GRB 221009A is a long gamma-ray burst among the most energetic and nearest (z = 0.151) detected so far. The energy fluence of the burst was so large to cause ionization of the upper layers of Earth’s atmosphere and also observable signals in satellite-borne particle detectors. Electron signals, with the same GRB time development, can arise from the interaction of energetic photons with the particle detector and support structures. This effect was previously reported for the HEPP-L on board the China Seismo-Electromagnetic Satellite. We searched for the same effect on the particle detectors on board five POES and MetOp satellites. Electron signals in coincidence with the gamma-ray emission of the burst were found in three satellites, which were well illuminated by the GRB. The properties of the found electron signals are reported and discussed. © 2023. The Author(s). Published by the American Astronomical Society.
Electron Signal Induced by GRB 221009A on Charged Particle Telescopes of POES and MetOp Satellites
Conti, L.;
2023-01-01
Abstract
GRB 221009A is a long gamma-ray burst among the most energetic and nearest (z = 0.151) detected so far. The energy fluence of the burst was so large to cause ionization of the upper layers of Earth’s atmosphere and also observable signals in satellite-borne particle detectors. Electron signals, with the same GRB time development, can arise from the interaction of energetic photons with the particle detector and support structures. This effect was previously reported for the HEPP-L on board the China Seismo-Electromagnetic Satellite. We searched for the same effect on the particle detectors on board five POES and MetOp satellites. Electron signals in coincidence with the gamma-ray emission of the burst were found in three satellites, which were well illuminated by the GRB. The properties of the found electron signals are reported and discussed. © 2023. The Author(s). Published by the American Astronomical Society.File | Dimensione | Formato | |
---|---|---|---|
Vitale_2023_ApJ_952_159.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Dominio pubblico
Dimensione
1.1 MB
Formato
Adobe PDF
|
1.1 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.