The axisymmetrical Grad–Shafranov equation is solved by separating the radial and axial variables and expressing the azimuthal plasma current density via series of sinusoidal or exponentially decaying functions of the axial variable. In these conditions, the flux function, exact solution of the axisymmetrical Grad–Shafranov equation, is described by double series involving Bessel functions of the radial coordinate and sinusoidal or exponential functions of the axial coordinate.

Fourier–Bessel Series Solutions of the Axisymmetrical Grad–Shafranov Equation for Plasma Confinement

Clemente Cesarano
;
Artur Ishkhanyan
2025-01-01

Abstract

The axisymmetrical Grad–Shafranov equation is solved by separating the radial and axial variables and expressing the azimuthal plasma current density via series of sinusoidal or exponentially decaying functions of the axial variable. In these conditions, the flux function, exact solution of the axisymmetrical Grad–Shafranov equation, is described by double series involving Bessel functions of the radial coordinate and sinusoidal or exponential functions of the axial coordinate.
2025
Grad–Shafranov equation | magneto hydro dynamic equilibrium equation | plasma
File in questo prodotto:
File Dimensione Formato  
Fourier-Bessel.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Dominio pubblico
Dimensione 935.26 kB
Formato Adobe PDF
935.26 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14086/8341
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact