Mini-EUSO is the first mission of the JEM-EUSO program located on the International Space Station. One of the main goals of the mission is to provide valuable scientific data in view of future large missions devoted to study Ultra-High Energy Cosmic Rays (UHECRs) from space by exploiting the fluorescence emission generated by Extensive Air Showers (EAS) developing in the atmosphere. A space mission like Mini-EUSO experiences continuous changes in atmospheric conditions, including the cloud presence. The influence of clouds on space-based observation is, therefore, an important topic to investigate as it might alter the instantaneous exposure for EAS detection or deteriorate the quality of the EAS images with consequences on the reconstructed EAS parameters. For this purpose, JEM-EUSO is planning to have an IR camera and a lidar as part of its Atmospheric Monitoring System. At the same time, it would be extremely beneficial if the UV camera itself would be able to detect the presence of clouds, at least in some specific conditions. For this reason, we analyze a few case studies by comparing the pixel count rates from Mini-EUSO during orbits with the cloud cover (as cloud fraction). This quantity is retrieved from the Global Forecast System (GFS) model at different height levels over the Mini-EUSO trajectory. The results of this analysis are reported. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)

A study on UV emission from clouds with Mini-EUSO

Bartocci, S.;Conti, L.;Fornaro, C.;
2022-01-01

Abstract

Mini-EUSO is the first mission of the JEM-EUSO program located on the International Space Station. One of the main goals of the mission is to provide valuable scientific data in view of future large missions devoted to study Ultra-High Energy Cosmic Rays (UHECRs) from space by exploiting the fluorescence emission generated by Extensive Air Showers (EAS) developing in the atmosphere. A space mission like Mini-EUSO experiences continuous changes in atmospheric conditions, including the cloud presence. The influence of clouds on space-based observation is, therefore, an important topic to investigate as it might alter the instantaneous exposure for EAS detection or deteriorate the quality of the EAS images with consequences on the reconstructed EAS parameters. For this purpose, JEM-EUSO is planning to have an IR camera and a lidar as part of its Atmospheric Monitoring System. At the same time, it would be extremely beneficial if the UV camera itself would be able to detect the presence of clouds, at least in some specific conditions. For this reason, we analyze a few case studies by comparing the pixel count rates from Mini-EUSO during orbits with the cloud cover (as cloud fraction). This quantity is retrieved from the Global Forecast System (GFS) model at different height levels over the Mini-EUSO trajectory. The results of this analysis are reported. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)
2022
Cosmic rays
Cosmology
Space stations, Atmospheric conditions
Extensive air showers
Fluorescence emission
International Space stations
JEM-EUSO
Scientific data
Space missions
Space-based observations
Ultra high-energy cosmic rays
UV emissions, Cameras
File in questo prodotto:
File Dimensione Formato  
ICRC2021_208.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Dominio pubblico
Dimensione 1.26 MB
Formato Adobe PDF
1.26 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14086/4863
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact