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Abstract: We take into account the (2 + 1)-dimensional stochastic Kadomtsev–Petviashvili equation
with beta-derivative (SKPE-BD) in this paper. To develop new hyperbolic, trigonometric, elliptic, and
rational solutions, the Riccati equation and Jacobi elliptic function methods are employed. Because
the KP equation is required for explaining the development of quasi-one-dimensional shallow-water
waves, the solutions obtained can be used to interpret various attractive physical phenomena. To
display how the multiplicative white noise and beta-derivative impact the exact solutions of the
SKPE-BD, we plot a few graphs in MATLAB and display different 3D and 2D figures. We deduce
how multiplicative noise stabilizes the solutions of SKPE-BD at zero.
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1. Introduction

Fractional differential equations (FDEs) are often used in relation to optical fibers, chem-
ical kinematics, solid-state physics, electrical circuits, nuclear-physics, fluid mechanics, elastic
media, quantum field theory, plasma physics, neural physics, mathematical biology, and
other domains [1–7]. Also, many physical phenomena, such as fluid dynamics, elasticity, heat,
electrodynamics, gravity, sound electrostatics, quantum mechanics, and diffusion, are de-
scribed by fractional-order derivatives. Consequently, it is essential in mathematical physics
to seek exact solutions for FDEs. In recent years, multiple approaches for dealing with FDEs
have been devised, such as the (G′/G)-expansion method [8,9], Kudryashov method [10],
first-integral method [11], sine–cosine method [12,13], exp(−φ(ς))-expansion [14], direct
algebraic method [15], perturbation method [16,17], tanh-sech [18,19], sine-Gordon expan-
sion [20], Jacobi elliptic function [21], etc.

Recently, beta-derivative (BD), a new conformable fractional derivative, was proposed
by Atangana et al. in [22]. From here, the BD for Y : (0, ∞)→ R of order β ∈ (0, 1] is defined
as follows:

Dβ
xY(x) = lim

ε→0

Y(x + ε(x + 1
Γ(β)

)1−β)−Y(x)

ε
.

The beta-derivative satisfies the next features for any constant a and b:

(1) Dβ
x [a] = 0,

(2) Dβ
x [aR(x) + bY(x)] = a Dβ

xR(x) + b Dβ
xY(x),

(3) Dβ
xY(θ) = (x + 1

Γ(β)
)1−β dY

dx , (4) If θ = a
β (x + 1

Γ(β)
)β, then Dβ

xY(θ) = a dY
dθ .
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On the contrary, it is now well known that randomness or fluctuations play an essential
role in a wide range of phenomena. Consequently, random impacts have assumed a greater
role in demonstrating numerous physical processes that take place in disciplines such as
telecommunications, cryptography, computer science, ecology, biology, information theory,
signal processing, neuroscience, chemistry, image processing, physics, and finance, among
others [23–25]. Partial differential equations are appropriate mathematical equations for
modeling complex systems in the presence of noise or random effects.

It is essential to consider FDEs with a stochastic term. Therefore, we look at the follow-
ing (2 + 1)-dimensional stochastic Kadomtsev–Petviashvili equation with beta-derivative
(SKPE-BD):

Dβ
x [Rt + 6RDβ

xR+Dβ
xxxR+ γRW t] + ρDβ

yyR = 0, (1)

whereR denotes the rescaled velocities and the rescaled wave amplitude in surface shallow-
water waves, ρ = ±1, γ is the noise strength and it is a real number,Wt(t) =

∂W(t)
∂t is the

derivative of the Wiener processW(t), andRWt is an Itô multiplicative noise.
When γ = 0 and β = 1, we attain the Kadomtsev–Petviashvili (KP) equation [26,27]

that can be used to characterize the development of quasi-one-dimensional shallow-water
waves whenever the impacts of viscosity and surface tension are negligible:

∂

∂x
[
∂R
∂t

+ 6R∂R
∂x

+
∂3R
∂x3 ] + ρ

∂2R
∂y2 = 0. (2)

The KP equation (2) has numerous applications in fluid dynamics and plasma physics.
The equation is widely used to study various physical phenomena, such as the propagation
of waves and solitons in different media. As such, the KP equation has been crucial in
advancing our understanding of complex nonlinear systems. Its importance lies in its
ability to accurately model and predict the behavior of waves and solitons, which has
applications in a wide range of fields including oceanography, optics, and plasma physics.
As a result, several approaches to acquiring the exact solutions of KP Equation (2) have been
suggested, such as sine–cosine [28], Hirota’s bilinear method [29], Hirota’s method [30],
trial equation method [31], novel generalized (G′/G)-expansion [32], extended mapping
method [33], F-expansion method [34], etc.

Our contribution here is to find the exact solutions for SKPE-BD (1). To obtain these
solutions, we utilize the Riccati equation method (RE-Method) and Jacobi elliptic function
method (JEF-Method). Because Equation (1) is used in describing the propagation of
waves on the surface of shallow water, the acquired solutions of the SKPE-BD (1) will help
researchers to gain a deeper understanding of these phenomena and make predictions
about their behavior. Additionally, the obtained solutions can also be used in practical
applications, such as designing improved tsunami warning systems or optimizing wave
energy converters. Furthermore, we investigate the effect of BD and noise on the analytical
solutions of the SKPE-BD (1) by providing some graphs via the MATLAB program 2022b .

Following is the structure of the paper: In Section 2, the wave equation of SKPE-BD (1)
is derived. In Section 3, the RE-Method and JEF-Method are utilized to obtain the exact
solution of the SKPE-BD (1). In Section 4, we can examine the effect of the Wiener process
and the beta-derivative on the achieved solutions of the SKPE-BD. In Section 5, we discuss
the physical meaning of the obtained results. Finally, the conclusions of the paper are
offered in Section 6.

2. Traveling Wave Equation for SKPE-BD

The wave equation for SKPE-BD (1) is found by using

R(x, y, t) = Y(ξ)e[−γW(t)− 1
2 γ2t], ξ = [

1
β
(x +

1
Γ(β)

)β +
1
β
(y +

1
Γ(β)

)β − λt], (3)
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where Y is a deterministic and real function. It is worth noting that

∂R
∂t

= [−λY ′ − γY ∂W
∂t

]e[−γW(t)− 1
2 γ2t], (4)

and

Dβ
xR = Y ′e[−γW(t)− 1

2 γ2t], Dβ
xxxR = Y ′′′e[−γW(t)− 1

2 γ2t], Dβ
yyR = Y ′′e[−γW(t)− 1

2 γ2t]. (5)

Inserting Equation (3) into Equation (1) and using (4) and (5), we obtain

Y ′′′′ + (ρ− λ)Y ′′ + 6[YY ′′ + (Y ′)2]e[−γW(t)− 1
2 γ2t] = 0.

Taking into account the expectations of both sides, we achieve

Y ′′′′ + (ρ− λ)Y ′′ + 6[YY ′′ + (Y ′)2]e−
1
2 γ2tEe[−γW(t)] = 0. (6)

SinceW(t) is normal process, hence E(e−γW(t)) = e
1
2 γ2t for any real number γ. There-

fore, Equation (6) becomes

Y ′′′′ + (ρ− λ)Y ′′ + 6(YY ′)′ = 0, (7)

where we replaced YY ′′ + (Y ′)2 by (YY ′)′. Integrating Equation (7) twice and ignoring
the integration constant, we have

Y ′′ − (λ− ρ)Y + 3Y2 = 0. (8)

3. Exact Solutions of SKPE-BD

To obtain exact solutions for SKPE-BD (1), we employ two alternative methods:
the RE-Method [35] and JEF-Method [36].

3.1. RE-Method

Let us assume the solution Y of Equation (8) is

Y(ξ) =
K

∑
j=0

ajZj, (9)

whereR solves the Riccati equation

Z′ = Z2 + b, (10)

with b is a unknown constant. Equation (10) has the following solutions:

Z =
−1
ξ

, (11)

if b = 0, or
Z =

√
b tan(

√
bξ) or Z = −

√
b cot(

√
bξ), (12)

if b > 0, or
Z = −

√
−b tanh(

√
−bξ) or Z = −

√
−b coth(

√
−bξ), (13)

if b < 0.
In order to compute the parameter K in Equation (9), we balance Y2 with Y ′′ in

Equation (8) to obtain
2K = K + 2,

then
K = 2. (14)
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Rewriting Equation (9), with K = 2, as

Y(ξ) = a0 + a1Z + a2Z2. (15)

Substituting Equation (15) into Equation (8) we obtain

(6a2 + 3a2
2)Z4 + (2a1 + 3a1a2)Z3

+(8ba2 − (λ− ρ)a2 + 3a2
1 + 6a0a2)Z2

+(2a1b− (λ− ρ)a1 + 6a0a1)Z

+(2b2a2 − (λ− ρ)a0 + 3a2
0) = 0.

We derive by setting each coefficient of Zj to zero

6a2 + 3a2
2 = 0,

2a1 + 3a1a2 = 0,

8ba2 − (λ− ρ)a2 + 3a2
1 + 6a0a2 = 0,

2a1b− (λ− ρ)a1 + 6a0a1 = 0,

and
2b2a2 − (λ− ρ)a0 + 3a2

0 = 0.

The next two families are obtained by solving these equations:
First family:

a0 =
−2
3

b, a1 = 0, a2 = −2, λ = ρ + 4b. (16)

Second family:

a0 = −2b, a1 = 0, a2 = −2, λ = ρ− 4b. (17)

First family: There are three cases relying on b.
Case 1: If b = 0, then the solution of (8), by using (11) and (15), is

Y(ξ) = −2
ξ2 .

Consequently, the solution of SKPE-BD (1) is

R(x, y, t) = −2[
1
β
(x +

1
Γ(β)

)β +
1
β
(y +

1
Γ(β)

)β − ρt]−2e[−γW(t)− 1
2 γ2t]. (18)

Case 2: If b > 0, then the solutions of (8), using (12) and (15), are

Y(ξ) = −2
3

b− 2b tan2(
√

bξ),

or
Y(ξ) = −2

3
b− 2b cot2(

√
bξ).

As a result, the solutions of SKPE-BD (1) are

R(x, y, t) = [
−2
3

b− 2b tan2(
√

bξ)]e[−γW(t)− 1
2 γ2t], (19)

or
R(x, y, t) = [

−2
3

b− 2b cot2(
√

bξ)]e[−γW(t)− 1
2 γ2t]. (20)
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Case 3: If b < 0, then the solutions of (8), by using (13) and (15), are

Y(ξ) = −2
3

b + 2b tanh2(
√
−bξ),

or
Y(ξ) = −2

3
b + 2b coth2(

√
−bξ).

Thence, the solutions of SKPE-BD (1) are

R(x, y, t) = [
−2
3

b + 2b tanh2(
√
−bξ)]e[−γW(t)− 1

2 γ2t], (21)

or
R(x, y, t) = [

−2
3

b + 2b coth2(
√
−bξ)]e[−γW(t)− 1

2 γ2t]. (22)

where ξ = 1
β (x + 1

Γ(β)
)β + 1

β (y + 1
Γ(β)

)β − (ρ + 4b)t.
Second family: There are three cases also relying on b.
Case 1: If b = 0, then we have the same solution as announced before in the first set.
Case 2: If b > 0, then the solutions of (8), using (12) and (15), are

Y(ξ) = −2b− 2b tan2(
√

bξ),

or
Y(ξ) = −2b− 2b cot2(

√
bξ).

Thence, the solutions of SKPE-BD (1) are

R(x, y, t) = [−2b− 2b tan2(
√

bξ)]e[−γW(t)− 1
2 γ2t], (23)

or
R(x, y, t) = [−2b− 2b cot2(

√
bξ)]e[−γW(t)− 1

2 γ2t]. (24)

Case 3: If b < 0, then the solution of (8), using (13) and (15), are

Y(ξ) = −2b + 2b tanh2(
√
−bξ) = −2bsech2(

√
−bξ),

or
Y(ξ) = −2b + 2b coth2(

√
−bξ) = 2bcsch2(

√
−bξ).

As a result, the solutions of SKPE-BD (1) are

R(x, y, t) = −2bsech2(
√
−bξ)e[−γW(t)− 1

2 γ2t], (25)

or
R(x, y, t) = 2bcsch2(

√
−bξ)e[−γW(t)− 1

2 γ2t]. (26)

where ξ = 1
β (x + 1

Γ(β)
)β + 1

β (y + 1
Γ(β)

)β − (ρ− 4b)t.

Remark 1. If we put β = 1 and γ = 0 in Equation (25), then we obtain the solution (2), reported
in [37].

3.2. JEF-Method

In this subsection, we use the JEF-method [36]. Assuming the solutions to Equation (8)
has the form (with K = 2):

Y(ξ) = h̄0 + h̄1Z(ξ) + h̄2Z2(ξ), (27)
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where h̄0, h̄1, and h̄2 are undefined constants and Z(ξ) = sn(ξ, κ) is the Jacobi elliptic sine
function for 0 < κ < 1. Differentiating Equation (27) twice,

Y ′′(ξ) = 2h̄2 − h̄1(κ
2 + 1)Z− 4h̄2(κ

2 + 1)Z2 + 2h̄1κ2Z3 + 6h̄2κ2Z4. (28)

Plugging Equations (27) and (28) into Equation (8), we have

(2κ2h̄2 + 3h̄2
2)Z4 + (2κ2h̄1 + 6h̄1h̄2)Z3

+[6h̄0h̄2 − 4h̄2(κ
2 + 1)− h̄2(λ− ρ) + 3h̄2

1]Z
2

−[(κ2 + 1)h̄1 + h̄1(λ− ρ)− 6h̄0h̄1]Z + (2h̄2 − h̄0(λ− ρ) + 3h̄2
0) = 0.

Equating coefficient of Zn to zero for n = 4, 3, 2, 1, 0 :

2κ2h̄2 + 3h̄2
2 = 0,

2κ2h̄1 + 6h̄1h̄2 = 0,

6h̄0h̄2 − 4h̄2(κ
2 + 1)− h̄2(λ− ρ) + 3h̄2

1 = 0,

(κ2 + 1)h̄1 + h̄1(λ− ρ)− 6h̄0h̄1 = 0,

and
2h̄2 − h̄0(λ− ρ) + 3h̄2

0 = 0.

When these equations are solved, we derive

h̄0 =
2(κ2 + 1) + 2

√
κ4 − κ2 + 1

3
, h̄1 = 0, h̄2 = −2κ2, λ = ρ + 4

√
κ4 − κ2 + 1,

or

h̄0 =
2(κ2 + 1)− 2

√
κ4 − κ2 + 1

3
, h̄1 = 0, h̄2 = −2κ2, λ = ρ− 4

√
κ4 − κ2 + 1,

Thus, Equation (8), by using (27), has the solution

Y(ξ) = 2(κ2 + 1) + 2
√

κ4 − κ2 + 1
3

− 2κ2sn2(ξ, κ),

or

Y(ξ) = 2(κ2 + 1)− 2
√

κ4 − κ2 + 1
3

− 2κ2sn2(ξ, κ).

Hence, the solutions of SKPE-BD (1) is

R(x, y, t) = [
2(κ2 + 1) + 2

√
κ4 − κ2 + 1

3
− 2κ2sn2(ξ, κ)]e[−γW(t)− 1

2 γ2t] , (29)

where ξ = 1
β (x + 1

Γ(β)
)β + 1

β (y + 1
Γ(β)

)β − (ρ + 4
√

κ4 − κ2 + 1)t, or

R(x, y, t) = [
2(κ2 + 1)− 2

√
κ4 − κ2 + 1

3
− 2κ2sn2(ξ, κ)]e[−γW(t)− 1

2 γ2t] , (30)

where ξ = 1
β (x+ 1

Γ(β)
)β + 1

β (y+
1

Γ(β)
)β− (ρ− 4

√
κ4 − κ2 + 1)t. If κ → 1, then Equation (29)

changes to
R(x, y, t) = 2sech2(ξ)e[−γW(t)− 1

2 γ2t], (31)

or
R(x, y, t) = [

2
3
− 2 tanh2(ξ)]e[−γW(t)− 1

2 γ2t]. (32)
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In a similar way, we can replace sn in (27) by cn to obtain the solutions of Equation (8)
as follows:

Y(ξ) = [
2
√

κ4 − κ2 + 1− 2(2κ2 − 1)
3

+ 2κ2cn2(ξ, κ)].

Therefore, the solutions of the SKPE-BD (1) is

R(x, y, t) = [
2
√

κ4 − κ2 + 1− 2(2κ2 − 1)
3

+ 2κ2cn2(ξ, κ)]e[−γW(t)− 1
2 γ2t] . (33)

where ξ = 1
β (x + 1

Γ(β)
)β + 1

β (y+
1

Γ(β)
)β− (ρ+ 4

√
κ4 − κ2 + 1)t. If κ → 1, then the solutions

(33) takes the form
R(x, y, t) = [2sech2(ξ)]e[−γW(t)− 1

2 γ2t]. (34)

4. The Effect of the Wiener Process and Beta Derivative

Here, the impact of SWP and BD on the analytical solutions of the SKPE-BD (1) is
discussed. We illustrate the behavior of these solutions through a number of graphs. For
different γ (noise strength), we generate certain figures for some found solutions including
Equations (29) and (31). First, let us define the parameters ρ = 1 and κ = 0.5. Also,
let t ∈ [0, 2] and x ∈ [0, 4].

First the beta derivative effects: In Figures 1 and 2, if γ = 0, we notice that the profile
of the graphs is pressed as the value of β decreases:

(a) γ = 0, β = 0.5 (b) γ = 0, β = 1, 0.75, 0.5

(c) β = 0.5 (d) β = 1, 0.7, 0.5

Figure 1. (a–c) Display of 3D-graph of Equation (29) with γ = 0 and several values of β = 1, 0.75, 0.5,
and (d) shows 2D-graph of Equation (29) with several values of β = 1, 0.75, 0.5.

(a) γ = 0, β = 1 (b) γ = 0, β = 0.75

Figure 2. Cont.
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(c) γ = 0, β = 0.5 (d) γ = 0, β = 0.25

Figure 2. (a–c) Display of 3D-graph of Equation (31) with γ = 0 and several values of β = 1, 0.75, 0.5,
and (d) shows 2D-graph of Equation (31) for several values of β = 1, 0.75, 0.5.

We deduced from Figures 1 and 2 that no overlap exists between the contours
of the solutions. Additionally, the surface moves to the right as the order of the beta
derivative decreases.

Second the noise effects:
In Figure 3, the surface is not flat and contains various imperfections when γ = 0 (i.e.,

there is no noise).

γ = 0 γ = 0

Figure 3. Diplay of 3D-profile of solutionR(x, y, t) in Equations (29) and (31).

Meanwhile, we can see in Figures 4 and 5, after small movement patterns, the surface
becomes more flat:

(a) γ = 1 (b) γ = 2

Figure 4. Display of 3D-profile of solutionR(x, y, t) in Equation (29) for various γ = 1, 2.

(a) γ = 1 (b) γ = 2

Figure 5. Diplay of 3D-profile of solutionR(x, y, t) in Equation (31) for various γ = 1, 2.
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In the end, we can deduce from Figures 3–5 that several solutions exist when noise is
disregarded (i.e., at γ = 0), such as periodic solutions, kink solutions, and others. After
minor transit patterns, the surface becomes significantly flattened when noise occurs and
its intensity is increased by γ = 1, 2. This demonstrates that the multiplicative white noise
has an impact on the SKPE-BD solutions and stabilizes them at zero.

5. Discussion and Physical Meaning

In this paper, we take into consideration stochastic Kadomtsev–Petviashvili equation
with beta-derivative (SKPE-BD). Finding an exact stochastic solution to the KP equation is a
challenging task due to its nonlinearity and complexity. Here, we applied two methods, the
RE-Method and JEF-Method, to attain the exact solutions for this equation. The first method
provided solutions in the form of trigonometric, hyperbolic, and rational functions, while
the second method gave elliptic solutions. Additionally, the specific characteristics of the
stochastic term play a crucial role in the effect it has on the solution. Overall, understanding
the stochastic effects is essential for accurately modeling and analyzing systems in the
presence of uncertainty. The obtained solutions provide insights into the behavior of waves
in different physical systems and can aid in the development of innovative technologies.
They serve as foundational tools for advancing our understanding of nonlinear wave
phenomena and can lead to significant advancements in fields such as plasma physics,
fluid dynamics, and engineering.

6. Conclusions

In the current study, the stochastic (2 + 1)-dimensional Kadomtsev–Petviashvili equa-
tion with beta derivative (SKPE-BD) was derived. By employing two distinct methods
such as the Riccati equation and Jacobi elliptic function, we obtained the exact solutions
of SKPE-BD (1). Due to the importance of KP in the field of fluid dynamics and plasma
physics, the acquired solutions are important for illustrating a wide range of intriguing
and complex physical phenomena. Finally, the MATLAB tool was applied to illustrate the
effect of SWP and BD on the obtained solutions of the SKPE-BD (1). We deduced that the
beta-derivative shifted the surface to the left when the fractional-order derivative increased
and the Wiener process stabilized the solutions at zero.
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