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Abstract: This paper delves into the analysis of oscillation characteristics within third-order quasi-
linear delay equations, focusing on the canonical case. Novel sufficient conditions are introduced,
aimed at discerning the nature of solutions—whether they exhibit oscillatory behavior or converge to
zero. By expanding the literature, this study enriches the existing knowledge landscape within this
field. One of the foundations on which we rely in proving the results is the symmetry between the
positive and negative solutions, so that we can, using this feature, obtain criteria that guarantee the
oscillation of all solutions. The paper enhances comprehension through the provision of illustrative
examples that effectively showcase the outcomes and implications of the established findings.
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1. Introduction

The focus of this article is on considering third-order delay differential equations in
the form (

β2(s)
((

β1(s)U ′(s)
)′)r)′

+ q(s)U r(τ(s)) = 0, s ≥ s0, (1)

where

(H1) r is the ratio of two positive odd integers and r > 1;
(H2) q ∈ C([s0, ∞)), q(s) ≥ 0;
(H3) τ ∈ C1([s0, ∞)), τ(s) ≤ s, τ′(s) > 0, and lims→∞ τ(s) = ∞;
(H4) β2 ∈ C1([s0, ∞)), β1 ∈ C2([s0, ∞)), β1 > 0, β2 > 0,∫ ∞

s0

1
β1(κ)

dκ = ∞ and
∫ ∞

s0

1

β1/r
2 (κ)

dκ = ∞. (2)

Function U ∈ C([sU , ∞),R), sU > s0, is said to be a solution of Equation (1) if it has

the property β2

(
(β1U ′)′

)r
∈ C1[sU , ∞), and it satisfies Equation (1) for all U ∈ [sU , ∞). We

consider only those solutions U of Equation (1) which exist on some half-line [sU , ∞) and
satisfy the condition

sup{|U (s)| : s > S} > 0, for all S ≥ sU .

For any solution U of Equation (1), we denote by LiU the ith quasiderivative of U , that
is,

L0U = U , L1U = β1U ′, L2U = β2

((
β1U ′

)′)r
, and L3U =

(
β2

((
β1U ′

)′)r)′
,
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on [s0, ∞).
Delay differential equations (DDEs) are a type of ordinary differential equations

(ODEs) that involve a time delay. They arise in many applications, such as control the-
ory, population dynamics, and neuroscience, where the time delay can represent a delay
in feedback, a time lag in communication, or a time delay in the response of a system.
In this context, quasi-linear third-order DDEs are a subclass of DDEs that have important
applications in the modeling of many physical and biological systems; see [1,2]. They are
characterized by having a linear term in the derivative of the dependent variable, and a
nonlinear term that depends on the product of the dependent variable and its derivative.

In recent years, there has been significant interest in the study of quasi-linear third-
order DDEs and their applications. This is due in part to the fact that many real-world
systems exhibit nonlinear behavior, and DDEs provide a natural framework for modeling
such behavior. Moreover, the study of quasi-linear third-order DDEs has important appli-
cations in the analysis of control systems, neural networks, and biological systems, where
the dynamics of the system depend on the interaction between different variables with
time delays.

While even-order delay differential equations have received more attention than odd-
order ones, the study of DDEs in general has gained traction in recent years. Interested
readers can refer to various studies, including Parhi and Das [3], Parhi and Padhi [4,5],
Baculikova et al. [6], Dzurina [7], Bohner et al [8], Chatzarakis et al. [9,10], Moaaz [11],
and Almarri et al. [12,13] and the references mentioned therein.

Saker [14] investigated the oscillation behavior of nonlinear delay differential equation(
β2(s)

(
β1(s)U ′(s)

)′)′
+ q(s) f (U (s− τ)) = 0, s ≥ s0 (3)

in the canonical case and discussed some criteria that guarantee that every solution to
Equation (3) is oscillatory using Riccati transformation techniques.

Grace et al. [15] offered new criteria for the oscillation of third-order delay differential
equations (

β2(s)
(

β1(s)U ′(s)
)′)′

+ q(s)U (τ(s)) = 0, s ≥ s0 (4)

in non-canonical case ∫ ∞

s0

1
β1(κ)

dκ < ∞ and
∫ ∞

s0

1
β2(κ)

dκ < ∞.

Theorem 1 ([15], Theorem 3.3.). We suppose that

lim sup
s→∞

∫ s

τ(κ)
q(κ)

∫ τ(s)

τ(κ)

1
β1(ϑ)

∫ τ(s)

ϑ

1
β2(v)

dvdϑdκ > 1,

∫ s

s0

1
β1(v)

∫ v

s0

1
β2(ϑ)

∫ ϑ

s0

q(κ)dκdϑdv = ∞,

and

lim inf
s→∞

β1(s)π2
1(s)

β2(s)

∫ s

s0

q(κ)dκ = K > 0 and lim inf
s→∞

π1(τ(s))
π1(s)

= k > 1

hold. We let {Kn} be the sequence given by

Kn =
kKn−1 K

1− Kn−1
, K0 = K, n ∈ N,

and Ki < 1, for some n ∈ N, i = 0, 1, . . . , n− 1. If either one of the conditions

Kn >
1
2

or
K ln k

1− Kn
>

1
e

or KkKn >
1
4



Symmetry 2023, 15, 1994 3 of 18

is fulfilled, then (4) is oscillatory, where β1(s) =
∫ ∞

s0
1

β1(κ)
dκ.

Saker and Dzurina [16] established that some necessary conditions guarantee that(
β(s)

(
U ′′(s)

)r
)′

+ q(s)U r(τ(s)) = 0 (5)

is oscillatory or that the solutions converge to zero in canonical case∫ ∞

s0

1
β(κ)dκ = ∞.

Theorem 2 ([16], Theorem 2.). We let U be a solution of (5) and β′(s) ≥ 0. We suppose that

∫ ∞

s0

∫ ∞

v

(
1

β(ϑ)

∫ ∞

ϑ
q(κ)dκ

)1/r
dϑdv = ∞ (6)

holds. If

lim inf
s→∞

lrsr

β(s)

∫ ∞

s
q(κ)

(
τ(κ)
κ

)r(τ(κ)− sl
2

)r
dκ >

rr

(r + 1)r+1 ,

then U is oscillatory or tends to zero as s→ ∞, where sl is large enough and l ∈ (0, 1) is arbitrarily
chosen.

Baculikova and Dzurina [17] provided a general classification of oscillatory and asymp-
totic behaviors of the third-order functional differential equations of the form(

β(s)
(
U ′′(s)

)r
)′

+ q(s) f (U (τ(s))) = 0 (7)

in the canonical case, where f (U ) ∈ C(−∞, ∞), f ′ ≥ 0, U f (U ) > 0 for U 6= 0 and
−U f (−Uy) ≥ f (Uy) ≥ f (U ) f (y) for Uy > 0.

Theorem 3 ([17], Theorem 2.). We suppose that (6) holds. If

y′(s) + q(s) f
(∫ τ(s)

s0

τ(s)−κ
β1/r(κ)

dκ
)

f
(

y1/r(τ(s))
)
= 0 (8)

is oscillatory, then every solution of (7) is oscillatory or tends to zero as s→ ∞.

The purpose of this research is to establish new criteria that ensure all solutions to
Equation (1) are oscillatory or tend to zero. The results in this paper are different from those
in [18]. Our results are an extension of the results in [19] as known in the literature in the
case r = 1. That is, our results are in the case r > 1.

2. Preliminary Results

This section introduces a collection of definitions and assumptions that are crucial for
our paper and aids in simplifying mathematical operations. Let us define the following
notations for convenience in our calculations:

π1(s) :=
∫ s

s0

1
β1(κ)

dκ, π2(s) :=
∫ s

s0

1

β1/r
2 (κ)

dκ, π12(s) :=
∫ s

s0

π2(κ)
β1(κ)

dκ,

λ∗ := lim inf
s→∞

π12(s)
π12(τ(s))

,

$∗ := lim inf
s→∞

1
r

β1/r
2 (s)πr

12(τ(s))π2(s)q(s),
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and

k∗ := lim inf
s→∞

π
$∗
2 (s)

π12(s)

∫ s

s0

π
1−$∗
2 (κ)
β1(κ)

dκ, for $∗ ∈ (0, 1).

Remark 1. We refer to the supremum and infimum functions as sup and inf, respectively.

Remark 2. All our results require that $∗ is positive either explicitly or implicitly. For any fixed
but arbitrary $ ∈ (0, $∗) and λ = λ∗ for λ∗ = 1, and λ ∈ (1, λ∗) for λ∗ > 1, there exists an
s1 ≥ s0 large enough to satisfy the following inequalities:

π12(s)
π12(τ(s))

≥ λ, (9)

1
r

β1/r
2 (s)πr

12(τ(s))π2(s)q(s) ≥ $, (10)

and
π

$
2(s)

π12(s)

∫ s

s0

π
1−$
2 (κ)
β1(κ)

dκ ≥ k. (11)

Lemma 1 ([20]). We assume that A and B are real numbers, A > 0. Then,

BV − AV(r+1)/r ≤ rr

(r + 1)r+1
Br+1

Ar . (12)

Lemma 2 ([21]). We let V ∈ Cm([s0, ∞), (0, ∞)), V(i)(s) > 0 for i = 1, 2, . . . , m, and
V(m+1)(s) ≤ 0, eventually. Then, eventually,

V(s)
V′(s)

≥ ε

m
s,

for every ε ∈ (0, 1).

Lemma 3. We assume that U is an eventually positive solution of (1). Then, U eventually satisfies
the following cases:

N1 : U > 0, L1U < 0, L2U > 0, and L3U ≤ 0,

N2 : U > 0, L1U > 0, L2U > 0.

Here, we define Ω as the category of all positive solutions of (1) with x satisfying N2.

Remark 3. The Kneser solutions are the solutions that belong to the class N1.

Definition 1 ([22]). If N2 = ∅ and any Kneser solution of Equation (1) tends to zero asymptoti-
cally, then, we say Equation (1) has property A.

3. Nonexistence of N2-Type Solutions

This section contains several lemmas that describe the asymptotic properties of so-
lutions belonging to the class N2. These lemmas are instrumental in illustrating our
main results.

Lemma 4. We suppose that $∗ > 0 and U ∈ Ω. Then, for a sufficiently large s

(A1,1) lims→∞ L2U (s) = lims→∞ L1U (s)/π2(s) = lims→∞ U (s)/π12(s) = 0;

(A1,2) L1U/π2 is decreasing and L1U ≥ π2(L2U )1/r;

(A1,3) U/π12 is decreasing and U > (π12/π2)L1U .
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Proof. We let U ∈ Ω and choose s1 ≥ s0 such that U (τ(s)) > 0 and $ satisfies (10) for
s ≥ s1.
(A1,1) : Since L2U is a positive decreasing function, obviously

lim
s→∞

L2U = l ≥ 0.

If l > 0, then L2U ≥ l > 0, and so for any ε ∈ (0, 1), we have

U (s) ≥ l
∫ s

s1

1
β1(ϑ)

∫ ϑ

s1

1

β1/r
2 (κ)

dκdϑ ≥ l̃π12(s), l̃ = εl.

Using this in (1), we obtain

−L3U (s) = q(s)U r(τ(s)) ≥ l̃rq(s)πr
12(τ(s)).

Integrating from s1 to s, we have

L2U (s1) ≥ l̃r
∫ s

s1

q(κ)πr
12(τ(κ))dκ

≥ r$l̃r
∫ s

s1

1

β1/r
2 (κ)π2(κ)

dκ

= r$l̃r ln
π2(s)
π2(s1)

→ ∞ as s→ ∞,

which is a contradiction. Thus, l = 0. By using l’Hôspital’s rule, we can see that (A1,1)
holds.
(A1,2) : Since L2U is positive and decreasing,

L1U (s) = L1U (s1) +
∫ s

s1

1

β1/r
2 (κ)

L1/r
2 U (κ)dκ

≥ L1U (s1) + L1/r
2 U (s)

∫ s

s1

1

β1/r
2 (κ)

dκ

= L1U (s1) + (L2U (s))1/rπ2(s)− (L2U (s))1/r
∫ s1

s0

1

β1/r
2 (κ)

dκ.

In view of (A1,1), we see that

L1U (s1)− (L2U (s))1/r
∫ s1

s0

1

β1/r
2 (κ)

dκ > 0.

Thus,
L1U (s) > (L2U (s))1/rπ2(s),

and, consequently,(
L1U
π2

)′
(s) =

(L2U (s))1/r
2 π(s)− L1U (s)

β1/r
2 (s)π2

2(s)
< 0, s ≥ s2.
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(A1,3) : Since L1U/π2 is a decreasing function tending to zero,

U (s) = U (s2) +
∫ s

s2

L1U (κ)
π2(κ)

π2(κ)
β1(κ)

dκ

≥ U (s2) +
L1U (s)
π2(s)

∫ s

s2

π2(κ)
β1(κ)

dκ

≥ U (s2) +
L1U (s)
π2(s)

π12(s) +
L1U (s)
π2(s)

∫ s2

s0

π2(κ)
β1(κ)

dκ

>
L1U (s)
π2(s)

π12(s).

Therefore, (
U

π12

)′
(s) =

L1U (s)π12(s)−U (s)π2(s)
β1(s)π2

12(s)
< 0.

The following lemma provides further properties of solutions that are classified under
the category N2.

Lemma 5. We assume that $∗ > 0 and U ∈ Ω. Then, for $ ∈ (0, $∗) and a sufficiently large s

(A2,1) L1U/π
1−$∗
2 is decreasing, and (1− $∗)L1U > π2(L2U )1/r;

(A2,2) lims→∞ L1U (s)/π
1−$∗
2 (s) = 0;

(A2,3) U/π1/k
12 is decreasing and U > k(π12/π2)L1U .

Proof. We let U ∈ Ω and choose s1 ≥ s0 such that U (τ(s)) > 0 and parts (A1,1)-(A1,3) in
Lemma 4 hold for s ≥ s1 ≥ s0 and choose $ ∈ ($∗/(1 + $∗), $∗) and k ≤ k∗ satisfying (10)
and (11), respectively, for s ≥ s1.
Since

$

1− $
> $∗,

there exist constants c1 ∈ (0, 1) and c2 > 0 such that

c1$

1− $
> $∗ + c2. (13)

(A2,1) : We define
z(s) = L1U (s)− π2(s)(L2U (s))1/r. (14)

This, according to (A1,2), is obviously positive. Differentiating z and employing (1) and
(10), we have

z′(s) =
(

L1U (s)− (L2U (s))1/rπ2(s)
)′

= −1
r

π2(s)(L2U (s))1/r−1L3U (s)

=
1
r

π2(s)q(s)U r(τ(s))(L2U (s))1/r−1

≥ $
U r(τ(s))

β1/r
2 (s)πr

12(τ(s))
(L2U (s))1/r−1. (15)

By virtue of (A1,3), we have

z′(s) ≥ $
U r(s)

β1/r
2 (s)πr

12(s)
(L2U (s))1/r−1. (16)
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From (A1,2) and (A1,3), we see that

U (s)
π12(s)

>
L1U (s)
π2(s)

> (L2U (s))1/r.

Since r > 1, then (
U (s)

π12(s)

)1−r
<

(
L1U (s)
π2(s)

)1−r
< (L2U (s))(1−r)/r. (17)

Substituting previous inequality in (16), we obtain

z′(s) ≥ $
U r(s)

β1/r
2 (s)πr

12(s)

(
U (s)

π12(s)

)1−r
= $

U (s)
β1/r

2 (s)π12(s)
≥ $

L1U (s)
β1/r

2 (s)π2(s)
. (18)

Integrating from s2 to s and using the fact that L1U/π2 is decreasing and tends to zero
asymptotically, we have

z(s) ≥ z(s2) + $
∫ s

s2

L1U (κ)
β1/r

2 (κ)π2(κ)
dκ ≥ z(s2) + $

L1U (s)
π2(s)

∫ s

s2

1

β1/r
2 (κ)

dκ

= z(s2) + $
L1U (s)
π2(s)

π2(s)− $
L1U (s)
π2(s)

∫ s2

s0

1

β1/r
2 (κ)

dκ > $L1U (s). (19)

Then,
(1− $)L1U (s) > π2(s)(L2U (s))1/r,

and (
L1U (s)
π

1−$
2 (s)

)′
=

(L2U (s))1/rπ2(s)− (1− $)L1U (s)
β1/r

2 (s)π2−$
2 (s)

< 0. (20)

We deduce directly from (20) and from property L1U that $ < 1 is increasing. Using this in
(18), additionally, taking into account (13), we obtain

z(s) ≥ z(s3) + $
∫ s

s3

L1U (κ)
β1/r

2 (κ)π2(κ)
dκ

≥ z(s3) + $
L1U (s)
π

1−$
2 (s)

∫ s

s3

1

β1/r
2 (κ)π$

2(κ)
dκ

≥ $

1− $

L1U (s)
π

1−$
2 (s)

(
π

1−$
2 (s)− π

1−$
2 (s3)

)
≥ c1$

1− $
L1U (s)

≥ ($∗ + c2)L1U (s),

which implies

(1− $∗)L1U (s) > (1− $∗ − c2)L1U (s) > (L2U (s))1/rπ2(s),

and (
L1U (s)

π
1−$∗−c2
2 (s)

)′
< 0. (21)
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The conclusion then immediately follows.
(A2,2) : Obviously, (21) also implies that L1U/π

1−$∗
2 → 0 as s→ ∞, since otherwise

L1U (s)
π

1−$∗−c2
2 (s)

=
L1U (s)

π
1−$∗
2 (s)

πc2
2 (s)→ ∞ as s→ ∞, (22)

which is a contradiction.
(A2,3) : Using that by (A2,1) and (A2,2), L1U/π

1−$∗
2 is a decreasing, we have

U (s) = U (s4) +
∫ s

s4

L1U (κ)
π

1−$∗
2 (κ)

π
1−$∗
2 (κ)
β1(κ)

dκ

≥ U (s4) +
L1U (s)

π
1−$∗
2 (s)

∫ s

s4

π
1−$∗
2 (κ)
β1(κ)

dκ

= U (s4) +
L1U (s)

π
1−$∗
2 (s)

∫ s

s0

π
1−$∗
2 (κ)
β1(κ)

dκ − L1U (s)
π

1−$∗
2 (s)

∫ s4

s0

π
1−$∗
2 (κ)
β1(κ)

dκ

>
L1U (s)

π
1−$∗
2 (s)

∫ s

s0

π
1−$∗
2 (κ)
β1(κ)

dκ

≥ k
π12(s)
π2(s)

L1U (s).

Therefore, (
U (s)

π1/k
12 (s)

)′
=

kπ12(s)L1U (s)− π2(s)U (s)
kβ1(s)π

1/k+1
2 (s)

< 0.

The proof of Lemma is complete.

Corollary 1. We suppose that $∗ ≥ 1. Then, N2 = ∅.

Proof. This follows from

(1− $∗)L1U (s) > (L2U (s))1/rπ2(s),

and the property that L2 is positive.

Corollary 2. We suppose that $∗ > 0 and λ∗ = ∞. Then, Ω = ∅.

Proof. We let U ∈ Ω and choose s1 ≥ s0 such that U (τ(s)) > 0 and parts (A2,1)-(A2,3) in
Lemma 4 hold for s ≥ s1 ≥ s0 and choose fixed but arbitrarily large λ ≤ λ∗, $ ≤ $∗, and
k ≤ k∗ satisfying (9), (10) and (11), respectively, for s ≥ s1. Using (15) and the decreasing of
U/β1/k

12 , we have

z′(s) ≥ $
U r(τ(s))

β1/r
2 (s)πr/k

12 (τ(s))πr(1−1/k)
12 (τ(s))

(L2U (s))1/r−1

≥ $
U r(s)

πr/k
12 (s)

1

β1/r
2 (s)πr(1−1/k)

12 (τ(s))
(L2U (s))1/r−1.
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Using (A2,3), (17) and (9), we obtain

z′(s) ≥ $
U r(s)

πr/k
12 (s)

1

β1/r
2 (s)πr(1−1/k)

12 (τ(s))

(
U (s)

π12(s)

)1−r

= $
π

r(1−1/k)
12 (s)

β1/r
2 (s)πr(1−1/k)

12 (τ(s))

U (s)
π12(s)

≥ $
λr(1−1/k)

β1/r
2 (s)

U (s)
π12(s)

≥ $kλr(1−1/k) L1U (s)
β1/r

2 (s)π2(s)
.

Integrating the last inequality from s2 to s and using that L1U/π2 is a decreasing function
tending to zero, we obtain

z(s) ≥ k$λr(1−1/k)L1U (s). (23)

Consequently, (
1− k$λr(1−1/k)

)
L1U (s) ≥ (L2U (s))1/rπ2(s).

We can choose λ > (1/k$)k/r(k−1), since λ can be arbitrarily large, which is contrary to the
fact that L2U is positive.
The proof of Corollary is complete.

Corollary 3. Suppose that $∗ > 0 and k∗ = ∞. Then Ω = ∅.

Proof. The proof is omitted as it can be obtained by following the same steps as in
Corollary 2, taking into account that k can take on an arbitrarily large value.

Remark 4. For $∗ ∈ (0, 1), k∗ ∈ [1, ∞) and λ∗ ∈ [1, ∞), we deduce that

$0 = $∗,

$n =
$0kn−1λ

r(1−1/kn−1)
∗

1− $n−1
, n ∈ N, (24)

where kn satisfies

kn = lim inf
s→∞

π
$n
2 (s)

π12(s)

∫ s

s0

π
1−$n
2 (κ)
β1(κ)

dκ, n ∈ N0. (25)

If $i < 1 and ki ∈ [1, ∞) for i = 0, 1, . . . , n, then $n+1 exists. In this case, we obtain

$1

$0
=

k0λr(1−1/k0)

1− $0
> 1,

and

k1 = lim inf
s→∞

π
$1
2 (s)

π12(s)

∫ s

s0

π
1−$1
2 (κ)
β1(κ)

dκ = lim inf
s→∞

π
$1
2 (s)

π12(s)

∫ s

s0

π
1−$0−($1−$0)
2 (κ)

β1(κ)
dκ

≥ lim inf
s→∞

π
$0
2 (s)

π12(s)

∫ s

s0

π
1−$0
2 (κ)
β1(κ)

dκ = k0.

Therefore, we can conclude that
k1 ≥ k0.

By using induction on n, we can also obtain

$n+1

$n
≥ `n > 1, (26)



Symmetry 2023, 15, 1994 10 of 18

where

`0 :=
k0λ

r(1−1/kn−1)
∗
1− $0

,

`n :=
knλ

r(1/kn−1−1/kn)
∗ (1− $n−1)

kn−1(1− $n)
, n ∈ N, (27)

with
kn ≥ kn−1.

In the following, we can suppose that λ∗, k∗, $∗ are well defined λ∗ ∈ [1, ∞), k∗ ∈
[1, ∞), and $∗ ∈ (0, 1).

Lemma 6. We suppose that δ∗ > 0 and U ∈ Ω. Then, for any n ∈ N0, $n and kn defined by (24)
and (25), respectively, and for a suficiently large t

(An,1) L1U/π
1−$n
2 is decreasing, and (1− $n)L1U > (L2U )1/rπ2;

(An,2) lims→∞ L1U (s)/π
1−$n
2 (s) = 0;

(An,3) U/π1/εnkn
12 is decreasing and U > εnkn(π12/π2)L1U for any εn ∈ (0, 1).

Proof. We let U ∈ Ω with U (τ(s)) > 0 and parts (A1,1)-(A1,3) in Lemma 4 hold for
s ≥ s1 ≥ s0 and choose fixed but arbitrarily large $ ≤ $∗, and k ≤ k∗ satisfying (10) and
(11), respectively, for s ≥ s1. We proceed by induction on n. For n = 0, the conclusion
follows from Lemma 5 with ε0 = k/k∗. Next, we assume that (An,1)–(An,3) hold for n ≥ 1
for s ≥ sn ≥ s1. We need to show that they each hold for n + 1.
(An+1,1) : Using (An,3) in (15), we obtain

z′(s) ≥ $
U r(τ(s))

β1/r
2 (s)πr/εnkn

12 (τ(s))πr(1−1/εnkn)
12 (τ(s))

(L2U (s))1/r−1

≥ $
U r(s)

β1/r
2 (s)πr/εnkn

12 (s)πr(1−1/εnkn)
12 (τ(s))

(
U (s)

π12(s)

)1−r

= $
π

r(1−1/εnkn)
12 (s)

π
r(1−1/εnkn)
12 (τ(s))

U (s)
β1/r

2 (s)π12(s)

≥ εnkn$λr(1−1/εnkn) L1U (s)
β1/r

2 (s)π2(s)
.

Integrating the above inequality from sn to s and using (An,1) and (An,2), we have

z(s) ≥ z(sn) + εnkn$λr(1−1/εnkn)
∫ s

sn

L1U (κ)
β1/r

2 (κ)π2(κ)
dκ (28)

≥ z(sn) + εnkn$λr(1−1/εnkn) L1U (s)
π

1−$n
2 (s)

∫ s

sn

1

β1/r
2 (κ)π$n

2 (κ)
dκ

≥ z(sn) +
εnkn$λr(1−1/εnkn)

1− $n

L1U (s)
π

1−$n
2 (s)

[
π

1−$n
2 (s)− π

1−$n
2 (sn)

]
>

εnkn$λr(1−1/εnkn)

1− $n
L1U (s) = µ$n+1L1U (s),

where

µ =
$

$∗
εn

λr(1−1/εnkn)

λ
r(1−1/kn)
∗

∈ (0, 1),
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and
lim

λ→λ∗
εn→1
$→$∗

µ = 1.

We choose µ such that

µ >
1

1− $n + $n+1
=

1
1 + $n(`n − 1)

, (29)

where `n satisfies (26). Then,

µ$n+1

1− µ$n+1
>

$n+1

(1 + $n(`n − 1))
(

1− `n$n
1+$n(`n−1)

) =
$n+1

1− $n
,

and there exist two constants c1 ∈ (0, 1) and c2 > 0 such that

c1
µ(1− $n)$n+1

1− µ$n+1
> $n+1 + c2.

According to Definition (14) of z, we deduce that

(1− µ$n+1)L1U (s) > (L2U (s))1/rπ2(s),

and (
L1U (s)

π
1−µ$n+1
2 (s)

)′
< 0.

Using the above monotonicity in (28), we see that

z(s) ≥ z(sn) + εnkn$λr(1−1/εnkn)
∫ s

sn

L1U (κ)
β1/r

2 (κ)π2(κ)
dκ

≥ z(sn) +
εnkn$λr(1−1/εnkn)

1− µ$n+1

L1U (s)
π

1−µ$n+1
2 (s)

(
π

1−µ$n+1
2 (s)− π

1−µ$n+1
2 (sn)

)
≥ c1εnkn$λr(1−1/εnkn)

1− µ$n+1
L1U (s)

= c1µ$n+1
1− $n

1− µ$n+1
L1U (s)

> ($n+1 + c2)L1U (s).

Then,
(1− $n+1 − c2)L1U (s) > (L2U (s))1/rπ2(s), (30)

and (
L1U (s)

π
1−$n+1−c2
2 (s)

)′
< 0. (31)

This leads to the conclusion.
(An+1,2) : Clearly, (31) also implies that L1U/π

1−$n+1
2 → 0 as s→ ∞, since otherwise

L1U (s)
π

1−$n+1−c2
2 (s)

=
L1U (s)

π
1−$n+1
2 (s)

πc2
2 (s)→ ∞ as s→ ∞, (32)
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which is a contradiction.
(An+1,3) : Using that by (An+1,1) and (An+1,2), L1U/π

1−$n+1
2 is decreasing, we obtain, for

any εn ∈ (0, 1),

U (s) = U
(
s′′n
)
+
∫ s

s′′n

L1U (κ)
π

1−$n+1
2 (κ)

π
1−$n+1
2 (κ)

β1(κ)
dκ

≥ U
(
s′′n
)
+

L1U (s)
π

1−$n+1
2 (s)

∫ s

s′′n

π
1−$n+1
2 (κ)

β1(κ)
dκ

= U
(
s′′n
)
+

L1U (s)
π

1−$n+1
2 (s)

∫ s

s0

π
1−$n+1
2 (κ)

β1(κ)
dκ − L1U (s)

π
1−$n+1
2 (s)

∫ s′′n

s0

π
1−$n+1
2 (κ)

β1(κ)
dκ

>
L1U (s)

π
1−$n+1
2 (s)

∫ s

s0

π
1−$n+1
2 (κ)

β1(κ)
dκ

≥ εn+1kn+1
π12(s)
π2(s)

L1U (s),

and(
U (s)

π
1/εn+1kn+1
12 (s)

)′
=

εn+1kn+1π
1/εn+1kn+1
12 (s)L1U (s)− π

1/εn+1kn+1−1
12 (s)π2(s)U (s)

εn+1kn+1β1(s)π
2/εn+1kn+1
12 (s)

=
εn+1kn+1π12(s)L1U (s)− π2(s)U (s)

εn+1kn+1β1(s)π
1/εn+1kn+1+1
12 (s)

< 0.

The proof of Lemma is complete.

Corollary 4. We assume that $i < 1, i = 0, 1, 2, . . . , n− 1 and $n ≥ 1. Then, N2 = ∅.

Proof. This follows directly from

(1− $n)L1U (s) > (L2U (s))1/rπ2(s),

and the fact that L2 is positive.

By applying the previous corollary and Equation (26), we can see that the sequence
{$n} defined in (24) is both increasing and bounded from above. Hence, there exists

lim
n→∞

$n = $j ∈ (0, 1).

Moreover, we can satisfy the equation

$j =
$∗k jλ

r(1−1/kj)
∗

1− $j
, (33)

where

k j = lim inf
s→∞

π
$j
2 (s)

π12(s)

∫ s

s0

π
1−$j
2 (κ)
β1(s)

dκ.

This allows us collection of important results that directly imply the nonexistence of N2
type solutions.

Lemma 7. We assume that λ∗ < ∞ and that (33) does not possess a root on (0, 1). Then, Ω = ∅.
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Corollary 5. We assume that λ∗ < ∞. If

$∗ > max

$j
(
1− $j

)
λ

r(1/kj−1)
∗

k j
: 0 < $j < 1

, (34)

then Ω = ∅.

Lemma 8. We assume that (2) hold. Furthermore, we assume that there exists ρ ∈ C1([s0, ∞), (0, ∞))
such that

lim sup
s→∞

∫ s

s0

(
ρ(κ)q(κ)

(
τ(κ)
κ

)2/ε

−
βr

1(κ)(ρ′(κ))
r+1
+

(r + 1)r+1πr
2(κ)ρr(κ)

)
dκ = ∞, (35)

where (ρ′(s))+ = max{0, ρ′(s)}. Then, N2 = ∅.

Proof. We assume the contrary, that U ∈ Ω. Now, we define

w(s) = ρ(s)
L2U (s)
U r(s)

, s ≥ s1, (36)

then, w(s) > 0 and

w′(s) = ρ′(s)
L2U (s)
U r(s)

+ ρ(s)
L3U (s)
U r(s)

− rρ(s)
L2U (s)
U r(s)

U ′(s)
U (s)

= ρ′(s)
L2U (s)
U r(s)

+ ρ(s)
L3U (s)
U r(s)

− rρ(s)
L2U (s)
U r(s)

1
β1(s)

L1U (s)
U (s)

= −ρ(s)q(s)
U r(τ(s))
U r(s)

+
ρ′(s)
ρ(s)

w(s)− rw(s)
1

β1(s)
L1U (s)
U (s) .

Then, in view of (1) and from Lemma 4, in view of (A1,2), we have

w′(s) ≤ −ρ(s)q(s)
U r(τ(s))
U r(s)

+
ρ′(s)
ρ(s)

w(s)− r
π2(s)
β1(s)

w(s)
(L2U )1/r

U (s) .

Since U > 0, L1U > 0, L2U > 0, from Lemma 2, we obtain

U (s)
U ′(s) ≥

ε

2
s.

Integrating the last inequality from τ(s) to s, we find

U (τ(s))
U (s) ≥

(
τ(s)

s

)2/ε

,

which implies that

w′(s) ≤ −ρ(s)q(s)
(

τ(s)
s

)2r/ε

+
(ρ′(s))+

ρ(s)
w(s)− rπ2(s)

β1(s)ρ1/r(s)
w1+1/r(s). (37)

Setting

B =
(ρ′(s))+

ρ(s)
and B =

rπ2(s)
β1(s)ρ1/r(s)

,
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and using Lemma 1, we see that

(ρ′(s))+
ρ(s)

w(s)− rπ2(s)
β1(s)ρ1/r(s)

w1+1/r(s) ≤
βr

1(s)(ρ
′(s))r+1

+

(r + 1)r+1πr
2(s)ρ

r(s)
. (38)

Thus, from (37) and (38), we obtain

w′(s) ≤ −
(

ρ(s)q(s)
(

τ(s)
s

)2r/ε

−
βr

1(s)(ρ
′(s))r+1

+

(r + 1)r+1πr
2(s)ρ

r(s)

)
. (39)

Integrating (39) from s1 to s, we obtain

−w(s1) < w(s)− w(s1) ≤ −
∫ s

s1

(
ρ(κ)q(κ)

(
τ(κ)
κ

)2r/ε

−
βr

1(κ)(ρ′(κ))
r+1
+

(r + 1)r+1πr
2(κ)ρr(κ)

)
dκ,

which yields

∫ s

s1

(
ρ(κ)q(κ)

(
τ(κ)
κ

)2r/ε

−
βr

1(κ)(ρ′(κ))
r+1
+

(r + 1)r+1πr
2(κ)ρr(κ)

)
dκ < w(s1),

for all large s. This is a contradiction to (35).

4. Convergence to Zero of Kneser Solutions

In the following part, we provide results that ensure the asymptotic convergence of
any Kneser solution to zero. We start by highlighting a crucial fact that an unbounded
nonoscillatory solution can exist only if∫ ∞

s0

q(κ)dκ < ∞. (40)

The proof is stated briefly for the reader’s convenience.

Lemma 9. Suppose that ∫ ∞

s0

q(κ)dκ = ∞. (41)

Then (1) has property A.

Proof. We suppose, on the contrary, that U is a positive solution of (1), that is, U (s) ≥ l > 0
for s ≥ s1. By integrating (1) from s2 to s, we have

L2U (s) = L2U (s2)−
∫ s

s2

q(κ)U r(τ(κ))dκ

≤ L2U (s2)− lr
∫ s

s2

q(κ)dκ → −∞ as s→ ∞,

which contradicts the positivity of L2U .

Therefore, we assume the validity of Equation (40) without further explanation. We
then distinguish between two cases,

∫ ∞

s0

(
1

β2(ϑ)

∫ ∞

ϑ
q(κ)dκ

)1/r
dϑ = ∞, (42)

and ∫ ∞

s0

(
1

β2(ϑ)

∫ ∞

ϑ
q(κ)dκ

)1/r
dϑ < ∞. (43)
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Lemma 10. We assume either (42) or

∫ ∞

s0

1
β1(v)

∫ ∞

v

(
1

β2(ϑ)

∫ ∞

ϑ
q(κ)dκ

)1/r
dϑdv = ∞. (44)

If U is a Kneser solution of (1), then lims→∞ U (s) = 0.

Proof. We suppose U ∈ N1 and choose s1 ≥ s0 such that U (τ(s)) > 0 on [s1, ∞). Obviously,
there is a finite number l such that lims→∞ U (s) = l ≥ 0. We suppose that l > 0. Then,
there exists s2 ≥ s1 such that U (τ(s)) > l for s ≥ s2.
If (42) holds, then, by Integrating (1) from s to ∞, we obtain

L2U (s) ≥
∫ ∞

s
q(κ)U r(τ(κ))dκ > lr

∫ ∞

s
q(κ)dκ,

that is,

(L1U (s))′ >
l

β1/r
2 (s)

(∫ ∞

s
q(κ)dκ

)1/r
. (45)

Integrating (45) from s2 to s, we obtain

−L1U (s) > −L1U (s2)− lr
∫ s

s2

1

β1/r
2 (ϑ)

(∫ ∞

ϑ
q(κ)dκ

)1/r
dϑ→ −∞ as s→ ∞,

which contradicts the positivity of −L1U .
If (44) holds, then, by Integrating (45) from s to ∞, we have

−U ′(s) > l
β1(s)

∫ ∞

s

(
1

β2(ϑ)

∫ ∞

ϑ
q(κ)dκ

)1/r
dϑ,

and therefore,

U (s) ≤ U (s2)− lr
∫ s

s2

1
β1(v)

∫ ∞

v

(
1

β2(ϑ)

∫ ∞

ϑ
q(κ)dκ

)1/r
dϑdv→ −∞ as s→ ∞, (46)

which contradicts the fact that U is positive.

5. Property A of (1)

After combining the results from the previous two sections, we present the main
results of this research as follows:

Theorem 4. We suppose that $∗ ≥ 1, and either (42) or (44) holds. Then, (1) has property A..

Theorem 5. We suppose that $∗ > 0, λ∗ = ∞, and either (42) or (44) holds. Then, (1) has
property A.

Theorem 6. We suppose that $∗ > 0 and k∗ = ∞, and either (42) or (44) holds. Then, (1) has
property A.

Theorem 7. We suppose that $i < 1, i = 0, 1, 2, . . . , n− 1, and $n ≥ 1 and either (42) or (44)
holds. Then, (1) has property A.

Theorem 8. We suppose that λ∗ < ∞, (34), and either (42) or (44) holds. Then, (1) has property A.

Theorem 9. We suppose that (35) and either (42) or (44) holds. Then, (1) has property A.
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Theorem 10. We suppose that

$∗ > max


$j
(
1− $j

)(
2− $ f

)
λ
−r$j/2
∗

k j
: 0 < $j < 1

,

and either (42) or (44) holds. Then, (1) has property A.

6. Examples

We provide some examples in this section to demonstrate and validate our results.

Example 1. We consider the third-order delay differential equation(
e−3s(U ′′(s))3

)′
+ q(s)U 3

(
1
2

s
)
= 0, (47)

where s > 1 and τ ∈ (0, 1). It is easy to see that

β1(s) = 1, β2(s) = e−3s, π1(s) ∼ s, π2(s) ∼ es, π12(s) ∼ es.

Then,

λ∗ := lim inf
s→∞

π12(s)
π12(τ(s))

= lim inf
s→∞

es/2 = ∞,

and
$∗ := lim inf

s→∞

1
r

β1/r
2 (s)πr

12(τ(s))π2(s)q(s) = lim inf
s→∞

1
3

q(s)e3s/2 > 0.

Clearly, if we let q(s) = e−s, then

∫ ∞

1

(
1

β2(ϑ)

∫ ∞

ϑ
q(κ)dκ

)1/3
dϑ =

∫ ∞

1
eϑ

(∫ ∞

ϑ
e−κdκ

)1/3
dϑ =

∫ ∞

1
e2ϑ/3dϑ = ∞.

Thus, Theorem 5 is satisfied and so (47) has property A.
If we set ρ(s) = e4s, then

lim sup
s→∞

∫ s

s1

(
ρ(κ)q(κ)

(
τ(κ)
κ

)2r/ε

−
βr

1(κ)(ρ′(κ))
r+1
+

(r + 1)r+1πr
2(κ)ρr(κ)

)
dκ

= lim sup
s→∞

∫ s

s1

(
1

26/ε
e3κ − e16κ

e3κe12κ

)
dκ

= lim sup
s→∞

∫ s

s1

(
1

26/ε
e3κ − eκ

)
dκ = ∞.

Therefore, Theorem 9 is satisfied, and so (47) has property A.

Example 2. We consider  1
s3

((
1
s
U ′(s)

)′)3
′ + q0U 3(τs) = 0, (48)

where s > 1, τ ∈ (0, 1) and q0 ≥ 0. Clearly,

β1(s) =
1
s

, β2(s) =
1
s3 , π1(s) ∼ s2/2, π2(s) ∼ s2/2, π12(s) ∼ s4/8.
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Then,

λ∗ := lim inf
s→∞

π12(s)
π12(τ(s))

= lim inf
s→∞

s4/8
s4τ4/8

=
1
τ4 ,

and ∫ ∞

s0

(
1

β2(ϑ)

∫ ∞

ϑ
q(κ)dκ

)1/r
dϑ =

∫ ∞

s0

(
1
ϑ3

∫ ∞

ϑ
q0dκ

)1/3
dϑ

= q1/3
0

∫ ∞

s0

1
ϑ2/3 dϑ = ∞.

Thus, Theorem 10 is satisfied and so (48) has property A.
If we set ρ(s) = sγ, γ ≥ 1, then Theorem 9 is satisfied, and so (48) has property A.

Example 3. We consider ((
U ′′(s)

)5
)′

+
5
s6U

5
(

1
2

s
)
= 0. (49)

Clearly,
β1(s) = 1, β2(s) = 1, π1(s) ∼ s, π2(s) ∼ s, π12(s) ∼ s2/2.

Then,

λ∗ := lim inf
s→∞

π12(s)
π12(τ(s))

= lim inf
s→∞

s2(
1
2 s
)2 = 4,

and ∫ ∞

s0

(
1

β2(ϑ)

∫ ∞

ϑ
q(κ)dκ

)1/r
dϑ =

∫ ∞

s0

(∫ ∞

ϑ

1
κ6 dκ

)1/5
dϑ

=
∫ ∞

s0

1
ϑ

dϑ = lim
ϑ→∞

ln ϑ = ∞.

Thus, Theorem 10 is satisfied, and so (49) has property A.

7. Conclusions

This paper introduced a novel oscillation criterion tailored for third-order delay differen-
tial equations, subsequently refining it through the application of an iterative approach under
specific conditions. The criteria established herein provide a robust assurance that Equation (1)
adheres to property A, ensuring that all solutions of Equation (1) invariably either oscillate or
asymptotically approach zero as s→ ∞. Our research not only enriches the existing scholarly
discourse on this subject, but also lays the groundwork for future investigations. Our future
investigations aim to delve into higher-order delay differential equations,(

β2(s)
((

β1(s)U ′(s)
)(n−2)

)r)′
+ q(s)U r(τ(s)) = 0, s ≥ s0.

Through these endeavors, we aim to further illuminate the intricate dynamics of such
equations and contribute to the advancement of mathematical understanding in this domain
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