In this study, the stochastic fractional Fokas system (SFFS)with M-truncated derivatives is considered. A certain wave transformation is applied to convert this system to a one-dimensional conservative Hamiltonian system. Based on the qualitative theory of dynamical systems, the bifurcation and phase portrait are examined. Utilizing the conserved quantity, we construct some new traveling wave solutions for the SFFS. Due to the fact that the Fokas system is used to explain nonlinear pulse transmission in mono-mode optical fibers, the given solutions may be applied to analyze an extensive variety of crucial physical phenomena. To clarify the effects of the M-truncated derivative and Wiener process, the dynamic behaviors of the various obtained solutions are depicted with 3-D and 2-D curves.

Abundant optical soliton solutions for the stochastic fractional fokas system using bifurcation analysis

Clemente Cesarano;
2024-01-01

Abstract

In this study, the stochastic fractional Fokas system (SFFS)with M-truncated derivatives is considered. A certain wave transformation is applied to convert this system to a one-dimensional conservative Hamiltonian system. Based on the qualitative theory of dynamical systems, the bifurcation and phase portrait are examined. Utilizing the conserved quantity, we construct some new traveling wave solutions for the SFFS. Due to the fact that the Fokas system is used to explain nonlinear pulse transmission in mono-mode optical fibers, the given solutions may be applied to analyze an extensive variety of crucial physical phenomena. To clarify the effects of the M-truncated derivative and Wiener process, the dynamic behaviors of the various obtained solutions are depicted with 3-D and 2-D curves.
2024
fractional derivatives, nonlinear system, Wiener process, optical solitons, multiplicative noise
File in questo prodotto:
File Dimensione Formato  
Phys._Scr._99_045233.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Dominio pubblico
Dimensione 1.81 MB
Formato Adobe PDF
1.81 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14086/4941
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact