EUSO-TA is a ground-based experiment, placed at Black Rock Mesa of the Telescope Array site as a part of the JEM-EUSO (Joint Experiment Missions for the Extreme Universe Space Observatory) program. The UV fluorescence imaging telescope with a field of view of about 10.6◦ x 10.6◦ consisting of 2304 pixels (36 Multi-Anode Photomultipliers, 64 pixels each) works with 2.5-microsecond time resolution. An experimental setup with two Fresnel lenses allows for measurements of Ultra High Energy Cosmic Rays in parallel with the TA experiment as well as the other sources like flashes of lightning, artificial signals from UV calibration lasers, meteors and stars. Stars increase counts on pixels while crossing the field of view as the point-like sources. In this work, we discuss the method for calibration of EUSO fluorescence detectors based on signals from stars registered by the EUSO-TA experiment during several campaigns. As the star position is known, the analysis of signals gives an opportunity to determine the pointing accuracy of the detector. This can be applied to space-borne or balloon-borne EUSO missions. We describe in details the method of the analysis which provides information about detector parameters like the shape of the point spread function and is the way to perform absolute calibration of EUSO cameras. © Copyright owned by the author(s).

Study of the calibration method using the stars measured by the EUSO-TA telescope

Bartocci, S.;Conti, L.;Fornaro, C.;
2022-01-01

Abstract

EUSO-TA is a ground-based experiment, placed at Black Rock Mesa of the Telescope Array site as a part of the JEM-EUSO (Joint Experiment Missions for the Extreme Universe Space Observatory) program. The UV fluorescence imaging telescope with a field of view of about 10.6◦ x 10.6◦ consisting of 2304 pixels (36 Multi-Anode Photomultipliers, 64 pixels each) works with 2.5-microsecond time resolution. An experimental setup with two Fresnel lenses allows for measurements of Ultra High Energy Cosmic Rays in parallel with the TA experiment as well as the other sources like flashes of lightning, artificial signals from UV calibration lasers, meteors and stars. Stars increase counts on pixels while crossing the field of view as the point-like sources. In this work, we discuss the method for calibration of EUSO fluorescence detectors based on signals from stars registered by the EUSO-TA experiment during several campaigns. As the star position is known, the analysis of signals gives an opportunity to determine the pointing accuracy of the detector. This can be applied to space-borne or balloon-borne EUSO missions. We describe in details the method of the analysis which provides information about detector parameters like the shape of the point spread function and is the way to perform absolute calibration of EUSO cameras. © Copyright owned by the author(s).
2022
Calibration
Cosmic rays
Cosmology
Fluorescence imaging
Gamma rays
Optical transfer function
Pixels
Signal detection
Telescopes, Calibration method
Field of views
Fluorescence imaging
Fresnel lens
Ground based
Multianode photo multipliers
Space observatories
Telescope arrays
Time-resolution
UV Fluorescence, Stars
File in questo prodotto:
File Dimensione Formato  
ICRC2021_240.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Dominio pubblico
Dimensione 1.22 MB
Formato Adobe PDF
1.22 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14086/4889
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact