > 0.00 > 0.00 > 0.00 >

A1 Wake—N2 F’stest 0.00 < 0.08 > 0.00 > 0.00 > 0.00 > 0.08 > 0.08 > 0.00 >

Wake—N3 F’stest 0.00 < 0.08 > 0.00 > 0.00 > 0.00 > 0.00 > 0.00 > 0.00 >

Wake—REM F’stest 0.99 0.99 0.21 0.21 0.99 0.99 0.99 0.21
N2–N3 F’stest 0.08 < 0.57 0.57 0.08 > 0.08 > 0.08 > 0.08 > 0.08 >

REM—N2 F’stest 0.21 0.99 0.21 0.21 0.21 0.21 0.21 0.21
REM—N3 F’stest 0.01 < 0.21 0.01 > 0.01 > 0.01 > 0.01 > 0.01 > 0.01 >

Note: PSD statistical comparisons between wake and sleep states pairs, for each cortical ROI and frequency band. In the last column, similar statistical analysis
for HFD data. As in Table 1 the statistics performed by Wilcoxon test for the S1–M1 comparison and Fisher’s exact test for A1, as well as the same notations for
direction of changes and P values was applied. Statistically significant values are in bold (P <= 0.08). We adopted the notation P = 0.00 for values P < 0.005.

neurons become widely synchronized in delta range
(Borbely 1982; Ahmed and Cash 2013).

The modulation of complexity during sleep emerged
clearly using HFD in the whole cortical mantle, with
overall frontal areas displaying higher complexity than
postcentral areas in all sleep stages in average on the
population. (Olejarczyk et al. 2022). This strengthens our
result of within-subject specificity of the local neurody-
namics. Furthermore, the selection of primary motor and
primary somatosensory areas allows investigating the
crucial interplay between these 2 counterparts, imple-
menting the feedback mechanisms mandatory for motor
control (Tecchio et al. 2007; Fink et al. 2014), as modified
by sleep phenomena.

Higher motor than sensory and auditory cortices
complexity—from awake resting state to sleep
insight
Higher complexity of M1 neurodynamics with respect
to S1 and A1 could be explained by the anatomical
structures of these cortices. The frontal lobe neuronal
pools are more densely connected than the parietal or
temporal lobes (Modha and Singh 2010), so that we can

hypothesize that the complexity of the neuronal activity
emerges from the level of local neuronal connectivity.

From the point of view of network physiology (Buzsáki
and Draguhn 2004; Sporns and Betzel 2016) the nodes
of neuronal networks with highly interconnected hub
nature are expected to express an activity with higher
complexity. This is exemplified by the primary motor
cortex, the very last station of all neuronal networks, as
the station origin of the signals dispatched to all mus-
cular effectors (Rizzolatti and Luppino 2001). Applying
the same principle, the primary somatosensory nodes
are expected to be characterized by activity of greater
complexity than the primary auditory areas, as they
constitute 30% of the fibers’ origin of the corticospinal
tract (Seo and Jang 2013), hence they are constitutive
component of the feedback loop that controls any behav-
ior performed (Fink et al. 2014). That is, the level of
complexity of the neurodynamics with M1 > S1 > A1 well
fits the network physiology expectations.

Limitation of the study
A main limitation of present investigation concerns the
nature of sEEG signals analyzed, coming from subjects
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diagnosed with severe epilepsy. Although scalp EEGs in
wakefulness for healthy subjects have been extensively
investigated (Jurcak et al. 2007), the literature of analyses
of intracranial EEG activity in healthy subjects is scarce.
Subjects with refractory focal epilepsies are the only
where extensive intracranial sEEG studies are carried
out, that allows studying both pathological and normal
brain cortical areas. The MNI Atlas is the first database
of “spared regions” intracranial sEEG. Each of the
sEEG channel from MNI Atlas—adopted in the present
study—is classified as “normal” only if satisfies very
restrictive selection criteria. In these bases, we can
report behavior related to “normal” areas, although
aware of epilepsy as a network pathology given the core
characteristics of altered connectivity patterns between
epileptogenic areas and the structures linked to them
(Bettus et al. 2009; Pittau et al. 2012; Tecchio et al. 2018).
Furthermore, the sample herein analyzed presented non-
homogeneous characteristics in relation to age (from 13
to 68 years old). This feature is expected to generate part
of the variability in the local neurodynamics. In fact, in
the life span of healthy subjects, the brain complexity
hugely modifies both structurally (Marzi et al. 2020) and
functionally (Zappasodi et al. 2015; Smits et al. 2016).

A clear limitation of the study is also the small
available dataset. This was determined by the non-
uniform distribution of available channels across sub-
jects together with the requirement to assess diverse
cortical regions in the same subject.

Individual neurodynamics—investigation dataset
as output of the present work
A relevant output of our work is the selection from the
world-wide accessible MNI intracranial sEEG database
of intra-individual primary cortical parcels data. This
allows to quantify local neurodynamics as well as
functional connectivity. The possibility to investigate,
within a subject, neurodynamics of cortical parcels,
in all the sleep phases, constitutes a step forward for
studying the vital role that sleep plays in the organization
of the neuronal, hormonal, and immune systems. The
ability to investigate in well-selected representatives,
within paradigmatic cortical parcels of the same person,
neuronal network features of single nodes and their
connectivity fits well with the EU strategy aiming at
building through the EBRAINS (https://ebrains.eu/),
funded by the Human Brain Project flagship, a crucial
tool for neuroscientific integration of multilevel investi-
gations, enabling advancements for social economic and
community’s benefits.

In conclusion, our work further strengthens the study
of the neurodynamics properties of local neuronal
networks’ nodes as a result of their structure and
functional role within the brain hierarchy. A possible
impact of this analysis mainly relates the potential to
customize the communication with the brain in the
case of interventions for mitigating behavior disorders

and more in general in neuromodulation. In fact, neu-
romodulation—techniques that modify the excitability
of the neural target thus changing its relationship with
the connected areas and consequently its function—
emerge more and more consistently able to relief eating
disorders and addiction (Song et al. 2021), depression and
chronic fatigue (Brunoni et al. 2016; Gianni et al. 2021).
In a seminal non-invasive transcranial electric stimu-
lation (tES) study, the authors of (Cottone et al. 2018)
proved that a current which mimics the endogenous
dynamics of the target neuronal pools, neuromodulates
more efficiently than the sinusoid at a locally-tuned
frequency, suggesting that structured patterns transmit
entrainment more than a non-structured stationary
signal (Réboli et al. 2022). The investigation carried
out in the present analysis paves the way of further
neuromodulation personalization, as the knowledge on
local neurodynamics allows better tuning the neuromod-
ulation to the desired neuronal pool target and obtaining
higher efficacy in compensating symptoms secondary
to alterations of the neurodynamics, like depression,
addiction, pain, and fatigue. On the other side, given the
deep interrelation between mental behavioral disorders
and sleep disturbances (Wittchen et al. 2011), we believe
that neuromodulations reducing the behavior alterations
(Gianni et al. 2021; Song et al. 2021) could result in
sleep rebalance. Since non-invasive neuromodulation
can be applied during sleep, further knowledge on
neurodynamics properties during sleep can be exploited
to deliver the stimulation also in these physiological
states.
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