
Physics Letters A 481 (2023) 129013

Contents lists available at ScienceDirect

Physics Letters A

journal homepage: www.elsevier.com/locate/pla

High-frequency magnetohydrodynamics

Renato Spigler a,b,∗,1

a Department of Mathematics and Physics, Roma Tre University, Rome, Italy
b Institute for Complex Systems ISC–CNR, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 April 2023
Received in revised form 9 June 2023
Accepted 6 July 2023
Available online 13 July 2023
Communicated by A. Das

Keywords:
Magnetohydrodynamics
Displacement current
Magnetic reconnection
Hydromagnetic waves
Moore-Gibson-Thomson equation

We consider the case that the displacement current is not neglected in the classical MHD equations, as it is 
usually done. This amounts to cast them in the relativistic framework of a finite speed of light. We show 
some consequences in describing magnetic reconnection phenomena and for hydromagnetic waves. In 
the first case, the equation for the magnetic induction is changed from (formally) parabolic to (formally) 
hyperbolic, in the second case both, the perturbed magnetic field and the particle velocity, obey to a 
certain third-order in time partial differential equation, rather than to the classical wave equation. We 
stress the role of two typically small but nonzero parameters, the magnetic diffusivity, η (corresponding 
to large values of the Lundquist number), and ε := c−2.
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1. Introduction

Within the set of the magnetohydrodynamics (MHD) equations, 
the displacement current is usually neglected in the Maxwell equa-
tions [6, Ch. 4, § 4.1, p. 112]. The ensuing results would be rather 
different in several respects in comparison to when this assump-
tion is not made. These changes include the description of high fre-
quency phenomena, relevant, in particular, in space and laser plas-
mas in ultrarelativistic limits and in astrophysics; see, e.g., [3,8], 
where the role of the displacement current is important. In this 
paper, we will show how the equations governing magnetic recon-
nection as well as some typical hydromagnetic waves will change 
if the displacement current is retained. We use the wording “high-
frequency MHD” theory to refer to the case when the contribution 
due to the displacement current is not neglected (clearly related 
to the relativistic framework of c < ∞), since it is likely that such 
a term will be important in a high frequencies regime, or perhaps 
with high phase velocities.

In case of magnetic reconnection, which is a mechanism con-
sidered responsible of a number of phenomena such as, e.g., so-
lar flares and gamma ray bursts in astrophysics, and a certain 
nuclear fusion dynamical behavior in plasma laboratory, when a 
sudden change in magnetic topology transforms magnetic into ki-
netic energy and then particle acceleration is observed, the (for-
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mally) parabolic equation satisfied by the magnetic field becomes 
(formally) hyperbolic. Moreover, in case of hydromagnetic waves, 
both, the perturbed magnetic field and the particle velocity obey 
now to a third-order in time partial differential equation, rather 
than to the classical wave equation. Third-order in time partial 
differential equations are encountered elsewhere, in mathematical 
physics, for instance in linear and nonlinear acoustics. These are 
for instance the Moore-Gibson-Thomson equation and the Jordan-
Moore-Gibson-Thomson, which govern the acoustic velocity poten-
tial [13,20]. Another example is given by the Jeffreys-type equa-
tions modeling heat conduction [9, sec. III, p. 44, eq. (3.1)].

Several papers on the Moore-Gibson-Thomson and the Jordan-
Moore-Gibson-Thomson equations have appeared even very re-
cently, to the point that this subject can now be considered an 
active research subject. We mention [11], where the limiting be-
havior of solutions is studied as the sound diffusivity vanishes, and 
many relevant previous works are quoted. These include, in partic-
ular, the pioneering works by Moore and Gibson, Thomson, Morri-
son, and Jordan. In [12], some general linear third-order in time 
equations, extending the classical wave equations, were studied 
asymptotically as the relaxation time, which multiplies the highest 
derivatives, vanishes; in [10,2], the limiting behavior of solutions 
for vanishing relaxation time was considered in case of nonlinear 
acoustics.

In this paper, we consider two examples where the aforemen-
tioned inclusion of the displacement current term in the Maxwell 
equations within the MHD model, plays a role. The first one is 
of interest in describing magnetic reconnection phenomena, where 
the formally “parabolic” equation for the magnetic field, B, be-
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comes (also formally) “hyperbolic” (section 2), the second one 
shows the emergence of a modified Alfvén equation, which has the 
form of a third-order in time equation (section 3). A short sum-
mary section (section 4) concludes the paper.

2. Magnetic reconnection in a high-frequency regime

Adopting SI units, the Maxwell equations read

∇ × E = −∂B

∂t
, (1)

∇ × B = μ0 J + 1

c2

∂E

∂t
, (2)

being B = μ0H and D = ε0E the displacement vector. We differen-
tiate both sides of equation (1) with respect to time, obtaining

∂2B

∂t2
= −∇ × ∂E

∂t
= −c2 ∇ × ∇ × B + c2 μ0 ∇ × J. (3)

Then, we use the generalized Ohm’s law,

J = σ (E + v × B) + f, (4)

where σ denotes the electrical conductivity of the medium, and 
for an ion-electron plasma we assume σ = nee2

meνc
, where ne and 

me are the electron number density and (rest) mass, e is the 
electric charge, and the νc the Coulomb collision frequency. We 
have collected in the vector f all forcing terms (the driving fac-
tors) that there may enter such a generalized physical law. For 
instance, these might be additional terms, such as pressure gradi-
ents (hence, possibly density and/or temperature gradients), Hall, 
or inertial terms; see [4, eq. (IV.7), p. 459], and [1, Ch. 6, eq. (6.19), 
p. 204], e.g., but for more general two-fluids models. Thus, we ob-
tain

∂2B

∂t2
= −c2

[
∇(∇ · B) − ∇2B

]
+ c2 μ0 σ ∇ × (E + v × B)

+ c2 μ0 ∇ × f

= c2 ∇2B − c2 μ0 σ
∂B

∂t
+ c2 μ0 σ ∇ × (v × B)

+ c2 μ0 ∇ × f,

since ∇ · B = 0 and we used again equation (1). Therefore, we have

∂2B

∂t2
+ c2 μ0 σ

∂B

∂t
= c2 ∇2B + c2 μ0 σ ∇ × (v × B)+ c2 μ0 ∇ × f,

and finally, noticing that c2μ0 = 1/ε0, being c = 1/
√

ε0 μ0 the 
speed of light, we end up with

η

c2

∂2B

∂t2
+ ∂B

∂t
= η∇2B + ∇ × (v × B) + g, (5)

where we set g := σ−1 ∇ ×f and introduced the magnetic diffusivity

η := 1

μ0σ
, (6)

(measured in m2/s, in SI units), which is inversely proportional 
to the electrical conductivity of the medium. For an ion-electron 
plasma we assume σ = nee2

meνc
, where ne and me are the electron 

number density and (rest) mass, e is the electric charge, and the 
νc the Coulomb collision frequency. Hence, η is proportional to the 
collision frequency, νc .

Note that equation (5) is a [formally] hyperbolic equation for B, 
which reduces to the well-known [formally] parabolic equation
2

∂B

∂t
= η∇2B + ∇ × (v × B), (7)

found within the classical resistive MHD theory, obtained when 
the displacement current vector is neglected in (2), and f = 0 (for 
simplicity).

Clearly, the parameter η > 0 may be small, even very small 
(η → 0 as σ → ∞, in case of ideal nonresistive, that is, perfectly 
collisionless MHD, and both equations, (5) and (7), look singu-
larly perturbed as η → 0+ . For any fixed η > 0, however, in (5)
we face a singularly perturbed problem as c → ∞, that is in the 
“nonrelativistic limit”. Referring to time-harmonic fields, so that 
∂/∂t ∼ −iω, the possibly small parameter will be ηω2/c2, rather 
than 1/c2, to be compared to ω, see (5).

That singularly perturbed problems imply, in general, the ex-
istence of a boundary (actually, here, an initial) layer in order to 
match the solutions of the “hyperbolic” to that of the “parabol-
ic” equation for B, would deserve a separate investigation. This 
is relevant to establish whether the solution to the former equa-
tion converges uniformly or not to that of the latter equation, thus 
allowing trivial a straightforward approximation or not. In two 
cases, that of Cattaneo-Maxwell-Vernotte and that of the hyper-
bolic Schrödinger equations, discussed respectively in [7] and [16], 
it was shown that no initial layer is required for the initial-value 
problem. This behavior cannot be generalized at once since the un-
knowns there were scalar, while here B is a vector, hence here we 
actually face a linear system.

Even though equation (5) (as well as (7)) is coupled with other 
quantities, such as v and those in f, one may expect that the speed 
of variation of B, hence perhaps the magnetic reconnection rate, 
will be affected and be somewhat different from that described by 
the diffusive model equation (7). We discuss this issue in the next 
subsection.

2.1. Speed of magnetic reconnection in diffusive, Sweet-Parker, and the 
present model

In [14], the speed, says V D (“D” for diffusion), of merging of 
the magnetic lines of force estimated by a purely diffusive model, 
such as ∂B

∂t = c2

4πσ ∇2B (in CGS units), was compared to that, V S P

(“SP” for Sweet-Parker), obtained including the velocity term ∇ ×
(v ×B), based on the so-called Sweet-Parker mechanism [18,19,14]. 
The result was

V D = c
( c

σ L

)
, (8)

where L denotes a spatial scale (e.g., the size of some sunspot, on 
the Sun), and all equalities here and below are intended as approx-
imated (typically up to some multiplicative constant), as order of 
magnitude, and

V S P = c
( v A

σ L

)1/2
, (9)

where

v A := B0√
4πρ0

(10)

is the Alfvén velocity, ρ0 being the mass density (in CGS units). 
The ratio

V S P

V D
=

(
σ L

c

)( v A

c

)
= S1/2, (11)

where S is the Lundquist number, defined as

S := Lv A
, (12)
η
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where L denotes a typical space length scale and assumed that it 
is large (small values of η, i.e., weakly collisional plasmas), can be 
very large.

The Lundquist number is a dimensionless parameter that can 
be considered as a special case of the magnetic Reynolds numbers, 
and is useful to compare the timescale of Alfvén waves and that 
of resistive diffusion. It important in connection to the magnetic 
reconnection, since high Lundquist numbers characterize highly 
conducting plasmas, while low values identify somewhat more re-
sistive plasmas. Typical values for S in laboratory plasmas range 
from 102 to 108, while they be larger than 1020 in astrophys-
ical plasmas. Therefore, from (11) follows that the Sweet-Parker 
model predicts a much faster reconnection than the purely diffu-
sive model. For this reason, the Sweet-Parker model is considered 
as providing a “fast reconnection”. Indeed, in [14] the example is 
reported that two oppositely directed sunspot fields with scales of 
104 Km (109 cm), accordingly to the Sweet-Parker model would 
merge in about two weeks, while it would take 600 years on the 
basis of pure diffusion. Nevertheless, the times predicted by the 
Sweet-Parker model are judged to be too long in several known 
instances.

According to the induction equation in (5) (with g = 0), the 
motion of the magnetic lines of force should obey a wave equation, 
resulting in a phenomenon traveling with a speed, V w , equal to 
the speed of light, hence its ratio with V S P ,

V w

V S P
= c

c
( v A
σ L

) =
(

σ L

v A

)1/2

=
(

c

v A

)1/2

S1/2, (13)

is definitely very large. Numerical examples show that this is likely 
to be too much, to be realistic. However, the model equation (5)
(with g = 0) shows that the wave equation there is very strongly 
damped, leading to kill any solution even on a very short time 
(or length). Only for extremely large (likely not realistic) frequen-
cies, one may expect that the first term (the second derivative 
term) dominates on the second one on the left-hand side of (5). 
In summary, the present modification dictated by the inclusion 
of the displacement current in the classical resistive MHD equa-
tions, does not seem to change appreciably what is predicted by 
the Sweet-Parker model. Since, in spite of the apparent singular 
perturbation affecting equation (5), one can expect no initial layer 
to appear in case of purely initial-value problems (and in some 
initial-boundary-value problem, as pointed out in [7,16], the main 
difference between the solutions to equations (7) and (5) will be 
an uniform error of order of η/c2.

3. Hydromagnetic waves in the high-frequency regime

In this section, we will see that when the displacement cur-
rent term is kept in the MHD equations, an equation of the third-
order in time, describing hydromagnetic waves, replaces the Alfvén 
equation. Third-order ordinary and partial differential equations 
are encountered elsewhere, in the mathematical physics’ literature. 
See for instance, in linear acoustics, the Moore-Gibson-Thompson 
equation, which governs the acoustic velocity potential, ψ ,

τ
∂3ψ

∂t3
+ ∂2ψ

∂t2
− C2 ∇2ψ − (τC2 + δ)∇2

(
∂ψ

∂t

)
= 0 (14)

[13,20,11]. Another case is that of the Jeffreys-type equations mod-
eling heat conduction,

∂2θ

∂t2
+ 1

τ

∂θ

∂t
− C2∇2θ − κ ∇2

(
∂θ

∂t

)
= 0, (15)

where θ denotes the absolute temperature, [9, sec. III, p. 44, 
eq. (3.1)]. Here, τ , C , and δ are appropriate physical constants (not 
the same in the two equations above).
3

We use the well known identity

∇ × (v × B) = (B · ∇)v − (v · ∇)B + v(∇ · B) − B(∇ · v) (16)

in equation (5) (with (g = 0), recalling that ∇ · B = 0 and assuming

∇ · v = 0 (17)

(incompressible fluid). Setting B = B0 + b with B0 = B0 ẑ along the 
z-axis, with B0 constant and |b| � B0 in (16), equation (5) thus 
becomes, upon linearization,

η

c2

∂2b

∂t2
+ ∂b

∂t
= η∇2b + B0

∂v

∂z
. (18)

Note that linearizing, we have neglected, in particular, the term 
(v · ∇)B = (v · ∇)b.

The motion equation,

ρ0
∂v

∂t
= −∇

(
p + B2

2μ0

)
+ 1

μ0
(B · ∇)b, (19)

where ρ0 = ∑
α nαmα (≈ nimi for a plasma of electrons and one 

species ions) is the background (constant) mass density and p is 
the pressure, can be simplified proceeding as in [15, Ch. IV, § 4.4, 
pp. 100-102]. Since we chose B0 = (0, 0, B0), (19) becomes

ρ0
∂v

∂t
= B0

μ0

∂b

∂z
− ∂

∂z

(
p + B2

2μ0

)
ẑ. (20)

Assuming a space dependence only on z, looking in practice for 
plane wave solutions, we set ∂/∂x = ∂/∂ y = 0. From ∇ · B = 0 and 
(17) then follows that

∂vz

∂z
= 0,

∂bz

∂z
= 0, (21)

hence vz and bz can be taken identically zero, since in so doing 
we only neglect trivial (i.e., not wave) solutions [15, Ch. IV, § 4.4, 
p. 101]. Consequently, equation (20) implies that

∂

∂z

(
p + B2

2μ0

)
≡ 0, (22)

and then it reduces to

ρ0
∂v

∂t
= B0

μ0

∂b

∂z
, (23)

cf. [15, Sec. 4.4,p. 101].
Differentiating with respect to time both sides of equation (18)

and inserting (23), we obtain the decoupled third-order in time 
equation for b alone,

η

c2

∂3b

∂t3
+ ∂2b

∂t2
= η

∂2

∂z2

(
∂b

∂t

)
+ v2

A
∂2b

∂z2
, (24)

where v A := B0/
√

μ0ρ0 is the Alfv’́en velocity in SI units. Equation 
(24) shows that each component of b (but bz ≡ 0), satisfies an 
equation like the Moore-Gibson-Thompson equation (14) of linear 
acoustics in one space variable.

It is noteworthy that such equation can also be written as

η

c2

∂

∂t

(
∂2b

∂t2
− c2 ∂2b

∂z2

)
+

(
∂2b

∂t2
− v2

A
∂2b

∂z2

)
= 0, (25)

in the form analyzed in [12]; see [12, Sect 2, eq.s (2.1a), (2.2)], 
and note that also the here obvious condition c > v A agrees with 
that the authors state being satisfied in the dissipative physical 
problems that they consider there, that is, in viscoelastic wave 
propagation and in propagation of waves in real gases.
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In case of an ideal fluid, incompressible and with infinite con-
ductivity, σ = ∞ (or η = 0), equation (24) reduces to the custom-
ary Alfvén equation,

∂2b

∂t2
= v2

A
∂2b

∂z2
, (26)

and this happens whether the displacement current term is ne-
glected or not.

In case of resistive MHD (finite conductivity, σ < ∞, i.e., 0 <
η < ∞), instead, equation (24) should be considered in place of 
(26), whether the displacement current term plays a role or not. 
In fact, if the latter is ignored, c → ∞ but η �= 0, equation (24)
(formally) simplifies to

∂2b

∂t2
= η

∂2

∂z2

(
∂b

∂t

)
+ v2

A
∂2b

∂z2
, (27)

which, however, is still a third order equation.
In the ideal case of infinite conductivity, it is known that the 

particle velocity, v, obeys precisely the same Alfvén equation sat-
isfied by b; see [15, Ch. IV, Sec. 4.4, p. 101, (4-77)-(4-78)]. Here, 
we can derive the corresponding equation for v, in case of finite 
conductivity and including high-frequency effects or not (that is, 
those of the displacement current). Starting from equation (18)
(with ∇2 = ∂2/∂z2), and differentiating both sides of equation (23)
with respect to z and to t , we have, respectively,

∂2b

∂z2
= μ0ρ0

B0

∂2v

∂t∂z
(28)

and

∂2b

∂z∂t
= μ0ρ0

B0

∂2v

∂t2
(29)

(assuming regularity as everywhere in the paper, to ensure invert-
ibility of the order of differentiation). Further differentiating both 
sides of (29) with respect to t , we obtain

∂3b

∂z∂t2
= μ0ρ0

B0

∂3v

∂t3
, (30)

and inserting (28) in the right-hand side of (18) (in 1D), we have

η

c2

∂2b

∂t2
+ ∂b

∂t
= ρ0

σ B0

∂2v

∂z∂t
+ B0

∂v

∂z
. (31)

We then differentiate again with respect to z, obtaining

ε0

σ

∂3b

∂z∂t2
+ ∂2b

∂t∂z
= ρ0

σ B0

∂3v

∂z2∂t
+ B0

∂2v

∂z2
, (32)

and finally, inserting here (30) and (29), we have

ρ0

B0c2σ

∂3v

∂t3
+ μ0ρ0

B0

∂2v

∂t2
= ρ0

σ B0

∂2

∂z2

(
∂v

∂t

)
+ B0

∂2v

∂z2
, (33)

that is

η

c2

∂3v

∂t3
+ ∂2v

∂t2
= η

∂2

∂z2

(
∂v

∂t

)
+ v2

A
∂2v

∂z2
, (34)

recalling that μ0c2 = 1/ε0 and η := 1/μ0σ . This equation, that can 
also be written as

η

c2

∂

∂t

(
∂2v

∂t2
− c2 ∂2v

∂z2

)
+

(
∂2v

∂t2
− v2

A
∂2v

∂z2

)
= 0, (35)

coincides with the equation (24) satisfied by b, as it happens in 
the simpler case when the displacement current is dropped from 
4

the Maxwell’s equations [15, Ch. IV, § 4.4], hence again with the 
Moore-Gibson-Thompson equation for each component of v (but 
vz ≡ 0). It reduces to the usual Alfvén equation when σ → ∞
(η → 0), including or not the displacement current. When, instead, 
σ < ∞, equation (34) yields two different third-order equations 
(as it happens above, for the magnetic field b) whether the dis-
placement current effects are included or not (c → ∞).

Equation (24) can be studied by Fourier analyzing it in space 
and time. Looking for plane wave solutions b ∼ exp {i(kz − ωt)}
yields the dispersion relation

iη εω3 − ω2 − iηk2ω + v2
Ak2 = 0, (36)

where we set ε := c−2.
Note that in collisionless plasmas η = 0, and the solutions will 

be unaffected in both, a classical model (c = ∞) and relativistic 
models (c < ∞). This means that relativistic effects here are cou-
pled to the collisional motion. However, in even weakly collisional 
models, η being proportional to the electrical resistivity, hence to 
the collision frequency, a difference when c = ∞ or c < ∞ does 
exist for any fixed value of η > 0. Indeed, high-frequency effects 
may be relevant whenever ηεω3 = ηω3/c2 is comparable or higher 
than ω. Consider that, for instance, the measured mean values of 
η in the solar photosphere are roughly in the range (1 ÷ 20) × 106

m2s−1, but elsewhere they can be of order of (70 ÷ 600) × 106

m2s−1, obtained with high-resolution magnetograms [5]. We have 
that the previous condition requires frequencies f � c/(2π

√
η) ≈

3 × 108/(2π(1 ÷ 10) × 103) i.e., of order of 104 ÷ 105 Hz.
The algebraic equation (36) can be solved expanding in powers 

of ε, keeping in mind that one faces a singularly perturbed prob-
lem. The regular expansion in powers of ε yields the two roots

ω = ω± := ±kv A(1 − r) ∓ i
k2η

2
+O(ηε), (37)

where we defined the dimensionless parameter

r := k2η2

4v2
A

, (38)

assuming r < 1. This parameter can be related to Lundquist num-
ber, defined in (12). Thus, r = k2 L2

4
1
S . If r � 1, i.e., essentially in 

case of large Lundquist numbers, we have the approximation

ω = ω± ≈ ±kv A

(
1 − r

2

)
∓ i

k2η

2
+O(ηε) (39)

Note also that (k2η/2)/(kv A) = (kL/2)(1/S) will be small, so that 
the imaginary correction to the frequency is also small.

The third root of the dispersion relation (36) is lost, being lo-
cated at infinity. Setting ω := �/ε, a scaling suggested by the 
so-called “dominating balance”, leads to the equation

iη�3 − �2 − ik2ηε� + k2 v2
Aε2 = 0, (40)

Expanding � in powers of ε reveals the existence of the “singular” 
root �s ≈ −i/η that is the third root of the dispersion relation 
(36). More precisely, we obtain

ωs = − i

ηε
+ ik2η +O(ηε), (41)

where we considered η > 0 fixed.
For solutions ∼ exp{ikz − iωst}, i.e., in particular depending on 

time as ∼ exp{−iωst}, this third solution typically represents a 
strongly damped wave, since −iωs = −1/(ηε) is real negative and 
typically large (1/(ηε) is the damping rate). In fact, the algebraic 
equation (36) is singularly perturbed by the small parameter ε. 
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We conclude that three waves exist, two of them being essentially 
Alfvén waves with frequency slightly affected by collisional effects 
and also slightly damped in time, and a third (new) hydromagnetic 
wave, strongly damped in time according to e−t/(ηε) .

Remark 3.1. Solving the dispersion equation in (36) is strictly re-
lated to solving equation (34) by Fourier transforming it in both, 
space and time. If we Laplace transform in time an initial-value 
problem for equation (34), after Fourier transforming it in space, 
denoting by a hat the latter (with respect to z), and with a tilde 
the former (with respect to t), setting b̂(k, t) := Fz [b(z, t)] and 
b̃ε(k, s) :=Lt [Fz [b(z, t)]], we obtain after a little algebra

b̃ε − b̃0 =
k2 v2

A s2 b̂(k,0) + (ηs + v2
A)k2s b̂t(k,0) + (s2 + k2ηs + k2 v2

A )̃btt(k,0)

(ηεs3 + s2 + k2ηs + k2 v2
A)(s2 + k2ηs + k2 v2

A)
ηε.

(42)

Thus, |̃bε − b̃0| = O(ε), so that b̃ε → b̃0, at least if |k| is bounded 
(band-limited or low-pass solutions), and upon inverse transform-
ing, we can (formally) infer that also bε → b0, and no “initial layer” 
appears, so that this convergence is uniform. A similar behav-
ior was found for the solution to the Cattaneo-Maxwell-Vernotte 
equation (converging uniformly to the solution to the Fourier heat 
equation) in [7] and for the solution to the hyperbolic Schrödinger 
equation (converging to the solution to the classical Schrödinger 
equation) in [16].

It may be interesting to observe that the dissipation leading to a 
third-order equation in the present case of hydromagnetic waves, 
as, on the other hand, in acoustics and elsewhere [12,2,10], may be 
related to the what appears in relativistic effects in magnetic re-
connection. In [3], the author states that such effects, important in 
space and laser plasmas, manifest themselves in the displacement 
current effects playing a role of “dissipation” in the ultrarelativis-
tic limit. In other words, here, in the present analysis, as there, 
the displacement current plays a dissipative role. Indeed, its action 
was termed “dynamic dissipation” of the magnetic field, whose en-
ergy is transferred to the kinetic energy [8], by S.I. Syrovatskii [17], 
since in the ultrarelativistic regime, due to the limitation of the 
conduction current by the relativistic constraint on the particles 
velocity [8], the variation of the magnetic field has to be mostly 
sustained by the displacement current.

4. Summary

Some new results observable when the displacement current 
term is included in the MHD equations have been established. Re-
taining the displacement current term amounts to cast them in the 
MHD equations in relativistic framework of a finite speed of light. 
The typical equation for the magnetic induction, used to study 
magnetic reconnection phenomena, becomes formally hyperbolic 
instead of parabolic, and the equation describing hydromagnetic 
(Alfvén) waves for the perturbed magnetic field as well as for 
the particle velocity both obey now a third-order in time partial 
differential equation (coinciding with the Moore-Gibson-Thomson 
equation of linear acoustics), rather than the classical wave equa-
tion. In both examples, the higher derivatives are multiplied by a 
small parameter, but no initial layer is necessarily needed. From 
the physical point of view, the new speed of magnetic recon-
nection will be slightly different, while an additional third wave, 
strongly damped in time, will emerge from the new hydromag-
netic (Alfvén) equation.
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