The radiation belts in the Earth’s magnetosphere pose a hazard to satellite systems and spacecraft missions (both manned and unmanned), heavily affecting payload design and re-sources, thus resulting in an impact on the overall mission performance and final costs. The NASA AE9/AP9/SPM radiation models for energetic electrons, protons, and plasma provide useful information on the near-Earth environment, but they are still incomplete as to some features and, for some energy ranges, their predictions are not based on a statistically sufficient sample of direct measure-ments. Therefore, it is of the upmost importance to provide new data and direct measurements to improve their output. In this work, the AP9 model is applied to the China Seismo-Electromagnetic Satellite (CSES-01) orbit to estimate the flux of energetic protons over the South Atlantic Anomaly during a short testing period of one day, 1 January 2021. Moreover, a preliminary comparison with proton data obtained from the High-Energy Particle Detector (HEPD) on board CSES-01 is carried out. This estimation will serve as the starting ground for a forthcoming complete data analysis, enabling extensive testing and validation of current theoretical and empirical models. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

Trapped proton fluxes estimation inside the south atlantic anomaly using the nasa ae9/ap9/spm radiation models along the china seismo-electromagnetic satellite orbit

Bartocci, S.;Conti, L.;
2021-01-01

Abstract

The radiation belts in the Earth’s magnetosphere pose a hazard to satellite systems and spacecraft missions (both manned and unmanned), heavily affecting payload design and re-sources, thus resulting in an impact on the overall mission performance and final costs. The NASA AE9/AP9/SPM radiation models for energetic electrons, protons, and plasma provide useful information on the near-Earth environment, but they are still incomplete as to some features and, for some energy ranges, their predictions are not based on a statistically sufficient sample of direct measure-ments. Therefore, it is of the upmost importance to provide new data and direct measurements to improve their output. In this work, the AP9 model is applied to the China Seismo-Electromagnetic Satellite (CSES-01) orbit to estimate the flux of energetic protons over the South Atlantic Anomaly during a short testing period of one day, 1 January 2021. Moreover, a preliminary comparison with proton data obtained from the High-Energy Particle Detector (HEPD) on board CSES-01 is carried out. This estimation will serve as the starting ground for a forthcoming complete data analysis, enabling extensive testing and validation of current theoretical and empirical models. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
2021
AE9/AP9/SPM models
Radiation belts
South Atlantic Anomaly
Trapped particles
File in questo prodotto:
File Dimensione Formato  
applsci-11-03465-v2.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Dominio pubblico
Dimensione 3.77 MB
Formato Adobe PDF
3.77 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14086/4753
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact