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Criteria for oscillation 
of noncanonical superlinear 
half‑linear dynamic equations
Taher S. Hassan 1,2,3, Clemente Cesarano 3, Mouataz Billah Mesmouli 1, Y. A. Madani 1, 
Amir Abdel Menaem 4, Ayékotan M. J. Tchalla 5* & Belal A. Glalah 6

This article comes up with criteria to make sure that the solutions to superlinear, half-linear, and 
noncanonical dynamic equations oscillate in both advanced and delayed cases; these criteria are 
comparable to the Hille-type and Ohriska-type criteria for the canonical nonlinear dynamic equations; 
and also these results solve an open problem in many existing works in the literature on dynamic 
equations. To demonstrate the importance of the results, some examples have been introduced.
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This research paper aims to study the oscillatory behavior of a specific class of second-order noncanonical 
superlinear half-linear dynamic equations of the form

on an unbounded above arbitrary time scale T , where τ ∈ [τ0,∞)T , τ0 ≥ 0 , τ0 ∈ T , γ ≥ 1 , r and q are 
positive rd-continuous functions on T , and ϕ : T → T is a rd-continuous nondecreasing function satisfying 
limτ→∞ ϕ(τ) = ∞.

By a solution of equation (1) we mean a nontrivial real-valued function z ∈ C1
rd[Tz,∞)T , Tz ∈ [τ0,∞)T such 

that r
∣

∣z�
∣

∣

γ−1
z� ∈ C1

rd[Tz,∞)T and z satisfies (1) on [Tz ,∞)T , where Crd is the set of rd-continuous functions. 
In accordance with the findings of Trench1, it is stated that Eq. (1) is considered to be in noncanonical form when

Conversely, Eq. (1) is deemed to be in canonical form when

A solution z of (1) is considered oscillatory if it does not become eventually positive or eventually negative. 
Otherwise, we refer to it as nonoscillatory. We will not take into account solutions that vanish in an identical 
manner in the neighborhood of infinity. A time scale T is any closed real subset. The forward jump operator 
σ : T → T is defined by

and the function z� : T → R is called the derivative of z on T and defined by

(1)
[

r(τ )
∣

∣z�(τ)
∣

∣

γ−1
z�(τ)

]�

+ q(τ )|z(ϕ(τ ))|γ−1z(ϕ(τ )) = 0

(2)
∫ ∞

τ0

�ω

r1/γ (ω)
< ∞.

(3)
∫ ∞

τ0

�ω

r1/γ (ω)
= ∞.

σ(τ) = inf {υ ∈ T : υ > τ },
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Stefan Hilger2 introduced the theory of dynamic equations on time scales to unify analysis of continuous and 
discrete systems. Many applications use different time scales. Dynamic equation theory includes classical theories 
for differential and difference equations and instances in between. The q-difference equations, with significant 
consequences in quantum theory (refer to3), can be analyzed across several time scales. The time scales include 
T=qN0 := {q� : � ∈ N0 for q > 1} , T=hN , T = N

2, and T = Tn, where Tn denotes harmonic numbers. See the 
sources4–6 for more information on time scale calculus.

Researchers in numerous applied disciplines have shown significant interest in the phenomenon of oscillation, 
primarily due to its foundations in mechanical vibrations and its extensive application in the realms of science 
and engineering. In order to incorporate the impact of temporal contexts on solutions, oscillation models may 
incorporate advanced terms or delays. Extensive research has been conducted on the subject of oscillation in delay 
equations, as demonstrated by the contributions of7–18. The existing literature concerning advanced oscillation is 
comparatively scant, comprising only a handful of studies that expressly investigate this subject19–22.

A diverse array of models is utilized to investigate and comprehend the phenomenon of oscillation, which is 
prevalent in a vast array of practical applications. Specific models within the domain of mathematical biology 
have been enhanced to account for delay and/or oscillation effects through the incorporation of cross-diffusion 
terms. For a more comprehensive exploration of this topic, it is advisable to refer to the scholarly articles23,24. The 
current investigation is preoccupied with the scrutiny of differential equations, given their pivotal significance 
in comprehending and scrutinizing an extensive array of real-world phenomena. This study investigates the 
utilization of differential equations to analyze the turbulent flow of a polytrophic gas through a porous medium 
and non-Newtonian fluid theory. These disciplines possess substantial practical ramifications and necessitate 
an exhaustive comprehension of the mathematical principles that underpin them. Interested parties may refer 
to the aforementioned articles25–34 for additional details.

The subsequent section presents the oscillation results for differential that are associated with the oscillation 
results for (1) on time scales. It also, provides an overview of the substantial contributions that this paper has 
provided. We will show that our findings not only unify some differential and difference equation oscillation 
results but can also be extended to determine oscillatory behavior in other cases. If T = R, then

and (1) transforms into the superlinear half-linear differential equation

The oscillatory characteristics of particular cases of equation (4) are examined by Fite35 and showed that every 
solution of the linear differential equation

oscillates if

Hille36 improved condition (6) and proved that if

then every solution of Eq.  (5) oscillates. Erbe37 extended Hille criterion (7) to the delay differential equation

where ϕ(ξ) ≤ ξ and seen that if

then every solution of Eq.  (8) oscillates. Ohriska38 obtained that if

then every solution of Eq.  (8) oscillates.
If T = Z , then

z�(τ) = lim
υ→τ

z(σ (τ ))− z(υ)

σ (τ)− υ
;

σ(τ) = τ , z�(τ) = z′(τ ),

∫ β

α

z(ω)�ω =

∫ β

α

z(ω)dω,

(4)
[

r(τ )
∣

∣z′(τ )
∣

∣

γ−1
z′(τ )

]′

+ q(τ )|z(ϕ(τ ))|γ−1z(ϕ(τ )) = 0.

(5)z′′(τ )+ q(τ )z(τ ) = 0,

(6)
∫ ∞

τ0

q(ω)dω = ∞.

(7)lim inf
τ→∞

τ

∫ ∞

τ

q(ω)dω >
1

4
,

(8)z′′(τ )+ q(τ )z(ϕ(τ)) = 0,

(9)lim inf
τ→∞

τ

∫ ∞

τ

ϕ(ω)

ω
q(ω)dω >

1

4
,

(10)lim sup
τ→∞

τ

∫ ∞

τ

ϕ(ω)

ω
q(ω)dω > 1,
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and (1) gets the superlinear half-linear difference equation

Thandapani et al.39 studied the oscillation behaviour of equation

and it was proved that every solution of Eq. (11)oscillates if

If T = {ζ : ζ = qk , k ∈ N0, q > 1} , then

where τ0 = qn0 , and (1) converts the superlinear half-linear q-difference equation

In relation to the dynamic equations, Karpuz40 considered the canonical form of the linear dynamic equation

and obtained that if

and

then every solution of Eq.  (13) oscillates. Erbe et al.41 established the Hille oscillation criterion to include the 
dynamic

where γ ≥ 1 is a quotient of odd positive integers and ϕ(τ) ≤ τ for τ ∈ T, and showed that if

and

where l := lim inf τ→∞

τ

σ (τ)
> 0 , then every solution of Eq.  (14) oscillates. Hassan et al.42 considered the 

canonical form of the nonlinear functional dynamic equation (1) if (3) holds and one of the following holds:

where

and

σ(τ) = τ + 1, z�(τ) = �z(τ ),

∫ β

α

z(ω)�ω =

β−1
∑

υ=α

z(ω),

�
[

r(τ )|�z(τ )|γ−1�z(τ )
]

+ q(τ )|z(ϕ(τ ))|γ−1z(ϕ(τ )) = 0.

(11)�2(z(τ ))+ q(τ )z(τ ) = 0.

(12)
∞
∑

ω=τ0

q(ω) = ∞.

σ(τ) = qτ , z�(τ) = �qz(τ ) =
z(qτ)− z(τ )

(q− 1)τ
,

∫ ∞

τ0

z(ω)�ω =

∞
∑

k=n0

τ
(

q− 1
)

z(qk),

�q

[

r(τ )
∣

∣�qz(τ )
∣

∣

γ−1
�qz(τ )

]

+ q(τ )|z(ϕ(τ ))|γ−1z(ϕ(τ )) = 0.

(13)
[

r(τ )z�(τ)
]�

+ q(τ )z(σ (τ )) = 0,

lim sup
τ→∞

µ(τ)

r(τ )
< ∞,

∫ ∞

τ0

�ω

r(ω)
= ∞,

lim inf
τ→∞

∫ τ

τ0

�ω

r(ω)

∫ ∞

τ

q(ω)�ω >
1

4

(14)
(

(

z�(τ)
)γ

)�

+ q(τ )zγ (ϕ(τ)) = 0,

(15)
∫ ∞

τ0

ϕγ (ω)q(ω)�ω = ∞

(16)lim inf
τ→∞

τγ
∫ ∞

σ(τ)

(

ϕ(ω)

σ(ω)

)α

q(ω)�ω >
γ γ

lγ
2
(γ + 1)γ+1

,

(17)lim inf
τ→∞

{

Rγ (τ )

∫ ∞

σ(τ)

φ(ω)q(ω)�ω

}

>
γ γ

lγ
2
(γ + 1)γ+1

;

(18)lim sup
τ→∞

{

Rγ (τ )

∫ ∞

τ

φ(ω)q(ω)�ω

}

> 1,

l := lim inf
τ→∞

R(τ )

R(σ (τ ))
> 0
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with R(τ ) :=
∫ τ

τ0

�ω

r1/γ (ω)
 , then every solution of Eq.  (1) oscillates. Hassan et al.43 improved criterion (17) for 

the dynamic equation (1) and proved that if l > 0 and (3) holds, and

then every solution of Eq.  (1) oscillates. For further Hille and Ohriska criteria, see the papers44–49.
Regarding the noncanonical form, Hassan et al.50 found some interesting oscillation criteria, namely Hille-

type and Ohriska-type criteria, for the delay linear dynamic equation

where ϕ(τ) ≤ τ and 
∫∞

τ0

�ω

r(ω)
< ∞ , which are as follows:

Theorem 1  (see50) Every solution of Eq.  (19) oscillates if any of the following conditions are satisfied:

for sufficiently large T ∈ [τ0,∞)T.

Also, Hassan et al.51 established, in particular, Hille-type and Ohriska-type oscillation criteria for dynamic 
equation (19) in a advanced case, i.e. ϕ(τ) ≥ τ , as shown in the following theorem:

Theorem 2  (see51) Every solution of Eq.  (19) oscillates if any of the following conditions are satisfied:

for sufficiently large T ∈ [τ0,∞)T.

It is important to point out that most of the prior findings, such as35–49, concentrate on the canonical form, 
which means that condition (3) is satisfied. Therefore, the purpose of this paper is to extend the results of50,51 
and to deduce the oscillatory Hille-type and Ohriska-type criteria for the noncanonical superlinear half-linear 
dynamic equation (1) for the two cases ϕ(τ) ≤ σ(τ) and ϕ(τ) ≥ σ(τ) . These results solved an open problem 
represented in many of his papers, e.g.,26,43,44,50,51. Please refer to the source25,52–61 for more information.

Criteria for oscillation (1) when ϕ(τ) ≤ σ(τ)
This section will provide evidence for the existence of additional oscillatory criteria that emulate the Hille and 
Ohriska types when ϕ(τ) ≤ σ(τ) in the noncanonical case.

Theorem 3  Suppose that (2) holds. If for sufficiently large T ∈ [τ0,∞)T,

where

then every solution of Eq.  (1) oscillates.

Proof  Let z be a nonoscillatory solution z of Eq.  (1) on [τ0,∞)T . Assume, without loss of generality, z(τ ) > 0 
and z(ϕ(τ )) > 0 on [τ0,∞)T . With the same approach used in proving Case (a) of50 Theorem 1] , we have

φ(τ) :=







1, ϕ(τ) ≥ τ ,
�

R(ϕ(τ))

R(τ )

�γ

, ϕ(τ) ≤ τ ,

lim inf
τ→∞

{

Rγ (τ )

∫ ∞

τ

φ(ω)q(ω)�ω

}

>
γ γ

lγ (γ−1)(γ + 1)γ+1
;

(19)
[

r(τ )z�(τ)
]�

+ q(τ )z(ϕ(τ )) = 0,

(20)lim inf
τ→∞

{(
∫ ∞

τ

�ω

r(ω)

)(
∫ τ

T
q(ω)�ω

)}

>
1

4
;

(21)lim sup
τ→∞

{(
∫ ∞

τ

�ω

r(ω)

)(
∫ τ

T
q(ω)�ω

)}

> 1,

(22)lim inf
τ→∞

{

(
∫ ∞

σ(τ)

�ω

r(ω)

)

(

∫ σ(τ)

T

∫∞

ϕ(ω)
�v
r(v)

∫∞

ω
�v
r(v)

q(ω)�ω

)}

>
1

4
;

(23)lim sup
τ→∞

{

(
∫ ∞

σ(τ)

�ω

r(ω)

)

(

∫ σ(τ)

T

∫∞

ϕ(ω)
�v
r(v)

∫∞

ω
�v
r(v)

q(ω)�ω

)}

> 1,

(24)lim inf
τ→∞

ξ(τ )

∫ τ

T

ξγ (σ (ω))

ξ(ω)
q(ω) �ω >

γ

4
,

ξ(τ ) :=

∫ ∞

τ

�ω

r1/γ (ω)
,
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eventually. Then, there exists τ1 ∈ [τ0,∞)T such that 
[

r(τ )
∣

∣z�(τ)
∣

∣

γ−1
z�(τ)

]�

< 0 and z�(τ) < 0 on [τ1,∞)T . 
Using Pötzsche chain rule (see5 Theorem 1.90]), we get

Therefore, (1) becomes

Define

Then,

Thanks to (25) and (26), we have

Since 
[

r(τ )
∣

∣z�(τ)
∣

∣

γ ]�
> 0 , then

which implies that

Therefore,

[

r(τ )
∣

∣z�(τ)
∣

∣

γ−1
z�(τ)

]�

< 0 and z�(τ) < 0,

(

r(τ )
∣

∣z�(τ)
∣

∣

γ−1
z�(τ)

)�

=−

(

r(τ )
∣

∣z�(τ)
∣

∣

γ
)�

= −

(

(

r1/γ (τ )
∣

∣z�(τ)
∣

∣

)γ
)�

=− γ
(

r1/γ (τ )
∣

∣z�(τ)
∣

∣

)�

∫ 1

0

[

(1− h)r1/γ (τ )
∣

∣z�(τ)
∣

∣+ h
(

r1/γ (τ )
∣

∣z�(τ)
∣

∣

)σ
]γ−1

dh

=γ
(

r1/γ (τ )z�(τ)
)�

∫ 1

0

[

(1− h)r1/γ (τ )
∣

∣z�(τ)
∣

∣+ h
(

r1/γ (τ )
∣

∣z�(τ)
∣

∣

)σ
]γ−1

dh

≥γ
(

r1/γ (τ )z�(τ)
)�

[

(

r1/γ (τ )
∣

∣z�(τ)
∣

∣

)σ
]γ−1

.

(25)
(

r1/γ (τ )z�(τ)
)�

+
q(τ )

γ
[(

r1/γ (τ )
∣

∣z�(τ)
∣

∣

)σ ]γ−1
|z(ϕ(τ ))|γ−1z(ϕ(τ )) ≤ 0.

(26)u(τ ) := −
z(τ )

r1/γ (τ )z�(τ)
.

u�(τ) =−
1

r1/γ (τ )
−

(

1

r1/γ (τ )z�(τ)

)�

zσ (τ )

=−
1

r1/γ (τ )
+

(

r1/γ (τ )z�(τ)
)�

r1/γ (τ )z�(τ)
(

r1/γ (τ )z�(τ)
)σ z

σ (τ ).

(27)

u�(τ) ≤ −
1

r1/γ (τ )

−
1

γ

q(τ )zγ (ϕ(τ))
[(

r1/γ (τ )
∣

∣z�(τ)
∣

∣

)σ ]γ−1

1

r1/γ (τ )z�(τ)

(

z(τ )

r1/γ (τ )z�(τ)

)σ

= −
1

r1/γ (τ )
−

1

γ

zγ (ϕ(τ))
[(

r1/γ (τ )
∣

∣z�(τ)
∣

∣

)σ ]γ−1
z(τ )

q(τ )u(τ )uσ (τ ).

(28)

zσ (τ ) ≥

∫ ∞

σ(τ)

[

r(ω)
∣

∣z�(ω)
∣

∣

γ ]1/γ

r1/γ (ω)
�ω

≥

(

[

r(τ )
∣

∣z�(τ)
∣

∣

γ
]1/γ

)σ ∫ ∞

σ(τ)

�ω

r1/γ (ω)

=
(

r1/γ (τ )
∣

∣z�(τ)
∣

∣

)σ
ξσ (τ ),

1
[(

r1/γ (τ )
∣

∣z�(τ)
∣

∣

)σ ]γ−1
≥

[(

ξ(τ )

z(τ )

)σ]γ−1

.
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From (25) , we have 
[

r1/γ (τ )z�(τ)
]�

< 0 and then

which implies that

Hence, from (29) and (30) , we see

Substituting (31) into (27) , we have

By integrating (32) from τ to v, we get

By virtue of u > 0, and u� < 0, and letting v → ∞ , we see

Let

By multiplying both sides of (33) by Q(τ , τ1) , we obtain

By integrating (25) from τ1 to τ and using (31) , we achieve that

which implies that

(29)

zγ (ϕ(τ))
[(

r1/γ (τ )
∣

∣z�(τ)
∣

∣

)σ ]γ−1
z(τ )

≥
(

ξσ (τ )
)γ−1

(

z(ϕ(τ ))

zσ (τ )

)γ zσ (τ )

z(τ )

≥
(

ξσ (τ )
)γ−1 z

σ (τ )

z(τ )
.

−z(τ ) <

∫ ∞

τ

r1/γ (ω)z�(ω)

r1/γ (ω)
�ω ≤ r1/γ (τ )z�(τ)

∫ ∞

τ

�ω

r1/γ (ω)
= r1/γ (τ )z�(τ)ξ(τ ),

(30)

zσ (τ )

z(τ )
=1+ µ(τ)

z�(τ)

z(τ )

≥1−
µ(τ)

r1/γ (τ )ξ(τ )

=
1

ξ(τ )

[

ξ(τ )−
µ(τ)

r1/γ (τ )

]

=
ξσ (τ )

ξ(τ )
.

(31)
zγ (ϕ(τ))

[(

r1/γ (τ )
∣

∣z�(τ)
∣

∣

)σ ]γ−1
z(τ )

≥
(ξσ (τ ))γ

ξ(τ )
.

(32)u�(τ) ≤ −
1

r1/γ (τ )
−

1

γ

(ξσ (τ ))γ

ξ(τ )
q(τ )u(τ )uσ (τ ).

u(v)− u(τ ) ≤ −

∫ v

τ

�ω

r1/γ (ω)
−

1

γ

∫ v

τ

(ξσ (ω))γ

ξ(ω)
q(ω)u(ω)uσ (ω) �ω.

(33)−u(τ ) ≤ −ξ(τ )−
1

γ

∫ ∞

τ

(ξσ (ω))γ

ξ(ω)
q(ω)u(ω)uσ (ω) �ω.

Q(τ , τ1) :=

∫ τ

τ1

(ξσ (ω))γ

ξ(ω)
q(ω) �ω.

(34)Q(τ , τ1)ξ(τ ) ≤ Q(τ , τ1)u(τ )−
1

γ
Q(τ , τ1)

∫ ∞

τ

(ξσ (ω))γ

ξ(ω)
q(ω)u(ω)uσ (ω) �ω.

r1/γ (τ )z�(τ) ≤r1/γ (τ )z�(τ)− r1/γ (τ1)z
�(τ1)

≤
−1

γ

∫ τ

τ1

zγ (ϕ(ω))
[(

r1/γ (ω)
∣

∣z�(ω)
∣

∣

)σ ]γ−1
q(ω) �ω

≤
−1

γ

∫ τ

τ1

(ξσ (ω))γ

ξ(ω)
q(ω)z(ω) �ω

≤
−1

γ
z(τ )

∫ τ

τ1

(ξσ (ω))γ

ξ(ω)
q(ω) �ω

=
−1

γ
z(τ )Q(τ , τ1),

0 ≤ V := lim inf
τ→∞

Q(τ , τ1)u(τ ) ≤ γ .
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Therefore, for any ε ∈ (0, 1) , there exists τ2 ∈ [τ1,∞)T such that, for τ ∈ [τ2,∞)T,

It follows from (34) and (35) that

since Q(τ , τ1) → ∞ as τ → ∞ . We obtain by utilising the liminf of the inequality (36) as τ → ∞,

Since ε > 0 is an arbitrary, we achieve

that is in opposition to (24). 	�  �

Example 1  Consider the second-order delay nonlinear dynamic equation

It is easy that (2) holds since

We have

According to an application of Theorem 3, we have every solution of Eq. (37) oscillates.

Theorem 4  Suppose that (2) holds. If for sufficiently large T ∈ [τ0,∞)T,

then every solution of Eq.  (1) oscillates.

Proof  Let z be a nonoscillatory solution z of Eq.  (1) on [τ0,∞)T . Assume, without loss of generality, z(τ ) > 0 
and z(ϕ(τ )) > 0 on [τ0,∞)T . As demonstrated in the proof of Theorem 3, there exists τ1 ∈ [τ0,∞)T such that 
[

r(τ )
∣

∣z�(τ)
∣

∣

γ−1
z�(τ)

]�

< 0 and z�(τ) < 0 on [τ1,∞)T, and for τ ∈ [τ1,∞)T,

and from (31) , we have for τ ∈ [τ1,∞)T,

(35)Q(τ , τ1)u(τ ) ≥ V− ε.

(36)

ξ(τ )Q(τ , τ1) ≤

≤Q(τ , τ1)u(τ )

−
1

γ
Q(τ , τ1)(V− ε)2

∫ ∞

τ

1

Q(ω, τ1)Qσ (ω, τ1)

(ξσ (ω))γ

ξ(ω)
q(ω) �ω

=Q(τ , τ1)u(τ )−
1

γ
Q(τ , τ1)(V− ε)2

∫ ∞

τ

(

−1

Q(ω, s1)

)�

�ω

=Q(τ , τ1)u(τ )−
1

γ
(V− ε)2,

lim inf
τ→∞

ξ(τ )Q(τ , τ1) ≤ V−
1

γ
(V− ε)2.

lim inf
τ→∞

ξ(τ )Q(τ , τ1) ≤ V−
1

γ
V
2 ≤

γ

4
,

(37)
[

(

τσ (τ)z�(τ)
)2
sgn

(

z�(τ)
)

]�

+
σ 2(τ )

τ
z2(ϕ(τ )) sgn(z(ϕ(τ ))) = 0

∫ ∞

τ0

�ω

r1/γ (ω)
=

∫ ∞

τ0

�ω

ωσ(ω)
=

∫ ∞

τ0

(

−1

ω

)�

�ω < ∞.

lim inf
τ→∞

ξ(τ )

∫ τ

T

ξγ (σ (ω))

ξ(ω)
q(ω) �ω

= lim inf
τ→∞

∫ ∞

τ

�ω

ωσ(ω)

∫ τ

T

(

∫∞

σ(ω)
�v

vσ(v)

)2

∫∞

ω
�v

vσ(v)

σ 2(ω)

ω
�ω

= lim inf
τ→∞

∫ ∞

τ

(

−1

ω

)�

�ω

∫ τ

T

(

∫∞

σ(ω)

(

−1
v

)�
�v

)2

∫∞

ω

(

−1
v

)�
�v

σ 2(ω)

ω
�ω

= 1.

(38)lim sup
τ→∞

ξ(τ )

∫ τ

T

ξγ (σ (ω))

ξ(ω)
q(ω) �ω > γ ,

(39)
(

r1/γ (τ )z�(τ)
)�

+
1

γ
q(τ )

zγ (ϕ(τ))
[(

r1/γ (τ )
∣

∣z�(τ)
∣

∣

)σ ]γ−1
≤ 0,
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Therefore,

By integrating (40) from τ1 to τ , we obtain

which implies for ω ∈ [τ ,∞) and τ ∈ [τ1,∞), that

We have for v ∈ [τ ,∞),

Letting v → ∞ , we obtain

Substituting (41) into (42) , we get

so

which implies that

that is in opposition to (38). 	�  �

Example 2  Consider the second-order nonlinear delay dynamic equation

where β > 0 is a constant. It is easy that (2) holds due to

over such time scales [τ0,∞)T , when 
∫∞

τ0

�ω

ωp
< ∞ with p > 1 . Now

Since, by Pötzsche chain rule, we have

zγ (ϕ(τ))
[(

r1/γ (τ )
∣

∣z�(τ)
∣

∣

)σ ]γ−1
≥

(ξσ (τ ))γ

ξ(τ )
z(τ ).

(40)
(

r1/γ (τ )z�(τ)
)�

+
1

γ

(ξσ (τ ))γ

ξ(τ )
q(τ )z(τ ) ≤ 0.

r1/γ (τ )z�(τ) ≤r1/γ (τ )z�(τ)− r1/γ (τ1)z
�(τ1)

≤−
1

γ

∫ τ

τ1

(ξσ (ω))γ

ξ(ω)
q(ω)z(ω) �ω

≤−
1

γ
z(τ )

∫ τ

τ1

(ξσ (ω))γ

ξ(ω)
q(ω) �ω,

(41)r1/γ (ω)z�(ω) ≤ r1/γ (τ )z�(τ) ≤ −
1

γ
z(τ )

∫ τ

τ1

(ξσ (ω))γ

ξ(ω)
q(ω) �ω.

−z(τ ) ≤ −z(τ )+ z(v) =

∫ v

τ

r1/γ (ω)z�(ω)

r1/γ (ω)
�ω.

(42)−z(τ ) ≤

∫ ∞

τ

r1/γ (ω)z�(ω)

r1/γ (ω)
�ω.

−z(τ ) ≤ −
1

γ
z(τ )

(
∫ τ

τ1

(ξσ (ω))γ

ξ(ω)
q(ω) �ω

)(
∫ ∞

τ

�ω

r(ω)

)

,

ξ(τ )

∫ τ

τ1

(ξσ (ω))γ

ξ(ω)
q(ω) �ω ≤ γ ,

lim sup
τ→∞

ξ(τ )

∫ τ

τ1

(ξσ (ω))γ

ξ(ω)
q(ω) �ω ≤ γ ,

(43)
[

(

τ 2σ(τ)z�(τ)
)3
]�

+ 32βξ(τ)σ 7(τ )z3(ϕ(τ )) = 0,

∫ ∞

τ0

�ω

ω2σ(ω)
< ∞,

(44)

lim sup
τ→∞

ξ(τ )

∫ τ

T

ξγ (σ (ω))

ξ(ω)
q(ω) �ω

= 32β lim sup
τ→∞

∫ ∞

τ

�ω

ω2σ(ω)

∫ τ

T
σ 7(ω)

(
∫ ∞

σ(ω)

�v

v2σ(v)

)3

�ω.
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and so

From (44) and (45) , we get

By using Theorem 4, then every solution of Eq.   (43) oscillates if β > 3 and over such time scale when 
∫∞

τ0

�ω

ωp
< ∞ with p > 1.

Criteria for oscillation (1) when ϕ(τ) ≥ σ(τ)
In the following, we shall apply the oscillation criteria that were established in the preceding section to the case 
of ϕ(τ) ≥ σ(τ).

Theorem 5  Suppose that (2) holds. If for sufficiently large T ∈ [τ0,∞)T,

then every solution of Eq.  (1) oscillates.

Proof  Let z be a nonoscillatory solution z of Eq.  (1) on [τ0,∞)T . Assume, without loss of generality, z(τ ) > 0 
and z(ϕ(τ )) > 0 on [τ0,∞)T . As shown in the proof of Theorem  3, there exists τ1 ∈ [τ0,∞)T such that 
[

r(τ )
∣

∣z�(τ)
∣

∣

γ−1
z�(τ)

]�

< 0 and z�(τ) < 0 on [τ1,∞)T, and for τ ∈ [τ1,∞)T,

where u is defined by (26) . By using the fact that 
[

r(τ )
∣

∣z�(τ)
∣

∣

γ ]�
> 0 , we obtain

which implies that

Therefore,

By using 
[

r1/γ (τ )z�(τ)
]�

< 0 , we have

(

v2
)�

= 2

∫ 1

0
[(1− h)v + hσ(v)]dh ≤ 2σ(v),

(45)
(

−1

v2

)�

=

(

v2
)�

v2σ 2(v)
≤

2

v2σ(v)
.

lim sup
τ→∞

ξ(τ )

∫ τ

T

ξγ (σ (ω))

ξ(ω)
q(ω) �ω

≥ 2β lim sup
τ→∞

∫ ∞

τ

(

−1

ω2

)�

�ω

∫ τ

T
σ 7(ω)

(

∫ ∞

σ(ω)

(

−1

v2

)�

�v

)3

�ω

≥ β lim sup
τ→∞

1

τ 2

∫ τ

T

(

ω2
)�

�ω = β .

(46)lim inf
τ→∞

ξ(τ )

∫ τ

T

ξγ (ϕ(ω))

ξ(ω)
q(ω) �ω >

γ

4
,

(47)u�(τ) ≤ −
1

r1/γ (τ )
−

1

γ

zγ (ϕ(τ))
[(

r1/γ (τ )
∣

∣z�(τ)
∣

∣

)σ ]γ−1
z(τ )

q(τ )u(τ )uσ (τ ),

z(ϕ(τ )) ≥

∫ ∞

ϕ(τ)

[

r(ω)
∣

∣z�(ω)
∣

∣

γ ]1/γ

r1/γ (ω)
�ω

≥

[

r(ϕ(τ ))
∣

∣z�(ϕ(τ))
∣

∣

γ
]1/γ

∫ ∞

ϕ(τ)

�ω

r1/γ (ω)

≥

(

[

r(τ )
∣

∣z�(τ)
∣

∣

γ
]1/γ

)σ ∫ ∞

ϕ(τ)

�ω

r1/γ (ω)

=
(

r1/γ (τ )
∣

∣z�(τ)
∣

∣

)σ
ξ(ϕ(τ)),

1
[(

r1/γ (τ )
∣

∣z�(τ)
∣

∣

)σ ]γ−1
≥

[

ξ(ϕ(τ))

z(ϕ(τ ))

]γ−1

.

(48)
zγ (ϕ(τ))

[(

r1/γ (τ )
∣

∣z�(τ)
∣

∣

)σ ]γ−1
z(τ )

≥ ξγ−1(ϕ(τ ))
z(ϕ(τ))

z(τ )
.

−z(τ ) <

∫ ∞

τ

r1/γ (ω)z�(ω)

r1/γ (ω)
�ω ≤ r1/γ (τ )z�(τ)

∫ ∞

τ

�ω

r1/γ (ω)
= r1/γ (τ )z�(τ)ξ(τ ),
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which yields that

Hence,

Substituting (49) into (48) , we get

From (47) and (50) , we obtain for τ ∈ [τ1,∞)T,

The rest of the evidence is the same as it is in the proof of Theorem 3, hence is omitted. 	�  �

Example 3  Consider the second-order nonlinear advanced dynamic equation

Therefore,

Using Theorem 5, then every solution of Eq.  (51) oscillates over such time scale when 
∫∞

τ0

�ω

ωp
< ∞ with p > 1

.

Theorem 6  Suppose that (2) holds. If for sufficiently large T ∈ [τ0,∞)T,

then every solution of Eq.  (1) oscillates.

Proof  Let z be a nonoscillatory solution z of Eq.  (1) on [τ0,∞)T . Assume, without loss of generality, z(τ ) > 0 
and z(ϕ(τ )) > 0 on [τ0,∞)T . As explained in the proof of50 Theorem 1], we have

eventually. there exists τ1 ∈ [τ0,∞)T such that 
[

r(τ )
∣

∣z�(τ)
∣

∣

γ−1
z�(τ)

]�

< 0 and z�(τ) < 0 on [τ1,∞)T. As 
demonstrated in the proof of Theorem 3, we see for τ ∈ [τ1,∞)T,

and from the proof of Theorem 5,

(

z(τ )

ξ(τ )

)�

=
ξ(τ )z�(τ)− ξ�(τ)z(τ )

ξ(τ )ξσ (τ )

=
r1/γ (τ )ξ(τ )z�(τ)+ z(τ )

r1/γ (τ )ξ(τ )ξσ (τ )
> 0

(49)
z(ϕ(τ ))

z(τ )
≥

ξ(ϕ(τ))

ξ(τ )
.

(50)
zγ (ϕ(τ))

[(

r1/γ (τ )
∣

∣z�(τ)
∣

∣

)σ ]γ−1
z(τ )

≥
ξγ (ϕ(τ))

ξ(τ )
.

u�(τ) ≤ −
1

r1/γ (τ )
−

1

γ

ξγ (ϕ(τ))

ξ(τ )
q(τ )u(τ )uσ (τ ).

(51)
[

(

τ 2z�(τ)
)2
sgn

(

z�(τ)
)

]�

+ ξ(τ )(ϕ(τ)z(ϕ(τ )))2 sgn(z(ϕ(τ ))) = 0

lim inf
τ→∞

ξ(τ )

∫ τ

T

ξγ (ϕ(ω))

ξ(ω)
q(ω)�ω

= lim inf
τ→∞

∫ ∞

τ

�ω

ω2

∫ τ

T

(

ϕ(ω)

∫ ∞

ϕ(ω)

�v

v2

)2

�ω

≥ lim inf
τ→∞

∫ ∞

τ

(

−1

ω

)�

�ω

∫ τ

T

(

ϕ(ω)

∫ ∞

ϕ(ω)

(

−1

v

)�

�v

)2

�ω

= 1 >
γ

4
.

(52)lim sup
τ→∞

ξ(τ )

∫ τ

T

ξγ (ϕ(ω))

ξ(ω)
q(ω) �ω > γ ,

[

r(τ )
∣

∣z�(τ)
∣

∣

γ−1
z�(τ)

]�

< 0 and z�(τ) < 0,

(

r1/γ (τ )z�(τ)
)�

+
1

γ
q(τ )

zγ (ϕ(τ))
[(

r1/γ (τ )
∣

∣z�(τ)
∣

∣

)σ ]γ−1
≤ 0,

zγ (ϕ(τ))
[(

r1/γ (τ )
∣

∣z�(τ)
∣

∣

)σ ]γ−1
≥

ξγ (ϕ(τ))

ξ(τ )
z(τ ).
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Hence,

The rest of the evidence is the same as it is in the proof of Theorem 4, hence is omitted. 	�  �

Example 4  Consider the second-order advanced nonlinear dynamic equation

where β > 0 is a constant. Thus,

By application of Theorem 6, if β > 1 , then every solution of Eq. (53) oscillates.

Conclusions and discussion

	 (I)	 The results of this paper are applicable to all time scales, including T = R, T = Z, T = hZ with h > 0 , 
T = qN0 with q > 1 , and so forth (see6).

	 (II)	 In contrast to previous literature, the results we have obtained in this work do not presume the 
fulfillment of condition (3) (canonical case), thereby resolving an open problem that has been 
referenced in numerous papers, as indicated in26,43,44,50,51.

	 (III)	 This research paper introduces criteria for Hille-type and Ohriska-type oscillation that can be applied 
to (1) in both cases, ϕ(τ) ≤ σ(τ) and ϕ(τ) ≥ σ(τ) and on any arbitrary time scale. Also, our results 
extend relevant contributions to second-order dynamic equations of50,51.

	 (IV)	 It would be interesting to find such criteria for noncanonical sublinear half-linear dynamic equations 
(1), where 0 < γ ≤ 1 is a constant.
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