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Abstract: The stochastic shallow water wave equation (SSWWE) in the sense of the beta-derivative is
considered in this study. The solutions of the SSWWE are obtained using the F-expansion technique
with the Riccati equation and He’s semi-inverse method. Since the shallow water equation has many
uses in ocean engineering, including river irrigation flows, tidal waves, tsunami prediction, and
weather simulations, the solutions discovered can be utilized to represent a wide variety of exciting
physical events. We create many 2D and 3D graphs to demonstrate how the beta-derivative and
Brownian motion affect the analytical solutions of the SSWWE.
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1. Introduction

All physical phenomena are nonlinear in nature, and mathematical models are gen-
erally the most accurate way to represent them. To better explore and comprehend the
nature of physical phenomena, partial differential equations (PDEs) have been modeled.
Finding solutions for traveling waves is one of the most significant physical problems for
these models. As a result, finding mathematical methods to produce exact solutions to
PDEs has grown to be a large and essential task in nonlinear sciences.Recently, a number
of approaches for dealing with PDEs have been proposed, such as spectral methods [1],
Hirota’s method [2], tanh-sech method [3,4], Jacobi elliptic function method [5], exp(−φ(ς))-
expansion method [6], (G′/G)-expansion method [7,8], perturbation method [9,10], bifur-
cation analysis [11–13], etc.

Moreover, stochastic partial differential equations (SPDEs) are used to study physical,
biological, and chemical systems that are subject to random influences. Over the past few
decades, these models have been the subject of extensive investigation. The significance
of taking stochastic effects into consideration when modeling complex systems has been
emphasized. For example, the use of SPDEs to mathematically model complicated processes
is becoming more popular in the domains of finance, mechanical and electrical engineering,
biophysics, information systems, materials sciences, condensed matter physics, and climate
systems [14,15]. Recently, some effort has been made to obtain the precise solutions for
SPDEs; for example, [16–20] and the references therein.
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Therefore, it is essential to take into account PDEs with some stochastic force. Here,
we address the modified (3 + 1)-dimensional stochastic shallow water wave equation
(SSWWE) with beta-derivative:

T2β
yzWt +T5β

xxxyzW − 6Tβ
xWT3β

xyzW − 6T2β
xzWT2β

xyW + γT3β
xyzW = δ(T2β

yzW)Bt, (1)

where Tβ
y = ∂β

∂yβ is the beta-derivative, and T2β
yz = ∂2β

∂yβ∂zβ , T3β
xyz = ∂3β

∂xβ∂yβ∂zβ , and it is

defined later in next section,W(x, y, z, t) is the height of the Riemann wave, γ is a positive
constant. B is the Brownian motion, δ represents the intensity of noise, and (T2β

yzW)Bt is
multiplicative noise.

If we put δ = 0 and β = 1, then we get the modified (3 + 1)-dimensional shallow
water wave equation [21,22]:

Wyzt +Wxxxyz − 6WxWxyz − 6WxzWxy + γWxyz = 0. (2)

Equation (2) has various uses in ocean engineering, including river irrigation flows, tidal
waves, tsunami prediction, weather simulations, and so on. Therefore, a number of
authors have looked at the analytical solutions to Equation (2) by utilizing many different
methods such as (G′/G)-expansion [23,24], exp-function [25], and Lie symmetry [26]. For
the fractional-derivative of Equation (2), many authors obtained the exact solutions; for
example, Phoosree et al. [27] used the simple equation method, and S. Duran [28] used the
(G′

G , 1
G )-expansion method. Equation (2) with the beta-derivative and forced by a stochastic

term is not considered.
Our contribution in this article is to deduce the analytical stochastic solutions of

SSWWE (1) with the beta-derivative. To get these solutions, we use the F-expansion
method with the Riccati equation and He’s semi-inverse method. Physics researchers
would find the solutions very helpful in defining several major physical processes because
of the stochastic term and beta-derivative present in Equation (1). Additionally, by using
the MATLAB software, we introduce numerous graphs to investigate the effects of noise
and the beta-derivative on the exact solutions of the SSWWE (1).

An overview of this article is provided as follows: the beta-derivative and Brownian
motion are defined, together with some of their properties, in Section 2. We obtain the wave
equation of SSWWE (1) in Section 3. In Section 4, The exact solutions of the SSWWE are
acquired utilizing F-expansion and He’s semi-inverse methods. The impact of noise and
the beta-derivative on the obtained solutions of SSWWE is analyzed in Section 5. Finally,
the conclusions of the paper are introduced.

2. Beta-Derivative and Brownian Motion

The beta-derivative was recently suggested by Atangana et al. [29]. These derivatives
may not be seen as fractional derivatives but can be considered to be a natural extension
of the classical derivative [30]. From this point, let us define the beta-derivative for the
function f : (0, ∞)→ R of order β ∈ (0, 1] as follows [29,31]:

Definition 1. The beta-derivative for the function f : (0, ∞)→ R is defined as

Tβ
y f (y) =

dβ f
dyβ

= lim
h→0

f (y + h(y + 1
Γ(β)

)1−β)− f (y)

h
, 0 < β ≤ 1.

The beta-derivative meets the following characteristics [29]:
(1) Tβ

y f (y) = (y + 1
Γ(β)

)1−β d f
dy ,

(2) If Tβ
y ( f ◦ g(y)) = (y + 1

Γ(β)
)1−βg′(y) f ′(g(y)),

(3) Tβ
y (a f + bg) = aTβ

y ( f ) + bTβ
y (g) for all a and b real number,

(4) Tβ
y (a) = 0.
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Moreover, Brownian motion B is defined as follows [32]:

Definition 2. The stochastic process {B(τ)}τ≥0 is referred to as Brownian motion if it meets the
following criteria:

1. B(0) = 0,
2. B(τ) is continuous function of τ ≥ 0,
3. B(τ2)−B(τ1) is independent for τ1 < τ2,
4. B(τ2)−B(τ1) has a normal distribution N(0, τ2 − τ1).

We need the following lemma:

Lemma 1 ([32]). E(eρB(τ)) = e
1
2 ρ2τ for ρ ≥ 0.

3. Wave Equation for SSWWE

The wave equation for the SSWWE (1) is created by using the next wave transformation:

W(x, y, z, t) = Q(θ)e(δB(t)−
1
2 δ2t), (3)

where Q is the deterministic function, and

θ =
θ1

β
(x +

1
Γ(β)

)β +
θ2

β
(y +

1
Γ(β)

)β +
θ3

β
(z +

1
Γ(β)

)β + θ4t, (4)

where θ1, θ2, θ3 and θ4 are unknown constants. We observe that

Wt = (θ4Q′ + δQBt)e(δB(t)−
1
2 δ2t), T2β

yzW = θ2θ3Q′′e(δB(t)−
1
2 δ2t),

T2β
yzWt = (θ4θ2θ3Q′′′ + δθ2θ3Q′′Bt)e(δB(t)−

1
2 δ2t),

Tβ
xW = θ1Q′e(δB(t)−

1
2 δ2t), Tβ

xzW = θ1θ3Q′′e(δB(t)−
1
2 δ2t),

T2β
xyW = θ1θ2Q′′e(δB(t)−

1
2 δ2t), T3β

xyzW = θ1θ2θ3Q′′′e(δB(t)−
1
2 δ2t)

T5β
xxxyzW = θ2θ3θ3

1Q′′′′′e(δB(t)−
1
2 δ2t). (5)

Inserting Equation (5) into Equation (1), yields

θ2θ3θ3
1Q′′′′′ + θ4θ2θ3Q′′′ + γθ1θ2θ3Q′′′ − 6θ2θ2

1θ3[(Q′′)2 +Q′Q′′′]e(δB(t)−
1
2 δ2t) = 0. (6)

By considering the expectations on both sides, we obtain

θ2θ3θ3
1Q′′′′′ + θ4θ2θ3Q′′′ + γθ1θ2θ3Q′′′ − 6θ2θ2

1θ3[(Q′′)2 +Q′Q′′′]e(−
1
2 δ2t)EeδB(t) = 0. (7)

Thus, by using Lemma 2, Equation (7) turn into

θ3
1Q′′′′′ + (θ4 + γθ1)Q′′′ − 6θ2

1 [Q′Q′′]′ = 0. (8)

where (Q′′)2 +Q′Q′′′ = [Q′Q′′]′. Integrating once and ignoring the integral constant,
we get

Q′′′′ + `1Q′′ − 2`2Q′Q′′ = 0, (9)

where
`1 =

γθ1 + θ4

θ3
1

and `2 =
3
θ1

.

Integrating Equation (9) and ignoring the integral constant, we have

Q′′′ + `1Q′ + `2(Q′)2 = 0. (10)
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By using homogeneous balancing between (Q′)2 with Q′′′ in Equation (10), we can con-
clude that

2P + 2 = P + 3 =⇒ P = 1.

4. Exact Solutions of SSWWE

The solutions of the wave Equation (10) are found using the F-expansion technique
with the Riccati equation and He’s semi-inverse method. The solutions of the SSWWE (1)
are then obtained.

4.1. F−Expansion Method with Riccati Equation

Let us suppose the solution Q of Equation (10) has the form (with P = 1)

Q(θ) = A0 + A1F +
B1

F
, (11)

where F is the solutions of the Riccati equation

F′ = F2 + λ, (12)

where λ is a real constant. Equation (12) has the following solutions:

F(θ) =
√

λ tan(
√

λθ) or F(θ) = −
√

λ cot(
√

λθ), (13)

if λ > 0, or

F(θ) = −
√
−λ tanh(

√
−λθ) or F(θ) = −

√
−λ coth(

√
−λθ), (14)

if λ < 0, or

F(θ) =
−1
θ

, (15)

if λ = 0.
Plugging Equation (11) into Equation (10) yields

(6A1 − `2 A2
1)F4 + (8λA1 + A1`1 + 2λA2

1 − B1 A1)F2

+(2λ2 A1 − 2B1λ− `1B1 + λ`1 A1 + 2`2 A1B1λ− λ2`2 A2
1 − `2B2

1)

−λB1(8 + `1 + 2λ`1 A1 + 2`2B1)F−2 − λ2B1(`2B1 + 6λ)F−4 = 0.

Putting each coefficient Fk to zero

6A1 − `2 A2
1 = 0,

8λA1 + A1`1 + 2λA2
1 − B1 A1 = 0,

2λ2 A1 − 2B1λ− `1B1 + λ`1 A1 + 2`2 A1B1λ− λ2`2 A2
1 − `2B2

1 = 0,

λB1(8 + `1 + 2λ`1 A1 + 2`2B1) = 0,

and
λ2B1(`2B1 + 6λ) = 0.

When these equations are solved, we obtain three sets:
First set:

A0 = Free, A1 = 2θ1, B1 = 0, and θ4 = 4θ3
1 − γθ1. (16)

Second set:
A0 = Free, A1 = 0, B1 = −2λθ1, and θ4 = 4θ3

1 − γθ1. (17)

Third set:
A0 = Free, A1 = 2θ1, B1 = −2λθ1, and θ4 = 16θ3

1 − γθ1. (18)
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First set: Equation (10) has the solution

Q(θ) = A0 + 2θ1F(θ).

For F(θ), three cases are present as follows:
Case 1: If λ > 0, then we obtain by using (13)

Q(θ) = A0 + 2θ1
√

λ tan(
√

λθ),

and
Q(θ) = A0 − 2θ1

√
λ cot(

√
λθ).

Hence, the solutions of SSWWE (1), by utilizing Equations (3) and (16), are

W(x, y, z, t) = [A0 + 2θ1
√

λ tan(
√

λθ)]e(δB(t)−
1
2 δ2t), (19)

and
W(x, y, z, t) = [A0 − 2θ1

√
λ cot(

√
λθ)]e(δB(t)−

1
2 δ2t), (20)

where θ is defined in Equation (4).
Case 2: If λ < 0, then we obtain by using (14)

Q(θ) = A0 − 2θ1
√
−λ tanh(

√
−λθ),

and
Q(θ) = A0 − 2θ1

√
−λ coth(

√
−λθ).

Hence, the solutions of SSWWE (1), by utilizing Equations (3) and (16), are

W(x, y, z, t) = [A0 − 2θ1
√
−λ tanh(

√
−λθ)]e(δB(t)−

1
2 δ2t), (21)

and
W(x, y, z, t) = [A0 − 2θ1

√
−λ coth(

√
−λθ)]e(δB(t)−

1
2 δ2t), (22)

where θ defined in Equation (4).
Case 3: If λ = 0, then we obtain by using (15)

Q(θ) = A0 −
2θ1

θ
.

Hence, the solutions of SSWWE (1), by utilizing Equations (3) and (16), are

W(x, y, z, t) = [A0 −
2θ1

θ
]e(δB(t)−

1
2 δ2t), (23)

where θ is defined in Equation (4).
Second set: We have the same solutions as stated in First set when λ > 0 and λ < 0.

While in the case of λ = 0, the solution of SSWWE (1) is

W(x, y, z, t) = A0e(δB(t)−
1
2 δ2t). (24)

Third set: The solution of Equation (10) is

Q(θ) = A0 + 2θ1F(θ)− 2θ1λ

F(θ)
.

For F(θ), three cases are present as follows:
Case 1: If λ > 0, then by using (13), we get

Q(θ) = A0 + 2θ1
√

λ[tan(
√

λθ)− cot(
√

λθ)]
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Hence, the solutions of SSWWE (1), by utilizing Equations (3) and (18), are

W(x, y, z, t) = [A0 + 2θ1
√

λ(tan(
√

λθ)− cot(
√

λθ))]e(δB(t)−
1
2 δ2t). (25)

Case 2: If λ < 0, then by using (14), we have

Q(θ) = A0 − 2θ1
√
−λ(tanh(

√
−λθ) + coth(

√
−λθ))

Hence, the solutions of SSWWE (1), by utilizing Equations (3) and (18), are

W(x, y, z, t) = [A0 − 2θ1
√
−λ(tanh(

√
−λθ) + coth(

√
−λθ))]e(δB(t)−

1
2 δ2t). (26)

Case 3: If λ = 0, then by using (15), we get

Q(θ) = A0 +
2θ1

θ
.

Hence, the solutions of SSWWE (1), by utilizing Equations (3) and (18), are

W(x, y, z, t) = [A0 +
2θ1

θ
]e(δB(t)−

1
2 δ2t), (27)

where θ is defined in Equation (4).

4.2. He’s Semi-Inverse Method

Using He’s semi-inverse method mentioned in [33–35], we obtain the following varia-
tional formulations:

J(Q) =
∫ ∞

0
{1

2
(Q′′)2 − 1

2
`1(Q′)2 +

1
3
`2(Q′)3}dθ. (28)

We assume the solution of Equation (9) according to [36] takes the form

Q(θ) = Asech(θ), (29)

where A is an undefined constant. Substituting Equation (29) into Equation (28), we have

J =
1
2

A2
∫ ∞

0
[sech2(θ) tanh4(θ) + sech4(θ) tanh2(θ) + sech6(θ)

−`1sech2(θ) tanh2(θ) +
2
3
`2 Asech3(θ) tanh3(θ)]dθ

=
1
2

A2
∫ ∞

0
[(sech2(θ)− `1sech2(θ) tanh2(θ) +

2
3
`2 Asech3(θ) tanh3(θ)]dθ

=
A2

2
− `1

A2

6
− 2

45
`2 A3.

Making J stationary with respect to A as follows

∂J
∂A

= (1− 1
3
`1)A− 2

15
`2 A2 = 0. (30)

By solving Equation (30), we obtain

A =
15− 5`1

2`2
.

Therefore, the solution of Equation (9) is

Q(θ) = 15− 5`1

6`2
sech(θ).
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Now, the solution of SSWWE (1) is

W(x, y, z, t) =
15− 5`1

2`2
sech(θ)e(δB(t)−

1
2 δ2t), (31)

where θ is defined in Equation (4). Similarly, we can consider the solution of Equation (9) as

Q(θ) = Bsech(θ) tanh2(θ).

With the same steps as before, we get

B =
11(1199− 213`1)

1456`2
.

Hence, the solution of SSWWE (1) is

W(x, y, z, t) =
11(1199− 213`1)

1456`2
sech(θ) tanh2(θ)e(δB(t)−

1
2 δ2t), (32)

where θ is defined in Equation (4).

5. Impacts of Noise and Beta-Derivative

We now investigate the effect of noise and the beta-derivative on the exact solution of
the SSWWE (1). We provide a number of graphs to describe the behavior of these solutions.
For specific solutions that have been obtained, such as (21) and (32), let us establish the
parameters γ = θ1 = 1, θ2 = −θ3 = 1, θ4 = −2, A0 = a = 0, y = z = 1, x ∈ [0, 4] and
t ∈ [0, 4], so that we can model these graphs.

First the noise impacts: In Figures 1 and 2, we see the effect of noise on the solutions as
follows:

(a) δ = 0 (b) δ = 1

(c) δ = 2 (d) δ = 0, 0.5, 1, 2

Figure 1. (a–c) Three-dimensional graph of solutionW(x, y, z, t) in Equation (21) for various δ =

0, 1, 2; (d) two-dimensional graph for various δ = 0, 1, 2.
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(a) δ = 0 (b) δ = 1

(c) δ = 2 (d) δ = 0, 0.5, 1, 2

Figure 2. (a–c) Three-dimensional graph of solutionW(x, y, z, t) in Equation (32) for various δ =

0, 1, 2; (d) two-dimensional graph for various δ = 0, 1, 2.

From Figures 1 and 2, we can deduce that when the noise is ignored (i.e., at δ = 0),
there are some different types of solutions, such as a periodic solution, kink solution,
etc. When noise is added and its strength is increased by δ = 1, 2, the surface becomes
a great deal flatter after small transit patterns, and that was proved with the 2D graph.
This indicates that the white noise impacts the SSWWE solutions and stabilizes them
around zero.

Secondly, the beta derivative impacts: In Figures 3 and 4, if δ = 0, we can see that the
graph’s shape is compressed as the value of β decreases:

We deduced from Figures 3 and 4 that there is no overlap between the curves of
the solutions. Furthermore, as the order of beta derivative decreases, the curves move to
the right.
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(a) δ = 0, β = 1 (b) δ = 0, β = 7
10

(c) δ = 0, β = 5
10 (d) δ = 0, β = 1, 7

10 , 5
10

Figure 3. (a–c) Three-dimensional graph of Equation (21) with δ = 0 and different values of β =

1, 7
10 , 5

10 (d) two-dimensional graph of Equation (21) with different values of β = 1, 7
10 , 5

10 .

(a) δ = 0, β = 1 (b) δ = 0, β = 7
10

(c) δ = 0, β = 5
10 (d) δ = 0, β = 1, 7

10 , 5
10

Figure 4. (a–c) Three-dimensional graph of Equation (32) with δ = 0 and different values of β =

1, 7
10 , 5

10 ; (d) two-dimensional graph of Equation (32) for different values of of β = 1, 7
10 , and 5

10 .
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6. Conclusions

The stochastic shallow water equation (SSWWE) was investigated in the sense of
the beta-derivative. By using the F-expansion method with the Riccati equation and He’s
semi-inverse method, we were able to find the exact stochastic solutions for SSWWE. These
solutions are necessary to understand a wide range of interesting and difficult physical
phenomena. In addition, the beta-derivative and multiplicative white noise effects on the
analytical solution of SSWWE (1) were demonstrated using the MATLAB software. The
beta-derivative moved the surface to the right as the order of derivative decreased, and we
deduced that the multiplicative Brownian motion stabilized the solutions around zero.
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