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The Extreme Universe Space Observatory on a Super Pressure Balloon 2 (EUSO-SPB2) is the
most advanced balloon mission undertaken by the JEM-EUSO collaboration. EUSO-SPB2 is
built on the experience of previous stratosphere missions, EUSO-Balloon and EUSO-SPB, and of
the Mini-EUSO space mission currently active onboard the International Space Station. EUSO-
SPB2 is equipped with two instruments: a fluorescence telescope aimed at registering ultra-high
energy cosmic rays (UHECRs) with an energy above 2 EeV and a Cherenkov telescope built to
measure direct Cherenkov emission from cosmic rays with energies above 1 PeV. The EUSO-SPB2
mission will provide pioneering observations on the path towards a space-based multi-messenger
observatory. As such, a special attention was paid to the development of triggers and other software
aimed at comprehensive data analysis. A whole number of methods based on machine learning
(ML) and neural networks was developed during the construction of the experiment and a few
others are under active development. Here we provide a brief review of the ML-based methods
already implemented in the instrument and the ground software and report preliminary results on
the ML-based reconstruction of UHECR parameters for the fluorescence telescope.

38th International Cosmic Ray Conference (ICRC2023)
26 July - 3 August, 2023
Nagoya, Japan

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:gfilippatos@mines.edu
https://pos.sissa.it/


P
o
S
(
I
C
R
C
2
0
2
3
)
2
3
4

Machine Learning for EUSO-SPB2 George Filippatos

1. Introduction

The Extreme Universe Space Observatory on a Super Pressure Balloon 2 (EUSO-SPB2)
consisted of two optical telescopes, the Cherenkov telescope (CT) and the fluorescence telescope
(FT). The CT was made up of 512 silicon photo-multipliers and points towards the limb of the Earth,
with the eventual goal of observing Earth-skimming 𝜈𝜏’s. The FT consisted of 108 multi-anode
photo-multiplier tubes (MAPMTs) and pointed down at the atmosphere from the SPB’s float altitude
of 33 km. Designed to detect ultra high energy cosmic ray (UHECR) induced extensive air showers
(EAS), the FT contained a total of 6,912 pixels in a rectangular grid of 48 x 144 pixels (12o x 36o)
each with an integration time of 1.05 𝜇s.

Serving as a stepping stone to future space based experiments, such as K-EUSO [1] or the
Probe of Extreme multi-messenger Astrophysics [2], EUSO-SPB2 aimed to observe UHECRs
under constraints similar to a satellite mission. This includes limited power and telemetry. Being
powered by lithium-ion batteries charged from solar panels, and being designed to operate through
extended nights if the balloon drifted south required that low power CPUs must be utilized. This
imposes an intrinsic limit on the computational intensity of the onboard data handling processes.
Additionally, limited telemetry means that only a fraction of recorded data can be downloaded.
The planned primary telemetry connection for EUSO-SPB2, the Tracking and Data Relay Satellite
System, would have allowed for only less than 10 percent of the data recorded with the FT to
be downloaded during flight. To combat this limitation, SuperBIT, the other payload to launch
during the 2023 Wanaka campaign, carried physical storage devices in parachute assemblies that
were dropped over south America for data recovery. These limits on telemetry and power require
sophisticated schemes for handling the large amount of data generated by the FT in flight. In the
months immediately prior to launch, it was decided that a Starlink connection would be flown for the
first time on a high altitude balloon. This connection allowed for roughly two orders of magnitude
higher bandwidth allowing a significant fraction of the recorded data to be downloaded.

Indirect measurements of UHECRs, such as those attempted by EUSO-SPB2, require some
form of reconstruction in order to estimate the characteristics (energy, etc.) of the primary particle.
With many changing variables, reconstructions of this nature pose a challenge. Degeneracy exists
between the observed signals of EAS with different parameters. Additionally features of the detector
complicate the analysis of signals. This includes gaps in between the different MAPMTs and non-
uniformities in the response of the detector. By utilizing a neural network based approach to
reconstruction of the EAS properties, these effects can be accounted for in an efficient manner.

EUSO-SPB2 launched on May 13th from Wanaka New Zealand with hopes of a months-long
flight. Unfortunately due to a leak in the balloon, the flight was terminated thirty seven hours later.
Several hours of self triggered data were recorded and downloaded by the FT during this shortened
flight. Given the accumulated exposure, the expected number of observed EAS was below one.
Despite the shortened flight, the FT was able to record many thousands of laser shots mimicking
the optical signature of an EAS during a field campaign in Delta Utah in fall 2022.
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2. Data Sets

2.1 Simulations

In order to test and develop analysis techniques, as well as inform the design of the instrument,
extensive simulations of the detector response are preformed. These simulations are carried out
in the JEM-EUSO Offline framework [3]. Starting with a simulation of a shower profile in either
Corsika or Conex, the fluorescence light from the EAS is propagated through the atmosphere
to the detector, accounting for dispersion and scattering. The response of the detector is then
simulated using a Geant4 implementation of the optics and electronics, which has been tuned based
on laboratory measurements of the instruement. This creates a simulated output that mimics the
recorded data: 6,912 traces 128 frames long. Examples of three simulated showers are shown in
Figure 1, both with and without simulated background.
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Figure 1: The left three panels: examples of integral tracks with zero background illumination for simulated
EAS with energies 2.0 EeV, 15.8 EeV, and 50.1 EeV. The right three panels: integral signals during 128
GTUs for the same EASs with expected background illumination.

The result of the simulation can be used to test different configurations of the instrument, such
as trigger parameters,and can be used for analysis such as estimating the energy resolution of the
detector. One relevant aspect of these simulations is that there is significant degeneracy between
the energy of the simulated EAS and the brightest signal recorded in the detector. This is the
result of different geometries of the EAS. For example more inclined showers result in signal being
localized in fewer pixels. Additionally, there are detector-specific features that complicate analyses
like energy estimation such as the physical spacing between MAPMTs. These effects, along with
the different geometries EAS may have, can be accounted for by utilizing a Monte Carlo approach
and simulating many thousands of showers to be used as a training set.

2.2 Laser Events

In addition to the simulated data sets, data taken on the ground during a field campaign prior to
flight were available to develop and test ML methods. In the fall of 2022, the fluorescence telescope
was transported to the Telescope Array Black Rock Mesa FD for calibrations and testing. A mobile
laser trailer was parked 24 km away from the site in order to mimic the geometry expected of EAS
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during flight. This laser trailer is equipped with a steerable laser head, allowing for thge laser to be
fired in any direction. It also includes an energy probe which samples and records every laser shot.
The instrument was triggered internally providing an end to end verification of the data acquisition
system. An example of a recorded laser shot is shown in Figure 2. Of note is the relatively low
signal when compared to the entire recorded packet.
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Example Laser Event: 01 Sep 2022 06:41:12

Figure 2: Example laser event recorded during field tests. Integrated signal over entire packet (top) and laser
signal after offline identification (bottom). Energy of laser chosen to mimic a 3 EeV EAS, geometry chosen
to cover entire focal surface with laser located 24 km away from the detecor.

3. Binary Classification

Due to limited telemetry onboard the super pressure balloon, an onboard scheme is needed
to prioritize data for download. The chosen approach to this problem is to use a combination of
recurrent and convolutional neural network.

A convolutional neural network (CNN) is a type of deep neural network that can be used as
a binary classifier, and is most often used for image recognition. There are several advantages to
using a neural network approach to the problem of onboard data classification. A major one is that
the majority of the computationally intensive portion of the calculation needs to only be done once
prior to the flight. Once the model is trained, it can be efficiently used to classify data with minimal
computational overhead. Another major advantage of CNNs compared to other types of image
classification algorithms is that they require minimal pre-processing. Therefore no prior knowledge
of what makes events recognizable is needed, as the model learns these features on its own. Lastly,
CNNs are shift and rotation invariant, meaning that the location of the signal in the camera is not
relevant to the model’s ability to classify it correctly.

Each frame of data recorded is passed through a convolutional layer. The output of this CNN is
then fed into a recurrent neural network (RNN). This searches for signal moving in time as we expect
the EAS induced signals to. Long short term memory gates were experimented with, but found

4



P
o
S
(
I
C
R
C
2
0
2
3
)
2
3
4

Machine Learning for EUSO-SPB2 George Filippatos

to add no improvement to the performance of the classifier, while increasing the computational
load. By utilizing just in time compilation, complex neural networks such as this can be utilized as
onboard software running efficiently without a dedicated graphics processing unit.

The classifier was trained and developed on simulated data. On simulations, the model was able
to reach near perfect accuracy. When applied to data outside of the training set, such as recorded
data from previous EUSO missions, the fraction of events incorrectly identified as signal increased.
The distribution of assigned probabilities for triggered laser events, and other triggered events is
shown in Figure 3. As can be seen, the laser events are correctly identified more than 90% of the
time, while other triggers are misidentified roughly 10% of the time.
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Figure 3: Distribution of probability assigned by onboard classifier to laser events (blue) and other triggered
events (red).

4. Energy Estimation

One of the tasks of estimating initial parameters of a primary particle is reconstruction of its
energy. Application of machine learning methods to this problem has been studied for surface
detectors of the Pierre Auger Observatory [4, 5] and the Telescope Array experiment [6, 7], see
also [8]. However, as of time of this writing, we are not aware of any publications of these
collaborations dedicated to the discussion of ML-based energy reconstruction of events registered
with fluorescence telescopes.

On the other hand, this task has been attracting attention of experiments in gamma-astronomy
for quite a while now [9–18]. In this case, the main instruments are Cherenkov telescopes (Imaging
Atmosphere Cherenkov Telescopes, IACTs), which register tracks produced by cascades initiated
by gamma rays or by hadrons. Thus, the task of energy reconstruction for UHECRs registered with
a fluorescence telescope is similar to the corresponding task for Cherenkov telescopes. Two main
approaches of energy reconstruction have been implemented for IACTs: the Random Forest method
and various modifications of CNNs. CNNs have demonstrated better performance than Random
Forest in most cases, thus we tried them as the first tool to test.
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We took 8,123 events simulated with Offline [3] as an input data set. The events have energies
distributed uniformly wrt. the logarithm of energy in the range from 1018.1 eV (1.26 EeV) to
1019.7 eV (50.1 EeV), see Figure 4, with azimuth angles covering the whole 2𝜋 range and zenith
angles varying from 0◦ to 80◦. All selected events intersected the field of view of the fluorescence
telescope and registered a trigger. An example of three tracks arising from EAS initiated by cosmic
rays with different energies are shown in Figure 1. Notice that tracks are rather dim for energies
below ∼ 10 EeV.
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Figure 4: Energy (in EeV) and maximum signal amplitude (in photon counts) in the simulated training/testing
data set.

We began with a simplified “proof-of-concept” problem setting. The initial data set contained
integral signals with zero background illumination (like those shown in three left panels of Figure 1).
We have tried several architectures of CNNs with different number of convolutional and fully
connected layers and different hyper-parameters. The model of choice consists of six convolutional
layers and five fully connected layers though a few other models demonstrated similar performance.
Adam with a varying learning rate was used as an optimization algorithm. Mean absolute percentage
error (MAPE) was employed as a loss function (with mean squared logarithmic error showing similar
results). In most cases, MAPE was below 10%, which can be considered as a promising result.

Then we considered a more realistic case, i.e., signals with realistic intensity of background
illumination (like those shown in the right three panels of Figure 1). We restricted our work to
signals with 𝐸 ≥ 10 EeV since signals with lower energies are too dim in a typical case. This left us
with a data set comprised of 5,538 events. We applied a procedure of finding pixels that belong to
a track similar to that developed for reconstruction of arrival directions. These reconstructed tracks
were passed to the CNN, which demonstrated decent performance with MAPE being in the range
10–12% in most runs. Figure 5 shows an example of energy reconstruction for a testing data set. It
can be seen that in most cases predicted energies are close to the true ones, with MAPE ≈ 7%.

We are working on studying richer simulated data sets and developing more sophisticated
methods of energy reconstruction, as well as testing them on the data set of laser shots obtained
during calibration of the instrument. These results will be reported in a dedicated paper.
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Figure 5: Left: an example of energy reconstruction for simulated EAS with energies ≥ 10 EeV with a CNN.
True energies are shown by yellow circles, reconstructed energies are shown with blue diamonds. Right:
relative errors of energy reconstruction for the same test sample.

5. Summary

EUSO-SPB2 was a pathfinder instrument which flew in May 2023. In addition to prototyping
hardware for future experiments, EUSO-SPB2 offers an opportunity to develop analysis techniques
for the next generation of space-based UHECR detectors. By utilizing extensive simulations, as
well as ground observations of calibrated light sources, these analysis techniques can be qualified.
We have shown that ML based approaches show promise as both onboard software, such as the
binary classifier described here, and for determining characteristics of the primary particle such
as the energy. While the flight of EUSO-SPB2 was shorter than expected, the analysis techniques
developed show great promise for future experiments.
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