In recent times, ionospheric and magnetospheric perturbations constitutea by radiation belt particle precipitations, variations of temperature and density of ionic and electronic components of ionospheric plasma as well as electric and magnetic field fluctuations have been detected on board of the LEO satellites and associated with earthquake preparation and occurrence. Several mechanisms have been suggested as justifying the seismo-electromagnetic phenomena observed in the upper lithosphere and in the topside ionosphere before, during and after an earthquake. Their propagation in these media has also been investigated, but physical knowledge of such processes is below standard. Consequently, coordinated space and ground-based observations based on data gathered simultaneously in space and at the Earth's surface are needed to investigate seismo-associated phenomena. To this end, the ESPERIA space mission project has been designed for the Italian Space Agency (ASI). To date, a few instruments of its payload have been built and tested in space. This paper reports on the justification, science background, and characteristics of the ESPERIA mission project as well as the description and testing of ESPERIA Instruments (ARINA and LAZIO-EGLE)in space. Copyright © The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences; TERRAPUB.

The ESPERIA satellite project for detecting seismo-associated effects in the topside ionosphere. First instrumental tests in space

Conti, L.;
2008-01-01

Abstract

In recent times, ionospheric and magnetospheric perturbations constitutea by radiation belt particle precipitations, variations of temperature and density of ionic and electronic components of ionospheric plasma as well as electric and magnetic field fluctuations have been detected on board of the LEO satellites and associated with earthquake preparation and occurrence. Several mechanisms have been suggested as justifying the seismo-electromagnetic phenomena observed in the upper lithosphere and in the topside ionosphere before, during and after an earthquake. Their propagation in these media has also been investigated, but physical knowledge of such processes is below standard. Consequently, coordinated space and ground-based observations based on data gathered simultaneously in space and at the Earth's surface are needed to investigate seismo-associated phenomena. To this end, the ESPERIA space mission project has been designed for the Italian Space Agency (ASI). To date, a few instruments of its payload have been built and tested in space. This paper reports on the justification, science background, and characteristics of the ESPERIA mission project as well as the description and testing of ESPERIA Instruments (ARINA and LAZIO-EGLE)in space. Copyright © The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences; TERRAPUB.
2008
detection method
earthquake mechanism
electromagnetic field
ground-based measurement
ionosphere
lithosphere
magnetosphere
research program
satellite data
seismicity
seismotectonics
Earthquake precursors
Ionosphere
Satellite
Seismicity
Seismo-electromagnetic emissions
File in questo prodotto:
File Dimensione Formato  
BF03352813.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Dominio pubblico
Dimensione 2.06 MB
Formato Adobe PDF
2.06 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14086/4878
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact