There is a growing interest in the application of UHP FRC (Ultra-High Performance Fiber-Reinforced Concrete) which has been under vigorous development since its inception over two decades ago. The advantages of these advanced materials is that they overcome the problems that plague conventional concrete, these include among others low residual strength and low tensile strength, poor crack control and resistance to crack propagation, which leads corrosion of the rebars and spalling. The aim of this paper is to provide a granular micromechanics-based model to describe the deformation behavior of UHP FRC material as it gives a robust method to link the micro-scale mechanisms with the macro-scale performance of materials with granular textures. In this model, the micro-scale is described by damage-elasto-plastic spring elements that represent the effective grain pair interactions decomposed into the so-called normal and tangential directions. Since the grain-pairs are variously oriented, the macro-scale response is obtained by integrating these interactions over the orientational space. Here we specialize the granular micromechanic model for UHP FRC by introducing a novel expression for the parameterized dissipation energy at the micro or the grain-pair scale. The newly introduced constitutive parameters are identified using experimental results for uniaxial extension and compression tests. The model is then applied to simulate the case of homogeneous compression, extension and shear to show the directional evolution of damage and plasticity and the consequent emergent anisotropy.

A granular micromechanic-based model for Ultra High Performance Fiber-Reinforced Concrete (UHP FRC)

Luca Placidi
Membro del Collaboration Group
;
2024-01-01

Abstract

There is a growing interest in the application of UHP FRC (Ultra-High Performance Fiber-Reinforced Concrete) which has been under vigorous development since its inception over two decades ago. The advantages of these advanced materials is that they overcome the problems that plague conventional concrete, these include among others low residual strength and low tensile strength, poor crack control and resistance to crack propagation, which leads corrosion of the rebars and spalling. The aim of this paper is to provide a granular micromechanics-based model to describe the deformation behavior of UHP FRC material as it gives a robust method to link the micro-scale mechanisms with the macro-scale performance of materials with granular textures. In this model, the micro-scale is described by damage-elasto-plastic spring elements that represent the effective grain pair interactions decomposed into the so-called normal and tangential directions. Since the grain-pairs are variously oriented, the macro-scale response is obtained by integrating these interactions over the orientational space. Here we specialize the granular micromechanic model for UHP FRC by introducing a novel expression for the parameterized dissipation energy at the micro or the grain-pair scale. The newly introduced constitutive parameters are identified using experimental results for uniaxial extension and compression tests. The model is then applied to simulate the case of homogeneous compression, extension and shear to show the directional evolution of damage and plasticity and the consequent emergent anisotropy.
2024
Anisotropy; Concrete; Damage; Granular micromechanics; Plasticity
File in questo prodotto:
File Dimensione Formato  
2024_placidi_et_at_IJSS.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.44 MB
Formato Adobe PDF
3.44 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14086/5123
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact