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ON SOME DOMAINS OF CONVERGENCE OF BRANCHED CONTINUED
FRACTION EXPANSIONS OF THE RATIOS OF HORN
HYPERGEOMETRIC FUNCTIONS H4

Roman Dmytryshyn,1,2 Ilona-Anna Lutsiv,3 Marta Dmytryshyn,4

and Clemente Cesarano5 UDC 517.5

For various conditions imposed on the parameters of the Horn hypergeometric function H4, we study
different domains of convergence for the branched continued fraction expansions of the ratios of these
functions.

1. Introduction

The (Gauss, Appel, Horn, Lauricella, etc.) hypergeometric functions are encountered in various problems of
applied mathematics, statistics, chemistry, biology, mathematical physics, and engineering sciences. They have
been extensively studied for the last two centuries (see, e.g., [6, 9, 11, 25–30, 33–35]).

In 1931, Horn listed 34 different convergent hypergeometric series with two variables [32]. All these 34 Horn
functions can be split into 14 full hypergeometric functions [F1–F4 (Appel functions), G1–G3, and H1–H7 ]
and 20 degenerate hypergeometric functions (Φ1–Φ3,  1,  2, ⌅1, ⌅2, Γ1, Γ2, and H1–H11 ); see [27, pp. 224–
227].

The Horn hypergeometric function H4 can be represented in the form of a double power series as follows:

H4(a, b; c, d; z) =

1X
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, |z1| < p, |z2| < l,

where a, b, c, and d are complex constants; moreover, c and d are not equal to a nonpositive integer; p and l are
positive numbers such that 4p = (l − 1)

2 and l 6= 1; (·)k is the Pochhammer symbol defined, for any complex
number ↵ and a nonnegative integer n, as follows: (↵)0 = 1 and (↵)n = ↵(↵ + 1) . . . (↵ + n − 1), and
z = (z1, z2) 2 C2

.

In the present paper, we continue the investigation of convergence of the branched continued fraction expan-
sions of the ratios of Horn hypergeometric functions H4 originated in [12, 24].

The convergence of the branched continued fraction expansions of the ratios of the hypergeometric func-
tions F1 and F3 was investigated in [2, 3] and [4, 20], respectively; the convergence of the hypergeometric
function F4(1, 2; 2, 2; z1, z2) was investigated in [31]; the convergence of the ratios of Horn hypergeometric func-
tions H3 was investigated in [7, 13], and the convergence of the ratios of Horn degenerate hypergeometric
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functions H6 and H7 was investigated in [10] and [8], respectively. The problem of convergence of the branched
continued fraction expansions for the ratios of the hypergeometric functions F2 and, in the general case, F4 con-
structed in [19] and [21], respectively, remains open.

2. Convergence of Branched Continued Fraction Expansion

By virtue of Theorem 1 in [12], under the conditions that b = d+ 1 and (ij)0 = (1, 2), we get the following
assertion:

Theorem 1. The ratio

H4(a, d+ 1; c, d; z)

H4(a+ 1, d+ 1; c, d+ 1; z)
(1)

has a formal branched continued fraction expansion of the form

1− d− a

d
z2 −

h1z1

1− z2 −
h2z1

1− z2 −
h3z1

1− . . .

, (2)

where

h1 =
2(a+ 1)

c
, hk =

(2c− a+ k − 3)(a+ k)

(c+ k − 2)(c+ k − 1)
, k ≥ 2. (3)

Remark 1. The branched continued fraction (2) has the form of a continued fraction. As a specific feature
of this case, we can mention different definitions of the approximants of these fractions. Namely, the sequence of
approximants of a continued fraction for a branched continued fraction is a sequence of so-called figured approx-
imants [1, p. 18]. For the results of investigation of convergence obtained for different figured approximants, see,
e.g., [5, 14, 15, 17, 18].

Theorem 1 in [23] immediately yields the following corollary:

Corollary 1. Let a and d be complex constants such that d 6= 0 and let g0,k, k ≥ 1, be real numbers such
that 0 < g0,k  1 for all k ≥ 1. Then the branched continued fraction

1− d− a

d
z1,0 −

g0,1z0,1

1− (1− g0,1)z1,1 −
g0,2(1− g0,1)z0,2

1− (1− g0,2)z1,2 −
g0,3(1− g0,2)z0,3

1− . . .

converges if |z1,k|  1/2 and |z0,k+1|  1/2 for all k ≥ 0.

The proof of Lemma 4.41 in [33] yields the following result:

Corollary 2. If x ≥ c > 0 and v
2  4u+ 4, where u, v 2 R, then
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The following theorem is true:

Theorem 2. Let a, c, and d be complex constants such that

|hk|+Re(hk)  pq(1− q), k ≥ 1, (4)

where hk, k ≥ 1, are given by (3), p is a positive number, 0 < q < 1, and d 6= 0. Then the branched continued
fraction (2) converges to a function f(z) holomorphic in the domain

⌦p,q =

⇢
z 2 C2 : |z1| <

1 + cos(arg(z1))

2p
, Re

⇣
z2e

−(i/2) arg(z1)
⌘
<

q

2
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✓
arg(z1)

2

◆�
. (5)

Furthermore, it is also uniformly convergent on every compact subset of the domain ⌦p,q.

Proof. Let

F
(n)
n (z) = 1, n ≥ 1, (6)

and

F
(n)
k (z) = 1− z2 −

hk+1z1

1− z2 −
hk+2z1

1− . . .−z2 −
hn−1z1

1− z2 − hnz1

, 1  k  n− 1, n ≥ 2.

Then

F
(n)
k (z) = 1− z2 −

hk+1z1

F
(n)
k+1(z)

, 1  k  n− 1, n ≥ 2, (7)

and the n th approximant of the branched continued fraction (2) can be represented in the form

fn(z) = 1− d− a

d
z2 −

h1z1

F
(n)
1 (z)

. (8)

We now show that each approximant fn(z) is a holomorphic function in domain (5). To this end, it suffices
to show that F (n)

1 (z) 6= 0 for all n ≥ 1 and z 2 ⌦p,q.

We set arg(z1) = ↵. Let n be an arbitrary natural number and let z be any fixed point of domain (5).
By induction on k, we can prove the following inequalities:

Re(F
(n)
k (z)e−i↵/2

) > (1− q) cos(↵/2) ≥ c > 0, 1  k  n, n ≥ 1. (9)

Since z is an arbitrary fixed point of domain (5), for any its neighborhood, one can find δ > 0 such that
|↵/2|  ⇡/2− δ and, hence,

(1− q) cos(↵/2) ≥ (1− q) cos(⇡/2− δ) = (1− q) sin(δ) = c > 0.
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We now show that the first inequality in (9) is true. For k = n, this inequality is obvious. We assume that the
first inequality in (9) holds for k = r + 1  n and prove it for k = r. In view of relation (7), we get

F
(n)
r (z)e−i↵/2

= e
−i↵/2 − z2e

−i↵/2 − hr+1z1e
−i↵

F
(n)
r+1(z)e

−i↵/2
. (10)

Applying Corollary 2, inequality (4), the inequalities in (5), and the induction assumption to relation (10), we obtain

Re(F
(n)
r (z)e−i↵/2

) ≥ cos(↵/2)− Re(z2e
−i↵/2

)− |hr+1|+Re(hr+1)

2Re(F
(n)
r+1(z)e

−i↵/2)

|z1|

> cos(↵/2)− q cos(↵/2)

2
− pq(1− q)

2(1− q) cos(↵/2)

1 + cos(↵)

2p
= (1− q) cos(↵/2).

Thus, F
(n)
1 (z) 6= 0 for all n ≥ 1 and z 2 ⌦p,q. This means that each approximant (8) is a holomorphic

function in domain (5).
Let ⌅ be an arbitrary compact subset of domain (5). Then there exists an open bidisk

ΓR = {z 2 C2 : |zk| < R, k = 1, 2}, R > 0,

such that ⌅ ⇢ ΓR and, for any n ≥ 1 and z 2 ⌦p,q \ ΓR, it follows from (8) that

|fn(z)|  1 +

����
d− a

d

����R+
|h1|R

Re(F
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< 1 +
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(1− q) cos(↵/2)
= C(⌅).

This means that the sequence {fn(z)} is uniformly bounded in each compact subset of the domain ⌦p,q.

Since limk!+1 hk = 1, there exists a constant M > 0 such that

|hk|  M for all k ≥ 1. (11)

It is clear that, for any l such that 0 < l < min{1/4, 1/(8M), 1/p, q/2}, the domain

⌥l = {z 2 R2 : 0 < zk < l, k = 1, 2}

is contained in ⌦p,q and, in particular, ⌥l/2 ⇢ ⌦p,q.

By using inequality (11), for any k ≥ 1 and z 2 ⌥l, ⌥l ⇢ ⌦p,q, we obtain

|z2| < 1/4, |hkz1| < 1/8.

This means that the elements of the branched continued fraction (2) satisfy the conditions of Corollary 1, where
g0,k = 1/2, k ≥ 1. According to this corollary, the branched continued fraction (2) converges in the domain
⌥l, ⌥l ⇢ ⌦p,q, and, hence, by virtue of Theorem 2.17 in [1] (see also [16, Theorem 7] and [35, Theorem 24.2]),
uniformly converges on every compact subset of domain (5) to the function f(z) holomorphic in ⌦p,q.

Theorem 2 is proved.
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By using Theorem 2, we obtain the following result:

Theorem 3. Let d be a nonzero complex constant and let a and c be real constants such that hk < 0 for
all k ≥ 1, where hk, k ≥ 1, are given by (3). Then the branched continued fraction (2) converges to a func-
tion f(z) holomorphic in the domain

⌦q =

⇢
z 2 C2 : | arg(z1)| < ⇡, Re(z2e

−(i/2) arg(z1)) <
q

2
cos

✓
arg(z1)

2

◆�
, (12)

where 0 < q < 1. Furthermore, it is uniformly convergent on each compact subset of the domain ⌦q.

Proof. If 0 < q < 1 and hk < 0 for all k ≥ 1, then it is clear that inequality (4) is true for all p > 0. Let ⌅
be an arbitrary compact subset of domain (12). Then the inclusions ⌅ ✓ ⌦p,q ✓ ⌦q hold for a certain sufficiently
small p for which the set ⌦p,q is, in fact, domain (5). Thus, this theorem is a direct corollary of Theorem 2.

Remark 2. In Theorems 2 and 3, the set

Re(z2e
−(i/2) arg(z1)) < (q/2) cos((arg(z1))/2)

can be also rewritten in the form z2 62 [q/2,+1).

Reasoning as in the proof of Theorem 2 (see also [22]), we obtain the following result:

Theorem 4. Suppose that d is a nonzero complex constant, a and c are real constants such that

0 < hk < r for all k ≥ 1, (13)

where hk, k ≥ 1, are given by (3), and r is a positive number. Then the branched continued fraction (2) converges
to a function f(z) holomorphic in the domain

⇥r =

[

−⇡/2<'<⇡/2

⇥r,',

where

⇥r,' =

⇢
z 2 C2 : |z1|+Re(z1e

−2i'
) <

cos
2
(')

4r
, Re(z2e
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Furthermore, it is uniformly convergent on each compact subset of the domain ⇥r.

Remark 3. In Theorem 4, the domain ⇥r can be also rewritten in the form

⇥r =
�
z 2 C2 : z1 62 [1/(8r),+1), z2 62 [1/4,+1)

 
.

By using Theorem 2 in [12], we get the following result:

Theorem 5. Suppose that d is a nonzero complex constant, a and c are real constants satisfying inequali-
ties (13), where hk, k ≥ 1, are given by (3), and r is a positive number. Then the branched continuous fraction (2)
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converges to a function f(z) holomorphic in the domain

⇧r =
�
z 2 C2 : zk 62 [1/(4(1 + r)),+1), k = 1, 2

 
.

Furthermore, it is also uniformly convergent on each compact subset of the domain ⇧r.

The proof of this theorem is similar to the proof of Part (A) of Theorem 3 in [12].

Remark 4. Results similar to Theorems 2–4 can be also obtained for the other two branched continued frac-
tion expansions of the ratios of Horn hypergeometric functions H4 obtained from Theorem 1 in [12] under the
conditions b = d, (ij)0 = (1, 1) and b = d + 1, (ij)0 = (2, 2). For b = d + 1 and (ij)0 = (2, 2), we can
also obtain a result similar to Theorem 5. In the general case, the problem of convergence of all three expansions
remains open.
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