Probabilistic domain decomposition (PDD) is an alternative paradigm for solving boundary value problems (BVPs) in parallel with excellent scalability properties, thanks to its reliance on stochastic representations of the BVP. However, there are cases when the latter is less numerically convenient, or unknown. Semilinear elliptic BVPs and the Helmholtz equation are prominent examples of either class. In this paper, we overcome this issue by designing suitable iterative schemes for either problem. These schemes not only retain the desirable properties of PDD but also are optimally suited for pathwise variance reduction, resulting in a systematic, nearly cost-free reduction of the statistical error through the iterations. Numerical tests carried out on the supercomputer Marconi100 are presented.
Iterative Schemes for Probabilistic Domain Decomposition
Renato Spigler
2024-01-01
Abstract
Probabilistic domain decomposition (PDD) is an alternative paradigm for solving boundary value problems (BVPs) in parallel with excellent scalability properties, thanks to its reliance on stochastic representations of the BVP. However, there are cases when the latter is less numerically convenient, or unknown. Semilinear elliptic BVPs and the Helmholtz equation are prominent examples of either class. In this paper, we overcome this issue by designing suitable iterative schemes for either problem. These schemes not only retain the desirable properties of PDD but also are optimally suited for pathwise variance reduction, resulting in a systematic, nearly cost-free reduction of the statistical error through the iterations. Numerical tests carried out on the supercomputer Marconi100 are presented.File | Dimensione | Formato | |
---|---|---|---|
22m1503580.pdf
non disponibili
Descrizione: Articolo
Tipologia:
Documento in Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.79 MB
Formato
Adobe PDF
|
1.79 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.