Fourier series and generating function theory is an active branch of modern analysis that has gained importance due to its applications in methods of analysis for mathematical solutions to boundary value problems, engineering, and signal processing in communications. On the other hand, the Riemann zeta function and its generalizations are useful in the investigation of analytic number theory and allied disciplines, especially in the role played by their special values in integral arguments (see [4, 14]).

Fourier expansion of periodic U-Bernoulli, U-Euler and U-Genocchi functions and their relation with the Riemann zeta function

Cesarano Clemente
;
Praveen Agarwal
2024-01-01

Abstract

Fourier series and generating function theory is an active branch of modern analysis that has gained importance due to its applications in methods of analysis for mathematical solutions to boundary value problems, engineering, and signal processing in communications. On the other hand, the Riemann zeta function and its generalizations are useful in the investigation of analytic number theory and allied disciplines, especially in the role played by their special values in integral arguments (see [4, 14]).
2024
New U-Bernoulli polynomials, New U-Euler polynomials, New UGenocchi polynomials, Fourier expansion, Integral representation, Riemann zeta function
File in questo prodotto:
File Dimensione Formato  
Urieles_Contemponary.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Dominio pubblico
Dimensione 294.74 kB
Formato Adobe PDF
294.74 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14086/6921
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact