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Abstract: This work aims to derive new inequalities that improve the asymptotic and oscillatory
properties of solutions to fourth-order neutral differential equations. The relationships between the
solution and its corresponding function play an important role in the oscillation theory of neutral
differential equations. Therefore, we improve these relationships based on the modified monotonic
properties of positive solutions. Additionally, we set new conditions that confirm the absence of
positive solutions and thus confirm the oscillation of all solutions of the considered equation. We
finally explain the importance of the new inequalities by applying our results to some special cases of
the studied equation, as well as comparing them with previous results in the literature.
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1. Introduction

It is easy to see the great importance of differential equations (DE) since their inception.
It is well recognized that various types of DEs may frequently and accurately represent a
very large number of physical, chemical, biological, financial, and economic phenomena
(Ordinary DEs, Partial DEs, Stochastic DEs, dynamical systems, and so on). It is also
easy to notice that the current technological and scientific development is accompanied by
many phenomena and open problems. These problems and their innovative solutions also
produced a huge amount of mathematical models and DEs. These models and equations
are accompanied by many questions about their properties or the possibility of solving
them numerically. Having answers to these questions leads to understanding, analyzing,
and explaining phenomena and models, which in turn will contribute to the development
of many sectors.

The development of fractional calculus followed that of classical calculus in 1695. The
earliest systematic studies were attributed to Liouville, Riemann, Leibniz, etc. [1,2]. Frac-
tional calculus has long been thought of as a purely mathematical field with few practical
applications. However, this situation has changed in recent decades. Fractional calculus
has been found to be both beneficial and effective. Many and varied sectors of engineering
and research, including electromagnetics, viscoelasticity, fluid mechanics, electrochemistry,
biological population models, optics, and signals processing, use fractional calculus. It has
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been used to simulate technical and physical processes that fractional differential equations
have been determined to best describe.

Oscillation theory as a branch of qualitative theory answers many questions about
oscillatory behavior and asymptotic properties of DE solutions. The theory of oscillation
depends mainly on finding conditions that exclude the non-oscillatory solutions (positive
or negative eventually). Therefore, it always needs to study and improve the asymptotic
and monotonic properties of positive solutions. This resulted in many interesting analytical
research questions and points.

Delay differential equations (DDE) are a type of functional DE that takes into account
the temporal memory of phenomena. So, it is easy to see the many applications of these
equations in physics, engineering, biology, and other sciences, see [3,4]. Monographs [5–8]
collected several results, methods, and approaches to study the oscillation of solutions
of DDEs.

Recently, the oscillation theory has expanded and developed greatly, as it includes the
study of oscillation for solutions of ordinary, fractional, and partial DEs with delay, neutral,
mixed, and damping. DEs with delay, especially in the non-canonical case, received the
largest share of attention. For example, see [9,10] for delay equations, [11] for advanced
equations, and [12–16] for neutral equations, while the evolution of the study of odd-order
equations can be seen in [17–20]. On the other hand, the oscillation of fractional DEs
can be traced in Survey [21]. Moreover, [22–25] dealt with the study of mixed equations,
while [26–28] dealt with damping equations. DEs have also received a lot of attention over
the past two decades, see for example [29–32].

The aim of this study is to improve the asymptotic and monotonic properties and
establish oscillation conditions for solutions to the neutral DDE(

b(t)[x(t) + ρ(t)x(τ(t))]′′′
)′

+ q(t)x(σ(t)) = 0, (1)

where t ≥ t0. During this study, the following conditions must be satisfied:

(H1) b, ρ, τ and σ belong to C1([t0, ∞)), and q belongs to C([t0, ∞));
(H2) b(t) > 0, b′(t) ≥ 0, 0 < ρ(t) < ρ0, and q(t) ≥ 0;
(H3) τ(t) ≤ t, σ(t) ≤ t, σ′(t) ≥ 0, and limt→∞ τ(t) = ∞ = limt→∞ σ(t).

Furthermore, we define the corresponding function to the solution x of the form
z(t) := x(t) + ρ(t)x(τ(t)) and consider the non-canonical case, that is,

(H4) η2(t0) < ∞, where

η0(t) :=
∫ ∞

t
b−1(u)du

and
ηj(t) :=

∫ ∞

t
ηj−1(u)du, for j = 1, 2.

For a solution of (1), we mean a function x in C3([t∗, ∞)), t∗ ≥ t0, which has the
property b · z′′′ belongs to C1([t0, ∞)), and sup{|x(t)| : t ≥ tx} > 0, for tx ≥ t∗, and x
satisfies (1) on [t∗, ∞).

The relationship between the solution x and its corresponding function z plays an im-
portant role in studying the asymptotic and oscillatory behavior of solutions of differential
equations of neutral type. For second-order equations, the traditional relationship

x > (1− ρ)z (2)

is usually used in the canonical case, and the relationship

x >

(
1− ρ

η0 ◦ τ

η0

)
(3)
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is usually used for positive decreasing solutions in the non-canonical case, see [14,33]. In
the canonical case, Moaaz et al. [34] studied the oscillatory behavior of

(
b(t)

(
[x(t) + ρ0x(τ(t))]′(t)

)γ)′
+

L

∑
i=1

qi(t)xβ(σi(t)) = 0, (4)

where γ, β ∈ Q+ are quotients of odd, and L ∈ Z+. They presented the following relation-
ships as an improvement of (2):

x(t) > z(t)
n/2

∑
m=1

1
ρ2m−1

0

(
1− 1

ρ0

At1

(
τ−2m(t)

)
At1

(
τ−(2m−1)(t)

)), for ρ > 1 and n ∈ Z+ is even,

and

x(t) > z(t)(1− ρ0)
(n−1)/2

∑
m=0

ρ2m
0

At1

(
τ2m+1(t)

)
At1(t)

, for ρ < 1, and n ∈ Z+ is odd, (5)

where τ[j](t) = τ
(

τ[j−1](t)
)

, for j = 1, 2, . . . , 2m, and

At1(t) =
∫ t

t1

b−1/γ(u)du.

In a non-canonical case, Hassan et al. [35] investigated the oscillatory properties of (4)
when γ = β and L = 1 and improved (3) by the relationship

x(t) > z(t)
(n−1)/2

∑
r=0

ρ2r
0

1− ρ0

η0

(
τ[2r+1](t)

)
η0(τ2r(t))

.

Very recently, Bohner et al. [36] considered the neutral DDE(
b(t)

(
z′(t)

)β
)′

+ q(t)xβ(σ(t)) = 0

and improved (3) in both cases τ(t) ≥ t and τ(t) ≤ t.
For third-order neutral DDE(

b(t)
(
z′′(t)

)α
)′

+ q(t)xα(σ(t)) = 0,

Moaaz et al. [37] presented conditions for oscillation and improved (2) by the
relationship

x(t) ≥ (1− ρ0)z(t)
(n−1)/2

∑
r=0

ρ2r
0

(
τ[2r+1](t)− t1

t− t1

)2

,

when ρ(t) = ρ0 (constant).
On the other hand, the oscillatory behavior of solutions to a higher order differential

equation has been recently studied by many researchers. Moreover, the monotonic and
asymptotic properties of solutions of these equations were improved, see [38–40].

For higher order neutral DDE
In the following, we review some results in the literature that will be useful to clarify

the importance of our results through comparison with them.
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Theorem 1 ([39]). Suppose that lim inft→∞(η0(σ(t))/η0(t)) = λ and

b(t)η2
0(t)σ

n−2(t)q(t)(1− ρ(σ(t))) ≥ (n− 2)!β0 for some β0 ∈ (0, 1).

If

lim inf
t→∞

∫ t

σ(t)
σn−2(u)η0(u)q(u)(1− ρ(σ(u)))du >

(n− 2)!(1− βm)

e
, (6)

then there are no positive solutions of the DDE(
b(t)z(n−1)(t)

)′
+ q(t)x(σ(t)) = 0,

whose corresponding function satisfies properties z′(t) > 0 and z(n−1)(t) < 0, where

βi =
β0λβi−1

1− βi−1
, βi−1 ≤ βi < 1, for i = 1, 2, ..., m.

Theorem 2 ([40]). Suppose that η2(σ(t)) ≥ λη2(t),∫ ∞

t0

1
b(s)

(∫ s

t2

q(u)
(

1− ρ(σ(u))
η2(τ(σ(u)))

η2(σ(u))

)
du
)

ds = ∞, (7)

and

q(t)η2
2(t)η

−1
1 (t)

(
1− ρ(σ(t))

η2(τ(σ(t)))
η2(σ(t))

)
≥ α0, for some α0 ∈ (0, 1).

If the DDE

w′(t) +
1

(1− αn)
q(t)η2(t)

(
1− ρ(σ(t))

η2(τ(σ(t)))
η2(σ(t))

)
w(σ(t)) = 0 (8)

is oscillatory, then there are no positive decreasing solutions of (1), where

αi =
α0λαi−1

1− αi−1
, αi−1 ≤ αi < 1, for i = 1, 2, ..., n.

The studied equation is a generalization of Emden–Fowler Differential Equations
in fa ourth-order case and neutral delay case, see [41–43]. In this work, we start, as
usual, by classifying the positive solutions of the studied equation according to the signs
of its derivatives. Then, in some cases of positive solutions, we obtain new monotonic
properties. Based on these characteristics, we improve the relationship between the solution
and the corresponding function of the studied equation. Furthermore, we use these new
relationships to rule out the existence of positive solutions. We also provide some examples
and comparisons to illustrate the significance of our results.

2. Asymptotic and Monotonic Properties

In this section, we present some improved asymptotic and monotonic properties of
the positive solutions of the studied equation. We start, as usual, by classifying positive so-
lutions according to the sign of their derivatives. Assuming that the solution x is eventually
positive, we obtain that x(τ(t)) and x(σ(t)) are also eventually positive. Then, z(t) > 0,
eventually. It follows from Equation (1) that b · z′′′ is nondecreasing, and z fulfills one of
the following cases, based on Lemma 2.2.3 in [44]:
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(L1): z(i)(t) > 0 for i = 0, 1, 3 and z(4)(t) < 0;
(L2): z(i)(t) > 0 for i = 0, 1, 2 and z′′′ (t) < 0;
(L3): (−1)iz(i)(t) > 0 for i = 0, 1, · · · , 3.

Notation 1. We denote by the symbol Si the class of all eventually positive solutions whose
corresponding function satisfies (Li), for i = 1, 2, 3. For convenience, we denote the increasing
function F with the symbol F[↑] and the decreasing function G with the symbol G[↓]. Additionally,
we define

F[0](t) := t, F[j](t) = F
(

F[j−1](t)
)

, for j = 1, 2, ... .

Notation 2. For convenience, we define the functions, for any positive integer m,

P1(t; m) :=
m

∑
r=0

(
2r

∏
l=0

ρ
(

τ[l](t)
))[ 1

ρ
(
τ[2r](t)

) − 1

](
τ[2r](t)

t

)2/ε

,

where ε ∈ (0, 1), and

P2(t; m) :=
m

∑
r=0

(
2r

∏
l=0

ρ
(

τ[l](t)
)) 1

ρ
(
τ[2r](t)

) − η2

(
τ[2r+1](t)

)
η2
(
τ[2r](t)

)
.

Lemma 1. Suppose that x is an eventually positive solution of (1). Then, eventually,

x(t) >
m

∑
r=0

(
2r

∏
l=0

ρ
(

τ[l](t)
)) z

(
τ[2r](t)

)
ρ
(
τ[2r](t)

) − z
(

τ[2r+1](t)
), (9)

for any integer m ≥ 0.

Proof. Using the relationship between x and z more than once,

x(t) = z(t)− ρ(t)x(τ(t))

= z(t)− ρ(t)z(τ(t)) + ρ(t)ρ(τ(t))x
(

τ[2](t)
)

= z(t)− ρ(t)z(τ(t)) + ρ(t)ρ(τ(t))z
(

τ[2](t)
)
− ρ(t)ρ(τ(t))ρ

(
τ[2](t)

)
x
(

τ[3](t)
)

= z(t)− ρ(t)z(τ(t)) + ρ(t)ρ(τ(t))z
(

τ[2](t)
)
− ρ(t)ρ(τ(t))ρ

(
τ[2](t)

)
z
(

τ[3](t)
)

+ρ(t)ρ(τ(t))ρ
(

τ[2](t)
)

ρ
(

τ[3](t)
)

x
(

τ[4](t)
)

,

and so on. Thus,

x(t) >
m

∑
r=0

(−1)m

(
r

∏
l=0

ρ
(

τ[l](t)
)) z

(
τ[r](t)

)
ρ
(
τ[r](t)

) ,

for any odd positive integer m, or

x(t) >
m

∑
r=0

(
2r

∏
l=0

ρ
(

τ[l](t)
)) z

(
τ[2r](t)

)
ρ
(
τ[2r](t)

) − z
(

τ[2r+1](t)
),

for any integer m ≥ 0. Hence, the proof ends.

Lemma 2 ([45]). Suppose that G belongs to Cn+1([t0, ∞)) and satisfies the following, eventually:
(i) G(i)(t) > 0 for i = 0, 1, . . . , n,
(ii) G(n+1)(t) ≤ 0.
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Then,
G(t) ≥ ε

n
t G′(t),

for all ε ∈ (0, 1).

2.1. Category S2

Lemma 3. Suppose that x belongs to S2. Then, eventually,

(A1-1) z(t) ≥ ε
2 t z′(t), for all ε ∈ (0, 1),

(A1-2) z′′(t) ≥ −η0(t)b(t)z′′′(t),

(A1-3) (z′′/η0) [↑].

Proof. Using Lemma 2 with G = z and n = 2, we obtain (A1-1). Now, based on the
properties of solutions in the class P2, we conclude that

−z′′(t) ≤
∫ ∞

t
z′′′(u)du ≤ η0(t)b(t)z′′′(t).

Thus, (
z′′

η0

)′
=

1
η2

0

[
η0z′′′ +

1
b

z′′
]
≥ 0.

Hence, the proof ends.

Lemma 4. Suppose that x belongs to S2. Then, eventually,

(A1-4) x(t) > P1(t; m)z(t),

(A1-5) (b(t)z′′′(t))′ ≤ −q(t)P1(σ(t); m)z(σ(t)).

Proof. From Lemma 1, we have (9) holds. Based on the properties of solutions in the class
S2, the fact z

(
τ[2r+1](t)

)
≤ z
(

τ[2r](t)
)

for r = 0, 1, ..., is obtained. Thus, (9) becomes

x(t) >
m

∑
r=0

(
2r

∏
l=0

ρ
(

τ[l](t)
))[ 1

ρ
(
τ[2r](t)

) − 1

]
z
(

τ[2r](t)
)

. (10)

It follows from (A1-1) that

z
(

τ[2r](t)
)
≥
(

τ[2r](t)
t

)2/ε

z(t),

which with (10), gives (A1-4). Hence, it follows from (1) that (A1-5) holds. Therefore, the
proof ends.

Remark 1. It is easy to verify that P1(t; 0) = 1− ρ(t). Then, putting m = 0 in (A1-4), the
classical relation (2) is obtained.

The following results are obtained directly by replacing the function Q(t) with
q(t)P1(σ(t); m) in the results in [39].
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Theorem 3. Suppose that

(i) there is µ∗ > 0 such that b(t)η2
0(t)σ

n−2(t)q(t)P1(σ(t); m) ≥ 2µ∗,

(ii) lim inft→∞(η0(σ(t))/η0(t)) = δ < ∞,

(iii) there exists a positive integer n such that µi−1 ≤ µi, for i = 1, . . . , n, where µ0 = εµ∗, for
any ε ∈ (0, 1), and

µi := µ0
δµi−1

1− µi−1
, for i = 1, 2, . . . , n.

If µn > 1/2, then S2 = ∅.

Theorem 4. Suppose that hypotheses (i)–(iii) in Theorem 3 are satisfied. If

lim inf
t→∞

∫ t

σ(t)
σ2(u)η0(u)q(u)P1(σ(u); m)du >

2(1− µn)

e
, (11)

then S2 = ∅.

Proof. This Theorem is obtained directly by replacing the function Q(t) with q(t)P1(σ(t); m)
in Theorem 2 in [39].

Example 1. Consider the neutral DDE(
t4
(

x(t) +
1
2

x(0.9t)
)′′′)′

+ 18x(σ0t) = 0, (12)

where t > 0, and σ0 ∈ (0, 1). It is simple to confirm that

η0(t) =
1

3t3 , η1(t) =
1

6t2 , and η2(t) =
1
6t

.

Then,

P1(t; m) :=
20

∑
r=0

((
1
2

)2r+1

(0.9)(4/ε)r

)
≈ 0.598.

We also note that µ∗ = 0.598σ2
0 , δ = 1/σ3

0 , µ0 = 0.5382σ2
0 , with ε = 0.9, and

µi =
0.5382σ

2−3µi−1
0

1− µi−1
,

for i = 1, 2, . . . . From Theorem 3, we have that S2 = ∅ if µn > 1/2, for some n ≥ 0, while
Theorem 4 confirms that S2 = ∅ if

µn > 1− 1.794eσ2
0 ln

1
σ0

:= λ1, (13)

for some n ≥ 0.

Remark 2. Considering Equation (12) and using Theorem 1 in [39], we obtain that S2 = ∅ if
βn > 1/2, for some n ≥ 0, where β0 = 9

20 σ2
0 , and

βi =
β0

1− βi−1

(
1
σ0

)3βi−1

, for i = 1, 2, ..., n.
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Moreover, using Theorem 1, we obtain that S2 = ∅ if

βn > 1− 3
2

eσ2
0 ln

1
σ0

:= λ2, (14)

for some n ≥ 0. Figure 1 shows that sequence {µi}n
i=0 crosses 1/2 faster than sequence {βi}n

i=0,
which means that it is possible to prove that S2 = ∅ with fewer approximations. For example, we
notice when σ0 = 0.6 that the µ3 > 1/2, while β3 < 1/2. Figure 2 shows the difference between
conditions (13) and (14). We notice when σ0 = 0.51 that µ2 > λ1, whereas the sequence {βi}n

i=0
needs the eleventh approximation to exceed λ2.

Figure 1. Comparison between the iterations µi and βi for i = 0, 1, 2, 3.

Figure 2. Comparison between criteria (13) and (14).

2.2. Category S3

Lemma 5. Suppose that x belongs to S3. Then, eventually,

(A2-1) (z/η2) [↑],

(A2-2) (−1)iz(i)(t) ≥ −b(t)z′′′(t)η2−i(t) for i = 0, 1, 2.

Proof. The proof of this lemma comes directly from Lemma 3 and Theorem 1 in [40].

Lemma 6. Suppose that x belongs to S3. Then, eventually,

(A2-3) x(t) > P2(t; m)z(t),

(A2-4) (b(t)z′′′(t))′ ≤ −q(t)P2(σ(t); m)z(σ(t)).
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Proof. From Lemma 1, we have (9) holds. From (A2-1), the following fact is obtained:

z
(

τ[2r+1](t)
)
≤

η2

(
τ[2r+1](t)

)
η2
(
τ[2r](t)

) z
(

τ[2r](t)
)

,

which with (9), gives

x(t) >
m

∑
r=0

(
2r

∏
l=0

ρ
(

τ[l](t)
)) 1

ρ
(
τ[2r](t)

) − η2

(
τ[2r+1](t)

)
η2
(
τ[2r](t)

)
z
(

τ[2r](t)
)

. (15)

It follows from the fact that z[↓] that (A2-3) holds. Hence, it follows from (1) that (A2-4)
holds. Therefore, the proof ends.

Remark 3. It is easy to verify that

P2(t; 0) = 1− ρ(t)
η2(τ(t))

η2(t)
.

Then, putting m = 0 in (A2-3), we obtain the classical relation (3).

Lemma 7. Suppose that x belongs to S3. Then, eventually,

(i) there is κ0 > 0 such that η2
2(t)η

−1
1 (t)q(t)P2(σ(t); m) ≥ κ0,

(ii) lim inft→∞(η2(σ(t))/η2(t)) = ` < ∞,

(iii) there exists a positive integer n such that κi−1 ≤ κi < 1, for i = 1, . . . , n, for any ε ∈ (0, 1),
and

κi := κ0
`κi−1

1− κi−1
, for i = 1, 2, . . . , n.

Then,

(A2-5)
(
z/ηκn

2
)
[↓],

(A2-6) limt→∞
(
z(t)/ηκn

2 (t)
)
= 0.

Proof. Assume that x belongs to S3. Since z(t) > 0 and z[↓], we obtain that z(t)→ c ≥ 0.
Suppose the contrary that c > 0. Hence, there exists a t1 ≥ t0 such that z(t) ≥ c for t ≥ t1.
Then, from (A2-4), we find (

b(t)z′′′(t)
)′ ≤ −cq(t)P2(σ(t); m). (16)

By integrating from t1 to t, (16) becomes

b(t)z′′′(t) ≤ −c
∫ t

t1

q(u)P2(σ(u); m)du.

It follows from (A2-2) at i = 1 that

z′(t)
η1(t)

≤ b(t)z′′′(t) ≤ −c
∫ t

t1

q(u)P2(σ(u); m)du,

or

z′(t) ≤ −cη1(t)
∫ t

t1

q(u)P2(σ(u); m)du.
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Thus,

z′(t) ≤ −cκ0η1(t)
∫ t

t1

η1(u)
η2

2(u)
du

= −cκ0η1(t)
(

1
η2(t)

− 1
η2(t1)

)
. (17)

Since η2(t) → 0 as t → ∞, we obtain η−1
2 (t)− η−1

2 (t1) ≥ εη−1
2 (t) for ε ∈ (0, 1) and

t ≥ t2 ≥ t1, where t2 is large enough. Then, (17) becomes

z′(t) ≤ −cεκ0
η1(t)
η2(t)

.

Integrating this inequality from t2 to ∞, we obtain

z(t2) ≥ c + cεκ0 ln
η2(t2)

η2(t)
→ ∞,

a contradiction. Therefore, z(t)→ c = 0 as t→ ∞.
The rest of the proof of this lemma is obtained directly by replacing the function

(1− ρ[(η2 ◦ τ)/η2]) with P2(t; m) in the proof of Theorem 2 in [40].

Remark 4. From the previous lemma, we notice in Theorem 2 that condition (7) is an extra
condition and is satisfied from hypothesis (i) in Lemma 7.

Notation 3. For convenience, we define the function for any positive integer m,

P̂2(t; m) :=
m

∑
r=0

(
2r

∏
l=0

ρ
(

τ[l](t)
)) 1

ρ
(
τ[2r](t)

) − η2

(
τ[2r+1](t)

)
η2
(
τ[2r](t)

)
ηκn

2

(
τ[2r](t)

)
ηκn

2 (t)
,

where κn defined as in Lemma 7.

Lemma 8. Suppose that hypotheses (i)–(iii) in Lemma 7 are satisfied. If x belongs to S3, then

(A2-7) x(t) > P̂2(t; m)z(t).

Proof. As in the proof of Lemma 6, we arrive at (15). From (A2-5), we conclude that

z
(

τ[2r](t)
)
≥

ηκn
2

(
τ[2r](t)

)
ηκn

2 (t)
z(t),

which with (15), gives

x(t) > z(t)
m

∑
r=0

(
2r

∏
l=0

ρ
(

τ[l](t)
)) 1

ρ
(
τ[2r](t)

) − η2

(
τ[2r+1](t)

)
η2
(
τ[2r](t)

)
ηκn

2

(
τ[2r](t)

)
ηκn

2 (t)
.

Therefore, the proof ends.

Theorem 5. Suppose that hypotheses (i)–(iii) in Lemma 7 are satisfied. If

lim inf
t→∞

∫ t

σ(t)
q(u)η2(u)P̂2(σ(u); m)du >

(1− κn)

e
, (18)

then S3 = ∅.
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Proof. This theorem is obtained directly by replacing the function (1− ρ[(η2 ◦ τ)/η2]) with
P̂2(t; m) in Theorem 3 in [40].

Example 2. Consider the neutral DDE(
et[x(t) + ρ0x(t− τ0)]

′′′
)′

+ q0etx(t− σ0) = 0, (19)

where τ0, ρ0, σ0, and q0 are positive and ρ0 < e−τ0 . We note that ηi(t) = e−t and τ[i](t) = t− iτ0.
Then,

P2(t; m) =

[
1
ρ0
− eτ0

] m

∑
r=0

ρ2r+1
0 := P0

and

P̂2(σ(t); m) =

[
1
ρ0
− eτ0

] m

∑
r=0

ρ2r+1
0 e2rκnτ0 = P̂0.

If we choose κ0 = q0P0 and ` = eσ0 , then (i) and (ii) in Lemma 7 are satisfied, where

κi :=
q0P0eσ0κi−1

1− κi−1
, for i = 1, 2, . . . , n.

Condition (18) reduces to

q0P̂0 >
(1− κn)

eσ0
. (20)

Thus, Theorem 4 confirms that S3 = ∅, if (20) holds, for some n ≥ 0.

Remark 5. Considering the following special case of (19):(
et
[

x(t) +
1
3

x(t− 1)
]′′′)′

+ q0etx(t− σ0) = 0.

Theorem 4 confirms that S3 = ∅ if

q0[3− e]
m

∑
r=0

(
1
3

)2r+1
e2rκn >

(1− κn)

eσ0
, (21)

where
κ0 = 0.10564q0, κi = 0.10564q0

eσ0κi−1

1− κi−1
, for i = 1, 2, . . . , n.

On the other hand, Theorem 2 confirms that S3 = ∅ if

q0

(
1− e

3

)
>

(1− αm)

eσ0
, (22)

where
α0 = q0

(
1− e

3

)
, αi = q0

(
1− e

3

) eσ0αi−1

1− αi−1
, for i = 1, 2, . . . , n.

Figure 3 shows the difference between conditions (21) and (22) for n = 0, 1, 2. For example, at
σ0 = 0.5 and n = 0, conditions (21) and (22) reduce to q0 > 3.6543 and q0 > 4.5139, respectively.

Remark 6. By using the new relationship between the solution and the corresponding function
(A2-7), we can re-improve the monotonic property (A2-5) and then conduct another improvement
for the condition (18), and this procedure can be repeated to obtain better approximations.
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Figure 3. Comparison between criteria (21) and (22).

3. Oscillation Conditions

In this section, we use the results of the previous section to obtain new conditions for
checking the oscillation of all solutions of (1).

Lemma 9. Suppose that the DDE

lim inf
t→∞

∫ t

σ(t)
q(u)(1− ρ(σ(u)))

σ3(u)
b(σ(u))

du >
6
e

(23)

is oscillatory for some ε ∈ (0, 1). Then, S1 = ∅.

Proof. Assume the contrary that x ∈ S1. In view of Theorem 2.1 in [46], the DDE

w′(t) + ε
σ3(t)

6b(σ(t))
q(t)(1− ρ(σ(t)))w(σ(t)) = 0 (24)

has a positive solution, for all ε ∈ (0, 1). However, condition (23) ensures that DDE (24)
oscillates, which is a contradiction. Therefore, the proof ends.

Now, we have conditions that exclude all cases of positive solutions (L1)–(L3). Com-
bining these conditions, as in the following theorem, we can obtain conditions for oscillation.

Theorem 6. All solutions of Equation (1) are oscillatory if all of the following conditions are satisfied:

(c1) hypotheses (i)–(iii) in Theorem 3 and (11),

(c2) hypotheses (i)–(iii) in Lemma 7 and (18),

(c3) condition (23).

Example 3. Consider the neutral DDE (19). It is easy to verify that conditions (11) and (23)
are satisfied. In view of Theorem 6, all solutions of equation (19) are oscillatory if (21) holds for
some n ≥ 0.
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4. Conclusions

In this study, we investigated the monotonic properties and oscillatory behavior of
a class of functional differential equations of the neutral type. We presented a number of
improved relationships that link the solution and its corresponding function in two of the
three cases of the positive solutions of the studied equation. We then used these relation-
ships to obtain conditions confirming that there are no solutions in Categories S2 and S3.
Through comparisons and examples, we clarified that the new relationships contributed
to the improvement of conditions that ensure that S2 and S3 are empty sets. Finally, we
established a new condition to check the oscillation of Equation (1). It will be interesting, as
a future proposal, to extend the results to half-linear higher order neutral DDEs.
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