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1|Introduction    

Partial Differential Equations (PDEs) are fundamental to various domains within the applied sciences and 

engineering, encapsulating essential principles such as the conservation of mass, momentum, energy, and 

 Journal of Applied Research on Industrial Engineering 

www.journal-aprie.com 

             J. Appl. Res. Ind. Eng. Vol. 11, No. 4 (2024) 652–669. 

Paper Type: Research Paper  

Advancements in Nonlinear Dynamics: Lie Symmetry 

Applications in the Jaulent-Miodek Equation 

Praveen Agarwal1,* , Adnan Shamaoon2, Amna Dastageer3, Clemente Cesarano4, Shilpi Jain5
 

 

1 Department of Mathematics, Anand International College of Engineering, Jaipur, 303012, Rajasthan, India; 

goyal.praveen2011@gmail.com. 
2 Northumbria University, Ellison Pl., Newcastle Upon Tyne, NE1 8ST Newcastle, United Kingdom; 

adnan.shamaoon@northumbria.ac.uk. 
3 University of Okara, 2 KM Multan Road Renala Khurd By Pass, Okara-Pakistan; amnadastageer9@gmail.com. 
4 Section of Mathematics, International Telematic University Uninettuno, Corso Vittorio Emanuele II, 39, 00186 Rome, Italy; 

clemente.cesaro@uninettunouniversity.net. 
5 Department of Mathematics, Poornima College of Engineering, Jaipur 302022, India; shilpijain1310@gmail.com. 

 

Citation: 

 

Received: 02 August 2024 

Revised: 06 October 2024 

Accepted: 12 November 2024 

Agarwal, P., Shamaoon, A., Dastageer, A., Cesarano, C., & Jain, Sh. 

(2024). Advancements in nonlinear dynamics: lie symmetry 

applications in the jaulent-miodek equation. Journal of applied research 

on industrial engineering, 11(4), 652-669. 

Abstract 

This research presents a detailed analysis of the nonlinear Jaulent-Miodek (J-M) equation through the lens of Lie 
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original equation. Moreover, the study introduces a two-step methodology for establishing the conservation laws 

relevant to the J-M equation. The initial phase involves identifying suitable multipliers essential for calculating these 

laws. Subsequently, we utilise symbolic computation to derive these conservation laws formally. This in-depth 

exploration of the equation’s symmetries and conservation laws not only enhances our understanding of the J-M 

equation’s intrinsic properties but also aids in simplifying and solving the equation under various conditions. 
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electric charge. These principles, in the form of continuity equations, are evident in a wide array of disciplines, 

including fluid mechanics, quantum physics, plasma physics, elasticity, gas dynamics, electromagnetism, 

magnetohydrodynamics, and nonlinear optics. The significance of conservation laws [1], [2] in PDE analysis 

is profound, as they provide the means for exploring the equations' integrability and applying linearization 

mappings, which are crucial for establishing the existence and uniqueness of solutions and for assessing the 

stability and global behavior of such solutions [3–6]. 

Conservation laws  are acknowledged as essential in both the practical application and theoretical investigation 

of differential equations [7], [8]. While not all conservation laws derived from PDEs may possess a direct 

physical interpretation, they play a significant role in the study of PDEs' integrability. This study is pivotal for 

comprehending the behavior and properties of PDEs and their solutions, making the identification and 

understanding of these laws vital steps in the analytical process. The pertinence of these laws is substantiated 

by scholarly research, which underscores their indispensable role in solving complex mathematical challenges 

within the scientific community. 

The Jaulent-Miodek (J-M) equation, a notable mathematical expression in the field of differential equations, 

is presented as follows: 

where the subscripts denote partial derivatives concerning time t and spatial variables x. This set of Eq. (1) 

forms a coupled system that can be directly linked to the J-M spectral problem, as indicated in [9]. In this 

context, the variables f(x, t) and g(x, t) typically represent the physical quantities of interest, such as wave 

amplitudes, electric fields, or fluid densities, depending on the specific application. f(x, t) often represents a 

primary wave field or potential function, which describes the evolution of a physical quantity over space and 

time. For example, in plasma physics, f can be associated with the electric field potential, representing how 

the electric field changes as waves propagate through a plasma medium. g(x, t) represents an auxiliary field or 

an additional physical quantity linked to the main variable f. In certain contexts, g might correspond to the 

density of a secondary fluid component, magnetic field intensity, or another wave function that interacts with 

f. 

The J-M equation is an important mathematical model in the study of nonlinear wave phenomena, appearing 

in various domains such as fluid dynamics, plasma physics, and optical fiber systems. Nonlinear PDEs, like 

the J-M equation describe complex physical processes, including the evolution of wave propagation and 

interactions in dispersive media. The seminal connection between the coupled J-M equation system and the 

Euler-Darboux equation was elucidated in the pioneering work of Matsuno [1], [2], which has been influential 

in extending our understanding of integrable systems. Historically, the study of nonlinear dynamics has 

centered on integrable systems that exhibit soliton behavior, a phenomenon in which solitary waves maintain 

their shape during propagation and interactions. The J-M equation is a member of this class of integrable 

equations, known for its complex wave structures and interactions. Many studies have employed various 

analytical and numerical techniques to investigate the J-M equation. For instance, Matsuno [1] demonstrated 

the connection between the J-M equation and the Euler-Darboux equation, enriching the theoretical 

foundation of this nonlinear system. More recent studies, such as Fan [10], [11], used advanced mathematical 

tools to derive exact solutions, while Mohebbi et al. [12], [13] applied numerical methods to explore the 

properties of the J-M equation. Despite these advancements, many aspects of the J-M equation, particularly 

its symmetry properties and conservation laws, remain underexplored. This gap underscores the need for a 

more systematic examination of the J-M equation using Lie symmetry analysis. Among the various approaches 

applied to the study of differential equations, the method involving symmetry groups stands out 

prominently.The utilization of this method for analyzing differential equations can be traced back to the 

groundbreaking efforts of Sophus Lie, who introduced the classical Lie method in the latter part of the 19th 

ft + fxxx +
3

2
ggxxx +

9

2
gxgxx − 6ffx − 6fggx −

3

2
g2fx = 0.

gt + gxxx − 6gfx − 6fgx −
15

2
g2gx = 0,

 (1) 
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century [14–16]. This classical method laid the groundwork for a robust framework for exploring solutions 

to differential equations through symmetries. In modern research, the theory of Lie group transformations 

has been profoundly influential in constructing exact solutions for nonlinear PDEs. The adaptability of Lie's 

approach to a vast array of problems in PDEs renders it a tool of immense value. It is widely considered one 

of the most vigorously pursued areas of research within the domain of nonlinear PDE theory and its 

numerous applications. Current investigations extend the utility of Lie group analysis in seeking analytic 

solutions, exploring symmetries, and understanding the intrinsic properties of nonlinear PDEs. This progress 

highlights the enduring relevance and continuous evolution of Lie's foundational work in contemporary 

mathematical research. Obtaining the solutions of fractional-order PDEs [17–19] using the Lie symmetry 

approach is also very challenging, and we have extended our ideas to these types of systems. 

While previous studies have explored the J-M equation through various analytical and numerical techniques 

[11], this paper adopts a unique approach by systematically applying the Lie symmetry method to derive a 

comprehensive set of conservation laws. Unlike earlier works, which primarily focused on exact solutions or 

the connections to other integrable systems, our study combines the multiplier method with symbolic 

computation, providing deeper insights into the equation's structure, integrability, and potential applications. 

The analysis of Eq. (1) is comprehensively explained in a manner that guides the reader through each step. 

Our work begins with Section 1, titled "Introduction to the Equation", which discusses the equation being 

solved in this study. In Section 2, we find the symmetries of Eq. (1) and its Lie symmetry groups. It also 

discusses some useful applications of Eq. (1). In Section 3, we focus on constructing the optimal system of 

One-Dimensional (1D) subalgebras of Eq. (1), providing a foundation for further symmetry analysis. Section 

4 explores the Lie invariants and formulates similarity-reduced equations [20–22] that emerge from the 

infinitesimal symmetries of Eq. (1). Section 5 focuses on deriving the conservation laws of Eq. (1) by 

identifying suitable multipliers. This section also unveils new conservation laws, which we elucidate through 

the symbolic computation of these laws, thereby enriching the current understanding and future study of Eq. 

(1). In Section 6, we discuss the comparison with existing literature, the importance of our results, applications, 

and some limitations. And the final section, Section 7, presents the conclusion. The main goal of this study is 

to present these findings clearly and provide a stepping stone for future research in the field. 

2|Derivation of Lie Symmetries  

Lie symmetry analysis is a method used to determine the continuous symmetries of differential equations. A 

Lie symmetry of a differential equation is a transformation that maps solutions of the equation to other 

solutions. We focus on the methodology for identifying symmetries in the context of the J-M equation [23–

26]. By identifying these symmetries, we gain valuable insights into the structure and potential solutions of 

the equation. 

In this expanded discussion, we start by considering a one-parameter Lie group of infinitesimal 

transformations acting on the independent variables x and 𝑡and the dependent variables f and g. These 

transformations are expressed as 

where ε represents the group parameter, and ξ, Φ, η1, and η2 serve as the infinitesimal transformations 

corresponding to the independent and dependent variables, respectively. The corresponding symmetry 

generator, often referred to as a vector field, is given by: 

x‾ = x + εξ(x, t, f, g) + O(ε2),

t‾ = x + εΦ(x, t, f, g) + O(ε2),

f‾ = x + εη1(x, t, f, g) + O(ε2),

g‾ = x + εη2(x, t, f, g) + O(ε2),

 (2) 

X = ξ(x, t, f, g) ∂x + Φ(x, t, f, g) ∂t

+η1(x, t, f, g) ∂f + η2(x, t, f, g) ∂g.
  (3) 
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To determine the functions ξ, Φ, η1, and η2, we require that this vector field X satisfies the invariance condition 

of the J-M equation under the Lie group of transformations. The invariance condition implies that if f(x, t) 

and g(x, t) are solutions of the J-M equation, then f‾(x‾, t‾) and g‾(x‾, t‾) must also be solutions. By substituting the 

infinitesimal transformations into the J-M equation and expanding in terms of 𝜖, we obtain an equation in 

terms of ϵ. Setting the coefficient of 𝜖 to zero yields a system of determining equations for ξ, Φ, η1, and η2. 

The Lie algebra 𝒢 of the J-M equation's symmetries is generated by the vector fields χ1, χ2, χ3, which are 

To understand the algebraic structure, we calculate the commutators [χi, χj] for i, j = 1,2,3. For instance:   

The commutator table below summarizes these relationships, providing insight into the algebraic structure of 

the Lie algebra. 

Table 1. Commutator table. 

 

 

 

 

 

We investigate the effects of a one-parameter Lie group [23-27] of infinitesimal transformations applied to 

the variables, denoted as x1 = x, x2 = t, f 1 = f, f 2 = g. This examination focuses on understanding how these 

transformations influence the behavior and properties of these variables. 

Table 1 showcases the commutation relations within the 3- dimensional Lie algebra, denoted as 𝒢. This algebra 

is characterized by the vector fields χ1, χ2, χ3,which collectively define the algebra's structure and interactions. 

Theorem 1. It states that for any solution A(t, x) and B(t, x) of the J − M equation, the transformed functions 

by the group actions G1(s), G2(s), and G3(s) are also solutions, as follows: 

χ1 = ∂t, χ2 = ∂x. 

χ3 = t ∂t +
1

3
x ∂x −

2

3
f ∂f −

1

3
g ∂g. 

(4) 

[χ1, χ3] = −χ1, [χ2, χ3] = −
1

3
χ2, [χ1, χ2] = 0.  

[, ] 𝛘𝟏 𝛘𝟐 𝛘𝟑 

𝛘𝟏 0 0 χ1 

𝛘𝟐 0 0 
1

3
χ2 

𝛘𝟑 −χ1 −
1

3
χ2 0 

G1(ε) ⋅ A(t, x) = A(t − ε, x).

G1(ε) ⋅ B(t, x) = B(t − ε, x).

G2(ε) ⋅ A(t, x) = A(t, x − ε).

G2(ε) ⋅ B(t, x) = B(t, x − ε).

(5) 

G3(ε) ⋅ A(t, x) = e
−(

2
3

)ε
A (e−εt, e

−(
1
3

)ε
x).  

G3(ε) ⋅ B(t, x) = e
−(

1
3

)ε
B (e−εt, e

−(
1
3

)ε
x).  
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3|Optimizing the Systematic Approach  

In this section, we delve into the methodology for deducing the optimal system and reduced forms for Eq. 

(1), leveraging the symmetrical group characteristics delineated in Table 2, which details the adjoint 

representation for the infinitesimal generators as follows: 

Table 2. Infinitesimal generators in adjoining form. 

 

 

 

 

In the context of the original PDE, characterized by two independent variables, we employ symmetry 

reduction to transform it into an ordinary differential equation. This transition is fundamental to simplifying 

and solving complex differential equations. 

A standard and widely cited method, as referenced in [23], provides a systematic classification of 1D 

subalgebras into conjugacy classes. This classification is pivotal, as it parallels the categorization of orbits 

within the adjoint representation group, establishing a conjugacy relationship among the 1D subalgebras. 

The classification issue mirrors the task of classifying orbits for the adjoint action. A 1D subalgebra within a 

Lie algebra 𝒢 is represented by a non-null vector, and the classification challenge is approached by applying 

general elements X in 𝒢 to adjoint transformations aimed at achieving maximal simplification. To construct 

the optimal subalgebra system of 𝑔, we introduce the Lie series representation as follows:                                                

where [χi, χj] represents the Lie bracket or commutator within the Lie algebra, with ϵ as a varying parameter 

and subscripts i, j taking the values 1 to 3. This procedure elucidates the adjoint representation, as illustrated 

in Table 2. 

The optimal system of 1D subalgebras plays a critical role in reducing the complexity of the J-M equation. By 

classifying the subalgebras into conjugacy classes, we reduce the infinite-dimensional symmetry group to more 

manageable 1D systems. This reduction simplifies the problem significantly, allowing us to systematically 

derive invariant solutions by transforming the original PDE into an ODE under the action of the 

corresponding symmetry generator. 

This optimal system is a powerful tool because it acts as a minimal set of representatives from the conjugacy 

classes. Each representative leads to a specific symmetry reduction, transforming the PDE into a simpler 

ODE. These reduced equations are often easier to solve and provide critical insights into the nature of the 

original solutions. 

For example, the subalgebra spanned by χ3 reduces the J-M equation to a third-order nonlinear ODE, while 

subalgebras like αχ1 + χ2 lead to further reductions that simplify the analysis of the system. This approach 

not only aids in solving the equation but also offers a clearer understanding of the equation's structure and 

symmetry properties. 

Thus, constructing the optimal system is fundamental to efficiently exploring the solution space of the J-M 

equation. It serves as a foundation for further symmetry analysis and reveals invariant properties of the system, 

contributing to a more comprehensive understanding of its dynamics. 

+ 𝛘𝟏 𝛘𝟐 𝛘𝟑 

𝛘𝟏 χ1 χ2 χ3 − ϵχ1 

𝛘𝟐 χ1 χ2 χ3 −
1

3
ϵχ2 

𝛘𝟑 eϵχ1 e
1
3

ϵχ2 χ3 

+(exp (ϵ(χi))χj) = χj − ϵ[χi, χj]

+
ϵ2

2
[χi, [χi, χj]] − ⋯ ,

 (6) 
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Theorem 2. (1) χ3, (2) αχ1 + χ2, and (3) χ1 offer an optimum system of 1D Lie algebras of the J − M Eq. (1), 

where α ∈ R and α ≠ 0. 

Proof: consider the symmetry group g of Eq. (1), as outlined in Table 2, and let                                                           

represent a non-zero vector field in g. Our goal is to reduce as many coefficients of fi, i = 1,2,3, as we can by 

strategically using adjoint maps on X̃. 

Case 1. Initially, assume ζ3 ≠ 0. We can normalize X̃ so that ζ3 = 1. From Table 2, applying +(exp (ζ1χ1)) and 

+(exp (3ζ2χ2)) to �̃� will eliminate the coefficients of χ1 and χ2. Hence, any 1D subalgebra formed by a X̃ with 

ζ3 ≠ 0 is like the subalgebra spanned by χ3. 

Case 2. For other 1D subalgebras spanned by vectors like the above but with ζ3 = 0, if ζ2 ≠ 0, we scale it to 

make ζ2 = 1. Referring to Table 2 again, no further simplifications are possible in this scenario. Therefore, 

each 1D subalgebra created by a X̃ with ζ3 = 0 and ζ2 ≠ 0 is equivalent to the subalgebra spanned by αχ1 +

χ2, with α as an arbitrary constant. 

Case 3. In situations where ζ3 = 0, ζ2 = 0, and 𝜁1 ≠ 0, it follows that every 1D subalgebra produced by X̃ is 

analogous to the subalgebra spanned by 𝜒1.                                                  

4|Symmetry based Reduction 

The calculation of invariants linked to symmetry operators is achieved by integrating their characteristic 

equations. Take, for instance, the characteristic equation of the operator     

and 

The derived invariants in this context are ϱ = xt−1/3, ψ = ft2/3, and Ψ = gt1/3. Hence, the solution to our 

equation becomes f = ψt−2/3, g = Ψt−1/3. By replacing the derivatives of f and g with ϱ, ψ, and Ψ in Eq. (1), 

we obtain a coupled system of Ordinary Differential Equations (ODE): 

For the operator αχ1 + χ2, the equations are 

with the corresponding invariants for the above operator being ϱ = x − αt, ψ = f, and Ψ = g.  

X̃ = ζ1χ1 + ζ2χ2 + ζ3χ3. (7) 

χ3 = t ∂t +
1

3
x ∂x −

2

3
f ∂f −

1

3
g ∂g.  (8) 

dt

t
=

3dx

x
= −

3df

2f
= −

3dg

g
.  (9) 

4ψ + 2ϱψϱ − 6ψϱϱϱ − 9ΨΨϱϱϱ − 27ΨϱΨϱϱ                         

+36ψψϱ + 36ψΨΨϱ + 9Ψ2ψϱ = 0

2Ψ + 2ϱΨϱ − 6Ψϱϱϱ + 36Ψψϱ + 36ψΨϱ + 45Ψ2Ψϱ = 0.

,                       (10) 

αψϱ + ψϱϱ +
3

2
ΨΨϱϱϱ +

9

2
ΨϱΨϱϱ                        

−6ψψϱ − 6ψΨΨϱ −
3

2
Ψ2ψϱ = 0.

αΨϱ + Ψϱϱϱ − 6Ψψϱ − 6ψΨϱ −
15

2
Ψ2Ψϱ = 0.

     (11) 
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5|Conservation Laws 

To address the conservation laws [2], [18], various approaches are employed, such as those based on Noether's 

theorem and the multiplier method. These methods establish a connection between the conserved vector of 

a PDE and its Lie–Bäcklund symmetry generators, along with the direct method and others [3], [4], [23]. 

where the expression involves a set of independent variables x‾ = x1, … , xp and a set of dependent variables 

f‾ = f 1, … , f q.                                

Here, f (n) denotes the collection of all derivatives of the functions f with respect to the variables x, covering 

all orders from 0 up to n. This conservation law can be represented by a divergence expression:  

And is valid for all solutions of system Eq. (12). T1
i[f] = T1

i(x, f, ∂f, … , ∂f
r), i = 1, … , n, are called fluxes of the 

conservation law, and the highest-order derivative (r) present in the fluxes T1
i[f] is called the order of a 

conservation law [4].                                                  

Remark 1. When one of the independent variables in system Eq. (12) is time t, the conservation law Eq. (13) 

is represented as                          

where div T1[f] = DiT1
i[f] = D1T1

1[f] + ⋯ + DnT1
n[f] is a spatial divergence and x = (x1, … , xn−1) are n − 1 

spatial variables. Here T2[f] is referred to as a density, and T1
i[f] as spatial fluxes of the conservation law Eq. 

(14).        

5.1|Computation of Conservation Laws with Finding Multiplier 

In our research, we explore the derivation of the conservation law through the multiplier method [29]. The 

multiplier method is a technique used to identify conservation laws associated with differential equations. In 

this approach, multipliers are specific functions that, when multiplied by the original differential equation, 

transform it into divergence form. This transformation is essential because it enables the identification of 

conserved quantities. 

The process involves finding these multipliers 

Such that the resulting expression can be written as a divergence of some vector field, which implies a 

conservation law: 

is an identity for any arbitrary function ψ(x). Therefore, for solutions ψ(x) = f(x) to system Eq. (11), where 

Δτ[ψ] is not singular, a local conservation law is established as Λτ[f]Δτ[f] ≡ DiT1
i[f] = 0.The method is 

systematic and powerful, especially for nonlinear equations, as it enables the discovery of conservation laws 

that might not be immediately apparent. 

In this study, the multiplier method was used as the first step in identifying conservation laws for the J-M 

equation. This involved determining suitable multipliers that could convert the equation into a form that 

directly yields conserved quantities. 

Definition 1 ([28]). A local conservation law for a system of PDEs can be defined as follows:                

Δτ(x, f (n)) = 0,  for τ = 1, … , l, (12) 

DiT1
i[f] = D1T1

1[f] + ⋯ + DnT1
n[f] = 0. (13) 

DtT2[f] + div T1[f] = 0, (14) 

{Λτ}τ=1
I = {Λτ(x, ψ, ∂ψ, … , ∂ψ

r )}
τ=1

l
. (15) 

Λτ[ψ]Δτ[ψ] ≡ DiT2
i[ψ]. (16) 
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Definition 2 ([4]). We define the Euler operator in relation to ψj as 

for j = 1, … , q. 

Theorem 3. A collection of non-singular local multipliers {Λτ(x, ψ, ∂ψ, … , ∂ψ
r )}

τ=0

l
 establishes a local 

conservation law for the system Δτ(x, ψ(n)) if and only if there exists a set of equalities 

which are valid for any arbitrary functions ψ(x) [4]. 

The collection of equations represented by Eq. (18) results in a set of linear equations that are essential for 

identifying all possible sets of local conservation law multipliers for the system detailed in Eq. (12). In this 

context, we focus on all local conservation law multipliers that take the forms:  

and 

which are associated with Eq. (1). The determining Eq. (18) for the J-M equation is 

where f(x, t) and g(x, t) are unspecified functions (arbitrary functions). The separation of Eq. (21) based on 

the third-order derivatives of f results in a system of PDEs. The solutions to this system represent the 

collection of local multipliers corresponding to all significant local conservation laws of the J-M equation. 

The obtained solution for the J-M equation of the determining System Eq. (21) can be expressed as follows: 

LψJ =
∂

∂ψj
− Di

∂

∂ψi
j

+ ⋯ + (−1)sDi1
⋯ Dii

∂

∂ψi1⋯is

j
+ ⋯. 

(17) 

Lψj (Λτ(x, ψ, ∂ψ, … , ∂rψ)Δτ(x, ψ(n))) = 0, j = 1, … , q. (18) 

Λ1 = α(t, x, f, g, ft, gt, fx, gx, ftt, gtt, fxx, gxx). (19) 

Λ2 = β(t, x, f, g, ft, gt, fx, gx, ftt, gtt, fxx, gxx). (20) 

Lf [Λ1 (ft + fxxx +
3

2
ggxxx +

9

2
gxgxx                              

−6ffx − 6fggx −
3

2
g2fx)                                             

+Λ2 (gt + gxxx − 6gfx − 6fgx −
15

2
g2gx)] ≡ 0 

Lg [Λ1 (ft + fxxx +
3

2
ggxxx +

9

2
gxgxx                             

−6ffx − 6fggx −
3

2
g2fx)                                             

+Λ2 (gt + gxxx − 6gfx − 6fgx −
15

2
g2gx)] ≡ 0,

 (21) 
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here, c1, c2, c3, c4, c5, and 𝑐6 represent arbitrary constants. So local multipliers are given by 

I. α = 0, β = 1. 

II. α = 1, β =
1

2
g. 

III. α = g, β = f +
3

4
g2. 

IV.  

V. α = f +
3

4
g2, β = −

1

4
gxx +

3

2
fg +

5

8
g3. 

VI. α = x + 6tg +
9

2
tg2, β =

1

2
xg −

3

2
tgxx +

15

4
t3 + 9tfg. 

VII. α = fg −
1

6
gxx +

5

12
g3, β = −

1

6
fxx −

5

24
gx

2 −
5

12
ggxx +

1

2
f 2 +

5

4
fg2 +

35

96
g4. 

The multipliers 𝛼 and β are key in defining a significant local conservation law represented as DxT1 + DtT2 =

0, which is characterized by 

To determine the conserved quantities T2 and T1, it's necessary to reverse the total divergence operator. This 

involves integrating (by parts) certain multidimensional expressions that include arbitrary functions and their 

derivatives, a complex task. The homotopy operator, as described in [30], offers a potent and effective 

algorithmic approach (explicit formula) developed from the principles of homological algebra and variational 

bicomplexes. 

Definition 3 ([6]). The two-component vector operator known as the 2-dimensional homotopy operator is 

represented by (Hf(x,t)
(x)

h, Hf(x,t)
(t)

h). It is defined as follows: 

α =    c1x + 6c1tf +
9

2
c1tg2 + c2fg +

1

6
c3fc2gxx                                

+
5

12
c2g3 +

3

4
c3g2 + c4g + c5      

β = −
1

6
c2fxx +

1

2
c1xg −

5

24
c2gx

2 −
5

12
gxx − c2g −

3

2
c1tgxx

−
1

4
c3gxx +

15

4
c1tg3 + 9c1tfg +

1

2
c2f 2 +

5

4
c2fg2

+
3

2
c3fg + c4f +

35

96
c2g4 +

5

8
c3g3 +

3

4
c4g2 +

1

2
c5g + c6.

 (22) 

Λ1 = α(t, x, f, g, ft, gt, fx, gx, ftt, gtt, fxx, gxx). (23) 

DxT1 + DtT2 ≡ α(ft + fxxx +
3

2
ggxxx +

9

2
gxgxx

−6ffx − 6fggx −
3

2
g2fx)  

+ β (gt + gxxx − 6gfx − 6fgx −
15

2
g2gx).  

 (24) 

H𝐟(x,t)
(x)

h = ∫  
1

0

 (∑  

q

j=0

  I
f′
(x)

h) [ϱ𝐟]
dϱ

ϱ
. (25) 

H𝐟(x,t)
(t)

h = ∫  
1

0

 (∑  

q

j=0

  Ifj
(t)

h) [ϱ𝐟]
dϱ

ϱ
.  
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The x-integrand, I
f(x,t)(x)
(x)

h, is given by 

where Γ1
j
, Γ2

j
 are the order of h in f to x and t, respectively, with combinatorial coefficient E(x) = E(i1, i2, k1, k2), 

were 

Similarly, t-integrand, I
f(x,t)j
(j)

h, defined as 

where E(t) = E(i2, i1, k2, k1). 

We apply the homotopy operator to find conserved quantities T1 and T2 which yield multipliers α = 0 and 

β = 1. We have 

The integrands Eq. (26) and Eq. (28) are 

Apply Eq. (25) to the integrands Eq. (30). Therefore 

Ifj
(x)

h = ∑  

Γ1
j

k1=1

  ∑  

Γ2
j

k2=0

 ( ∑  

k1−1

i1=0

  ∑  

k2

i2=0

 E(x)f
xi1xi2

j (−Dx)k1−i1−1

× (−Dt)k2−i2)
∂h

∂f
xk1tk2

j
,

 (26) 

E(i1, i2, k1, k2) =
(i1+i2

i1
) (k1+k2−i1−i2−1

k1−i1−1
)

(k1+ki2
k1

)
. (27) 

I
fj
(t)

h = ∑  

Γ1
j

k1=0

  ∑  

Γ2
j

k2=1

 ( ∑  

k1

i1=0

  ∑  

k2−1

i2=0

 E(t)f
xj1xj2

j (−Dx)k1−i1 

× (−Dt)k2−i2−1)
∂h

∂f
x

k1tk2

, 

(28) 

α (ft + fxxx +
3

2
ggxxx +

9

2
gxgxx 

−6ffx − 6fggx −
3

2
g2fx) 

+β (gt + gxxx − 6gfx − 6fgx −
15

2
g2gx) 

= gt + gxxx − 6gfx − 6fgx −
15

2
g2gx. 

(29) 

If
(t)

h = 0, If
(x)

h = −6fg, Ig
(t)

h = g 

Ig
(x)

h = −6gf −
15

2
g3 + gxx. 

(30) 

T2 = H𝐟(x,t)
(x)

h = 6fg − gxx +
5

2
g3 

T1 = H𝐟(x,t)
(t)

h = −g. 
(31) 
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So, we have the conservation law of the J-M equation with respect to multipliers α = 0 and β = 1: 

And similarly, conservation laws with respect to other multipliers are given as follows: 

I. α = 1 and β =
1

2
g: 

II. α = g and β = g +
3

4
g2: 

III. α = f +
3

4
g2 and β = −

1

4
gxx +

3

2
fg +

5

8
g3: 

IV. α = fg −
1

6
gxx +

5

12
g3 and β = −

1

6
fxx −

5

24
gx

2 −
5

12
ggxx +

1

2
f 2 +

5

4
fg2 +

35

96
g4: 

V. α = x + 6tf +
9

2
tg2 and β =

1

2
xg −

3

2
tgxx +

15

4
tg3 + 9tfg : 

Dt(−g) + Dx (6fg − gxx +
5

2
g3) = 0. (32) 

T1 = −
1

4
g2 − f 

T2 =
15

16
g4 +

9

2
fg2 − 2ggxx −

5

4
gx

2 + 3f 2 − fxx. 

(33) 

T1 = −
1

4
g3 − fg 

T2 =
9

8
g3 + 6fg3 −

9

4
f 2gxx + 6f 2g − fgxx − gfxx + fxgx. 

(34) 

T1 =  −
5

32
g4 −

3

4
fg2 +

1

8
ggxx −

1

2
f 2

T2 =
25

32
g6 +

39

8
fg4 −

7

8
g3gxx +

15

2
g2f 2 −

3

2
fgx

2

 −3fggxx −
3

4
g2fxx +

3

2
gfxgx + 2f 3 +

1

2
fx

2 +
1

8
gxx

2

 −ffxx −
1

8
ggtx +

1

8
gtgx.

 (35) 

T1 =  −
7

96
g5 −

5

12
fg3 +

5

72
ggx

2 −
1

2
gf 2

 +
5

36
g2gxx =

1

12
gfxx +

1

12
fgxx

T2 =
25

64
g7 +

45

16
fg5 −

25

48
g3gx

2 +
23

4
g3f 2 −

95

96
g4gxx

 −
11

4
fg2gxx −

5

12
g3fxx + 3gf 3 −

5

4
fggx

2 −
1

2
f 2gxx

 −
5

36
g2gtx +

5

36
ggtgx +

1

3
ggxx

2 +
5

24
gx

2gxx − fgfxx

 +
1

12
ftgx −

1

12
gftx +

1

12
gtfx +

1

6
fxxgxx −

1

12
fgtx.

 (36) 
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5.2|Symbolic Computation to Deriving Conservation Law 

Once the multipliers are found, symbolic computation is utilized to compute the conserved quantities. By 

utilizing algorithms based on the homotopy operator, the symbolic computation method allows the derivation 

of conserved quantities from the expressions obtained through the multiplier method. This approach is 

particularly advantageous because it handles the complexity and algebraic manipulation involved in higher-

order and nonlinear PDEs. It ensures that the resulting conservation laws are derived efficiently and 

accurately, which would be highly cumbersome to do manually. 

The homotopy operator method is based on homological algebra and the variational bicomplex, providing 

an algorithmic means to reverse the divergence operator. It transforms the divergence expressions into a 

manageable form and systematically integrates the terms by parts to isolate the conserved densities and fluxes. 

This method is well suited for symbolic computation tools, making it highly efficient for deriving conservation 

laws. 

The process begins with the calculation of the density T2, followed by the computation of the flux T1.The 

computation of T1 necessitates the application of the homotopy operator. In line with the method proposed 

by Hereman et al. [5], [31], a potential density is formulated as a linear blend of differential terms with 

unknown coefficients, which remains consistent with the scaling symmetry of the specific PDE. By 

establishing T2, we can calculate DtT2 and eliminate all temporal derivatives; DtT2 should be a divergence. 

Consequently, based on Theorem 4 of [13], it is required that 

The process results in a linear equation system to determine the unknown coefficients. By integrating the 

solution of this system into the proposed expression for 𝑇2, the actual density is obtained. Subsequently, the 

expression for T1, defined as T1 = div−1 (DtT2), is calculated using the homotopy operator. J-M equation is 

invariant under the scaling (dilation) symmetry Eq. (4): 

The conservation law, as stated in Eq. (14), is a requisite for solutions derived from Eq. (1). Our objective is 

to identify polynomial conservation laws that follow the PDE's scaling symmetry. Our task, then, is to 

pinpoint a polynomial conservation law that diverges from this scaling symmetry. We opt to assign a scaling 

factor to a specific element within Eq. (14), designating this factor as the rank (R) of that element. 

Subsequently, we formulate a potential candidate for this element, comprising a linear amalgamation of 

monomial expressions (each of identical rank R ) combined with coefficients yet to be determined. By actively 

eliminating terms that are equivalent to divergence, this proposed candidate becomes more concise and of a 

reduced order. 

T1 =  −
15

16
tg4 −

9

2
tfg2 +

3

4
tggxx −

1

4
xg2 − 3tf 2 − xf

T2 =
75

16
tg6 +

117

4
tfg4 +

15

16
xg4 + 45tf 2g2 −

21

2
tg3gxx

 +9tgfxgx − 9tfgx
2 +

9

2
xfg2 − 18tfggxx −

9

2
tg2fxx

 +12tf 3 +
5

4
ggx +

3

4
tgxx

2 − 2xggxx +
3

4
tgtgx − 6tffxx

 +3xf 2 −
5

4
xgx

2 + 3tfx
2 −

3

4
tggtx − xfxx + fx.

 (37) 

Lψj(DtT2) = 0, j = 1, … , N. (38) 

(t, x, f, g) ⟶ (ϱ3t, ϱx, ϱ−2f, ϱ−1g). (39) 
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For the J-M equation we will compute the density T2 of a fixed rank; for example, R = −3. We construct a 

list of differential terms which contains all powers of dependent variables and their derivatives and products 

of them of rank -3: 

By removing all terms that are divergences or divergence equivalent to other terms in Θ, we have 

Now, by forming a candidate density combining the terms in Θ linearly with undetermined coefficients ci, 

Compute the total derivative with respect to t of Eq. (42), and set 

After replacing ft with 

and gt by 

Eq. (43) must be a divergence, use Eq. (38), and require 

The solution of system Eq. (44) is 

Where c11, c13, c19, and c20 is arbitrary. 

Case 4. Substitute Eq. (45) and c11 = 1, c13 = 0, c19 = 0, and c20 = 0 into Eq. (42) and Eq. (43) given T2 =

gfx
2 + fgfxx + ffxgx and 

Θ = { {fx
3, g3, tf 3, xf 2, ffx, fg, f 2fxxx, fx

3fxx, g3fxx, gfx
2

gxfx
3, g3gx, tf 3fxx, xf 2fxx, ffxfxx, fgfxx

f 2fxxfxxx, gf 2fxx, g2fxfxx, tf 3gx, xf 2gx, fgxfx

fggx, f 2gxfxxx, ggxfx
2, g2fxgx}.

 (40) 

Θ = { {fx
3, g3, tf 3, xf 2, g2fx, g3fxx, gfx

2, gxfx
3

tf 3fxx, xf 2fxx, fgfxx, f 2fxxfxxx, gfx
2fxx

g2fxfxx, tf 3gx, xf 2gx, ffxgx, f 2gxfxxx

ggxfx
2, g2gxfx}.

 (41) 

T2 = c1fx
3 + c2g3 + c3tf 3 + c4xf 2 + c5g2fx + c8g3fxx

 +c7gfx
2 + c8gxfx

3 + c9tf 3fxx + c10xf 2fxx

 +c11fgfxx + c12f 2fxxfxxx + c13gfx
2fxx

 +c14g2fxfxx + c15tf 3gx + c16xf 2gx + c17ffxgx

 +c18f 2gxfxxx + c19ggxfx
2 + c20g2gxfx.

 (42) 

F = −DtT2. (43) 

−fxxx −
3

2
ggxxx −

9

2
gxgxx + 6ffx + 6fggx +

3

2
g2fx.  

−gxxx + 6gfx + 6fgx +
15

2
g2gx.  

Lf(t,x)F = 0, Lg(x,t)F = 0. (44) 

c1 = 0, c2 = 0, c3 = 0, c4 = 0. (45) 

c5 = 0, c0 = c20, c7 = c11, c8 =
1

3
c13.  

c9 = 0, c10 = 0, c12 = 0, c14 = c19.  

c15 = 0, c16 = 0, c17 = c11, c18 = 0.  
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As F is the divergence of T1, denoted by F = div T1, we can determine the flux T1 utilizing the 1D homotopy 

operator, which effectively inverts divergences. By applying the formulas of the 1D homotopy operator as 

delineated in Eq. (25), and subsequently eliminating the curl component from the flux T1, we can yield the 

desired computation as fellows: 

Case 5. Substitute c11 = 0, c13 = 1, c19 = 0, and c20 = 0 into Eq. (42), given 

Case 6. Substitute c11 = 0, c13 = 0, c19 = 1, c20 = 0, 

Case 7. finally, c11 = 0, c13 = 0, c19 = 0, c20 = 1, 

F = fxgxfxxx + 2gfxfxxxx +
9

2
fxgx

2gxx + 9gfxgxx
2

 +ffxgxxxx + 3g2fxgxxxx +
9

2
fgxgxx + fgxfxxxx

 +6fgx
2gxxx +

3

2
fg2gxxxxx +

3

2
g2fxxgxxx + gfxxfxxx

 +gffxxxxx + ffxxgxxx − 12f 2gxfxx −
9

2
g3fxfxx

 −
3

2
fg3fxxx − 6f 2g2gxxx − 6gf 2fxxx − 6f 2fxgxx

 −30ffx
2gx − 27g2gxfx

2 + fx
2gxxx − 6f 2gx

3 − 18gfx
3

 +
27

3
gfxgxgxxx +

9

2
ggxgxxfxx + 9fggxgxxxx

 +15fggxxgxxx −
69

2
fg2fxgxx − 27fg2gxfxx

 −48fgfxfxx − 57fgfxgx
2 − 24gf 2gxgxx.

 (46) 

T1 = −
3

2
g3fx

2 −
3

2
fg3fxx − 6g2f 2gxx −

45

2
fg2fxgx

 −18fgfx
2 −

3

2
g2fxgxxx +

9

2
ggxfxfxx +

3

2
fg2gxxxx

 −6gf 2fxx + 6fggxgxxx +
9

2
fggxx

2 − 6f 2fxgx

 +gfxfxxx + fgfxxxx + ffxgxxx.

 (47) 

T2 =
1

3
gxfx

3 + gfx
2fxx

T1 =  −
1

6
fx

2(36fg2gxx + 9g3fxx + 69g2fxgx

 +36fggx
2 − 36ggxgxxx + 12ffxgx

 −27ggxx
2 + 36fgfxx + 48gfx

2

−9g2gxxxx − 6gfxxxx − 2fxgxxx).

 (48) 

T2 = g2fxfxx + ggxfx
2

T1 =  −
1

2
gfx(12fg2gxx + 3g3fxx + 33g2fxgx

 +12fggx
2 − 12ggxgxxx + 12fgfxx

 +12ffxgx − 3g2gxxxx + 24gfx
2 − 9ggxx

2

−2gfxxxx − 2fxgxxx).

 (49) 

T2 =
1

3
g3fxx + g2fxgx (50) 
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6|Discussion 

6.1|Comparison with Existing Literature: 

The results of this study provide a deeper understanding of the J-M equation's symmetry properties and 

conservation laws, building on the foundational work by Matsuno [1], who initially linked the J-M equation 

to the Euler-Darboux equation. Unlike previous studies that focused primarily on deriving exact solutions or 

numerical methods (e.g., Fan [10], Mohebbi et al. [11]), this research has taken a systematic approach using 

Lie symmetry analysis to derive a broader set of conservation laws. This offers a more comprehensive view 

of the J-M equation's structure and symmetry properties. 

6.2|Significance of the Findings 

Identifying the optimal system of 1D subalgebras and the corresponding similarity reductions provides crucial 

insights into the underlying dynamics of the J-M equation. This allows for a more efficient reduction of the 

original PDE into simpler ODEs, making it easier to derive exact solutions. The conservation laws obtained 

through the multiplier method and symbolic computation add a new layer of understanding to the integrability 

and solvability of the J-M equation, which are critical for applications in wave phenomena, fluid dynamics, 

and plasma physics. 

6.3|Implications and Applications 

The derived conservation laws and symmetry properties can significantly impact practical applications in 

physics and engineering, particularly in modeling wave propagation, soliton dynamics, and other nonlinear 

phenomena in dispersive media. This study’s approach to systematically identifying Lie symmetries and 

conservation laws can be extended to other nonlinear PDEs, providing a powerful toolset for researchers 

working in applied mathematics, physics, and related fields. 

6.4|Limitations and Future Research 

While this study provides a comprehensive analysis of the J-M equation through Lie symmetry methods and 

the derivation of conservation laws, the absence of numerical simulations or experimental validation limits 

the current findings. Future research should include numerical simulations using finite difference or Runge-

Kutta methods to validate the derived conservation laws and compare them with analytical solutions. This 

step would confirm the accuracy and practical applicability of the findings, ensuring their relevance to real-

world scenarios. 

7|Conclusion 

In this study, we have conducted a comprehensive analysis of the J-M equation using the Lie symmetry 

method. The identification of symmetry groups and the development of an optimal system of 1D subalgebras 

allowed us to reduce the complexity of the original PDE to simpler ODEs. This process not only facilitated 

the derivation of exact solutions but also provided a deeper understanding of the equation’s symmetry 

structure. 

T1 = −
1

6
g2(3g3fxx + 12fg2gxx + 63g2gxfx 

+12fggx
2 + 48gfx

2 − 9ggxx
2  

−12ggxgxxx + 36ffxgx − 3g2gxxxx 

+12fgfxx − 2gfxxxx − 6fxgxxx). 
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One of the novel contributions of this work is the application of both the multiplier method and symbolic 

computation to derive conservation laws for Eq. (1) systematically. These conservation laws are critical for 

understanding the integrability and solvability of the equation, and they have potential applications in 

modeling wave phenomena, fluid dynamics, and plasma physics. 

This study presents a novel approach to analyzing Eq. (1) by integrating Lie symmetry analysis with the 

multiplier method and symbolic computation. The identification of an optimal system of Lie subalgebras and 

the derivation of a wider set of conservation laws offer new insights into the equation's structure, making 

significant contributions to the field of nonlinear dynamics. These findings open avenues for further research 

into the practical applications of the J-M equation in modelling complex physical systems. 

The practical significance of these findings is evident in applications such as modeling wave phenomena in 

fluid dynamics, where the conservation laws can help predict soliton behavior, which is crucial for coastal 

engineering. Additionally, in plasma physics, the derived conservation laws provide insights into wave stability, 

aiding in optimizing plasma confinement in fusion reactors. The study's theoretical contributions also extend 

to advancing the understanding of integrable systems and providing a systematic approach to analyzing 

nonlinear PDEs across various fields of applied mathematics and physics. 

The study's approach demonstrates how Lie symmetry analysis can be an effective tool for addressing 

challenges in nonlinear dynamics and PDE theory. The findings of this research extend the existing 

knowledge of the J-M equation and open avenues for future research. Future studies could explore higher-

dimensional symmetries, apply this methodology to more complex or multi-component systems, and conduct 

numerical simulations to validate the analytical results obtained here. The techniques developed in this study 

can also be adapted to analyze other nonlinear PDEs, contributing to broader applications in applied 

mathematics and physics. 

Acknowledgments  

The authors would like to thank the staff members of the faculty for their continuous support. 

Author Contribution 

All authors contributed equally to this work and have approved the final version of the manuscript. 

Funding 

This research received no external funding. 

Data Availability 

The datasets used in this study are not publicly available due to confidentiality reasons but can be requested 

from the corresponding author. Participants have only consented to the publication of aggregated data. 

Conflicts of Interest 

The authors affirm that there are no conflicts of interest concerning the publication of this paper. 

References 

[1]  Matsuno, Y. (2001). Reduction of dispersionless coupled Korteweg-de Vries equations to the Euler-

Darboux equation. Journal of mathematical physics, 42(4), 1744–1760. DOI: 10.1063/1.1345500 

[2]  Ikpe, A. E., Udofia, E. A., & Odeh, E. (2023). Thermodynamic analysis of hybrid-nanofluids-zeotropic 

mixtures in a vapour compression refrigeration system (VCRS) based on exergy principles. International 

journal of research in industrial engineering, 12(2), 143–154. DOI: 10.22105/riej.2023.383806.1365 



Advancements in nonlinear dynamics: lie symmetry applications in the jaulent-miodek equation 668

[3]  Bluman, G., Temuerchaolu, & Anco, S. C. (2006). New conservation laws obtained directly from symmetry 

action on a known conservation law. Journal of mathematical analysis and applications, 322(1), 233–250. DOI: 

10.1016/j.jmaa.2005.08.092 

[4]  Bluman, G. W. (2010). Applications of symmetry methods to partial differential equations. Springer. DOI: 

10.1007/978-0-387-68028-6 

[5]  Hereman, W. (2006). Symbolic computation of conservation laws of nonlinear partial differential 

equations in multi-dimensions. International journal of quantum chemistry, 106(1), 278–299. DOI: 

10.1002/qua.20727 

[6]  Poole, D., & Hereman, W. (2010). The homotopy operator method for symbolic integration by parts and 

inversion of divergences with applications. Applicable analysis, 89(4), 433–455. DOI: 

10.1080/00036810903208155 

[7]  Del Pilar Márquez, A., & De Los Santos Bruzón, M. (2020). Conservation laws and symmetry analysis 

for a quasi-linear strongly-damped wave equation. Journal of mathematical chemistry, 58(7), 1489–1498. 

DOI: 10.1007/s10910-020-01146-x 

[8]  Shamaoon, A., & Faruq, A. (2024). Analysis of symmetries, conservation laws, and exact solutions of 

(1+1) reaction-diffusion equation. International journal of science academic research, 5(7), 7772–7783. 

https://researchportal.northumbria.ac.uk/ws/portalfiles/portal/171886043/IJSAR-2303.pdf 

[9]  Jaulent, M., & Miodek, I. (1976). Nonlinear evolution equations associated with enegry-dependent 

Schrödinger potentials. Letters in mathematical physics, 1(3), 243–250. DOI: 10.1007/BF00417611 

[10]  Fan, E. (2003). Uniformly constructing a series of explicit exact solutions to nonlinear equations in 

mathematical physics. Chaos, solitons and fractals, 16(5), 819–839. DOI: 10.1016/S0960-0779(02)00472-1 

[11]  Mohebbi, A., Asgari, Z., & Dehghan, M. (2012). Numerical solution of nonlinear Jaulent-Miodek and 

Whitham-Broer-Kaup equations. Communications in nonlinear science and numerical simulation, 17(12), 4602–

4610. DOI: 10.1016/j.cnsns.2012.04.011 

[12]  Biazar, J., & Eslami, M. (2010). Homotopy analysis method for nonlinear Jaulent-Miodek equation. Journal 

of information and computing science, 5(2), 83–88. https://l1nq.com/7fsJW 

[13]  Ganjalipour, E., Nemati, K., Refahi Sheikhani, A. H., & Saberi Najafi, H. (2021). A new neurodynamic 

model with Adam optimization method for solving generalized eigenvalue problem. Big data and 

computing visions, 1(2), 83–95. DOI: 10.22105/bdcv.2021.142589 

[14]  Lie, S. (1881). On integration of a class of linear partial differential equations by means of definite integrals. 

Archiv der mathematik, 3(3), 328–368. 

[15]  Edalatpanah, S. A. (2022). An experimental comparison of two preconditioned iterative methods to solve 

the elliptic partial differential equations. Computational algorithms and numerical dimensions, 1(1), 1–24. DOI: 

10.22105/cand.2022.155122 

[16]  Shamaoon, A. (2024). Approximate lie symmetries and conservation laws of third-order nonlinear 

perturbed korteweg–de vries equation. GPH-international journal of mathematics, 7(7), 1–17. DOI: 

10.5281/zenodo.13384467 

[17]  Jassim, H. K., Ahmad, H., Shamaoon, A., & Cesarano, C. (2021). An efficient hybrid technique for the 

solution of fractional-order partial differential equations. Carpathian mathematical publications, 13(3), 790–

804. DOI: 10.15330/cmp.13.3.790-804 

[18]  Cesarano, C., Ramírez, W., Díaz, S., Shamaoon, A., & Khan, W. A. (2023). On apostol-type hermite 

degenerated polynomials. Mathematics, 11(8), 1914. DOI: 10.3390/math11081914 

[19]  Shamaoon, A., Agarwal, P., Cesarano, C., & Jain, S. (2023). Approximate symmetries and conservation 

laws for mechanical systems described by mixed derivative perturbed PDEs. Journal of engineering sciences 

(Ukraine), 10(2), 8–15. DOI: 10.21272/jes.2023.10(2).e2 

[20]  Bluman, G. W., & Cole, J. D. (1974). Similarity methods for differential equations. Springer. 

https://books.google.com/books?id=hyDSBwAAQBAJ 

[21]  Chinnadurai, V., & Selvam, A. (2020). Interval valued pythagorean fuzzy ideals in semigroups. Journal of 

fuzzy extension and applications, 1(4), 293–303. DOI: 10.22105/jfea.2020.252687.1023 

[22]  Asghar, M. W., & Ahmad, K. (2023). On algebraic aspects of η-fuzzy subgroups. Journal of fuzzy extension 

and applications, 4(2), 65–80. DOI: 10.22105/jfea.2023.371356.1237 



 Agarwal et al. | J. Appl. Res. Ind. Eng. 11(4) (2024) 652-669 

 

669

[23]  Olver, P. J. (1993). Applications of lie groups to differential equations (2nd Ed.). Springer. 

https://books.google.com/books?id=sI2bAxgLMXYC 

[24]  Shamaoon, A., Ali, Z., & Maqbool, Q. (2023). Conservation laws, exact solutions and nonlinear dispersion: 

a lie symmetry approach. Journal of appliedmath, 1(1), 95. DOI: 10.59400/jam.v1i1.95 

[25]  Adebisi, S. A., Ogiugo, M., & Enioluwafe, M. (2022). The fuzzy subgroups for the nilpotent (P-Group) of 

(D23 × C2m) for M ≥ 3. Journal of fuzzy extension and applications, 3(3), 212–218. 

DOI:10.22105/jfea.2022.337181.1215 

[26]  Bluman, G. W., & Kumei, S. (2013). Symmetries and differential equations. Springer. 

https://books.google.com/books?id=ZhbrBwAAQBAJ 

[27]  Nadeem, M., Edalatpanah, S. A., Mahariq, I., & Aly, W. H. F. (2022). Analytical view of nonlinear delay 

differential equations using sawi iterative scheme. Symmetry, 11(4). DOI: 10.3390/sym14112430 

[28]  Ashton, A. C. L. (2008). Conservation laws and non-Lie symmetries for linear PDEs. Journal of nonlinear 

mathematical physics, 15(3), 316–332. DOI: 10.2991/jnmp.2008.15.3.5 

[29]  Alvarez-Valdez, J. A., & Fernandez-Anaya, G. (2023). Roadmap of the multiplier method for partial 

differential equations. Mathematics, 11(22). DOI: 10.3390/math11224572 

[30]  Hereman, W., Colagrosso, M., Sayers, R., Ringler, A., Deconinck, B., Nivala, M., & Hickman, M. (2005). 

Continuous and discrete homotopy operators and the computation of conservation laws. In Differential 

equations with symbolic computation (pp. 255-290). Birkhäuser Basel. DOI: 10.1007/3-7643-7429-2_15 

[31]  Poole, L. D. (2009). S Symbolic computation of conservation laws for nonlinear partial differential 

equations in multiple space dimensions. Journal of symbolic computation, 46(12), 1355-137. 

DOI:10.1016/j.jsc.2011.08.014 


